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Hydrological data and theoretical (Pearson III), negative binomial as
well as empirical distributions of the examined watercourse are seen in Table 1
and Fig. 1, respectively.

Table 1
Discharges of “Csdszarviz” (1934 to 1959)
the gxgrl:xiuehda\‘lli?;l:ar th]e:)l;\c’il::il;ie ]?:lgx;:ar : Annual discharge
Year mi/sec ! Qi0fm?y | m¥sec 5 Q (105 m3) i md/sec LQ (106m3)
1934 0,047 0,741 0,850 13,403 0,897 14,144
35 0,079 1,246 0,747 11,779 0.826 13,025
36 0,196 3,091 0,963 ‘ 15,185 1,159 18,276
37 0,174 2,744 1,445 ‘ 22,785 1,619 25,529
38 0,150 2,365 1,598 ; 25,197 1,748 27,563
39 0,164 2,586 0,609 ! 9,603 0,773 12,189
40 0,392 6,181 1,420 22,390 1.812 28,517
41 0,111 1,750 1,955 30,826 2,066 32,576
42 0,184 2,901 1,814 28,603 1,998 31,504
43 0,106 1,671 0,494 7,789 0,600 9,460
44 0,174 2,744 0,789 12,583 0,972 ; 15,327
45 0.096 1,514 1.508 23,778 1,604 ! 25,292
46 0,112 1,766 0,710 11,195 0,822 12,961
47 0,006 0,095 1,862 29,360 1.868 29.455
48 0,135 2,129 0,482 7,600 0,617 9.729
49 0,040 0,631 0,418 6.591 0,458 7,222
50 0,024 0,378 0.976 15.390 1,000 15,768
51 0,240 3.784 1,102 17.376 1,342 21,160
52 0,136 2,144 0,677 10,675 0,813 12,819
33 0,169 2,665 1,330 20,971 1,499 23,636
54 0,179 2,822 0,443 6,985 0,622 ! 9,807
55 0,224 4,532 0.874 13,781 1,098 ! 17,313
56 0,184 2,901 1,585 24,992 | 1,769 27,893
57 0,151 2,381 1,065 16,793 | 1,216 19,174
58 0,169 2,663 0,723 11,400 0,892 14,065
39 0,073 1,151 0,662 10,438 0,735 11.589

* Lecture deliverad at the Conference of Reservoirs and Storage, Gybr, Sept. 13 to 17
1971,
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fig. 1
Mathematical construction of the model

Let the random variable set {{,};_, denote the rainfall in the wet
seasons of consecutive hydrological years, i.e. by &, the rainfall in the wet
season of the k-th hydrological year. The set of random variables is assumed

1. to be independent and uniformly distributed:

2. there being no water withdrawal from but only water inflow into the
reservoir during the wet season. If the water level is beyond a maximum level,
constant during the storage process, the entering water is discharged through
the spillway:

3. to be no inflow during the dry period but only withdrawal of a water
volume M. It should be noted that the water volume M can be withdrawn at
any rate of flow, hence, at any instant of the dry season.

Denote by 1, the water content in the reservoir at the beginning of the
k-th hydrological year (k = 0, 1, ..., n) i.e. the water volume in the reservoir
before filled up volume &, becomes fed in (Fig. 2).

Let K denote the reservoir capacity.
In conformity with the above, the following relationships hold:

e & — M, for M <y & < K
ey =1 0 s for s & < M
K —M, for e & > K

Values assumed for the random variables {1,}i—, " indicate the degree of
fullness of the reservoir. According to assumption 1, the set of random variables
{n;} constitutes a homogeneous Markov chain, that is, the probability of
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P, =P (']rz+1 4+ ]’] - l)

is independent of n.
Denote the probability matrix of the Markov chain transition by =

!
P().(i P().l R Pn, K2
‘PI.(I 131,1 A 131 K-\
T o= .
— PI\'—;\I,U PI\’-—.\I.I T PI\‘--;\I, KM

Here an element e.g., P;; denotes the probability of the reservoir condition

changing from 7 to j in one step (Fig. 2).

Determination and processing of limit probabilities offered by the model

The analysis is intended to determine limit probabilities {P,}r ;"

meeting the equation system

K- M . R
B= S P PB; j=01. . K-M
K~1\4k=

and the equation ¥ P =1
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The value of limit probabilities {P,{},‘Z{_:OM indicates the probability for
the reservoir to assume conditions 0,1,..., K — M, after a long series of
condition changes.

Rather than by solving the established equation system, the limit pro-
babilities have been determined by raising the matrix z to its power, a much
simpler and faster procedure.

Elements of matrix x are taken from the empirical distribution function
determined from the hydrological data series for the wet season (Fig. 3),
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Column elements of the 16th power of the matrix agreed at an accuracy
of 3 decimals. The calculations involved the following K and M values:
K=10-105m® [ M= 8-100m?
M= 9-10°m?

J M= 9.10%m3
K=15-10m3 | M= 10 108m?
l M =11 -106m3

M=11-108m3

K=20-10m3 ] M =12 -10%m3
M =13 - 106 m3

M =12 - 10 m?

K=25-105m3 ! M= 13 -10%m?3
M = 14 - 108 m?,
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Diagrams of limit probabilities for a reservoir of K = 25 - 108 cu.m capacity
and a discharge M = 14 - 10° cu.m/half year are shown in Fig. 4.
Discharge M for probabilities

p = 0.01
p=0.05
p = 0.10

has been determined by linear interpolation from limit probabilities. Reservoir
sapacity curves aie indicated by circles in Fig. 5.
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Plotting the capacity diagram permits the hydrological design of the
reservoir. According to Fig. 5, if e.g., a water volume M = 10 - 10° cu.m/half
a year is to be provided at a probability p = 0.90, a reservoir of capacity
K = 13.8 - 10% cu.m is to be built.

Checking the model
For checking the model, the function
w1 = M +.5 — M
has heen processed in a digital computer for correlated K and M values.

For n,.; < 0 the output was zero, for 7,4 &, > K the M value was
deduced from the fixed K value.
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The number of zeros indicated the frequency of emptying the reservoir.
M values for relative frequencies '

p = 0.01,
p=0.05, and
p=10.10,

have been obtained by linear interpolation. Correlated M and K values are
shown in Fig. 5 by (+) evidencing that the real reservoir conditions during the
period of 26 years fairly approximate the conditions determined according to
the reservoir theory.

Acknowledgements are due to Prof. Dr. A. Prékopa and Senior Ass. E. Békeffi for their
assistance in design.

Summary

The mathematical model for Moran’s storage theory has been presented and applied to
a design based on the concrete hvdrological data set in Table 1. The theory has been checked
on a simple, realistic model and the results plotted in a graph intended for the use of design
engineers. The graph simplifies hydrological design.
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