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Let a reserYoir haye natural water reserve changes determined primarily 
by prey ailing rainfall and weather conditions affecting smaller natural affluxes 
(e.g. a major lake). It is supposed that records on the resultant monthly water 
reserye changes are ayailable for at least 40 to 50 years, to be considered as 
statistically (approximately) cyclic within a period of one year. The water-level 
can be regulated (sluiced) by controlling the capacity of the flow into or out of 
the reservoir. Sluicing instructions (optimum strategy) are to he estahlished 
to assure a reservoir water level within specified limits. The mathematical 
model developed to so1\-e the prohlem makes use of the techniques of in­
homogeneous lVIarkoy chains and of dynamic programming. 

The mathematical model 

The change, both of time (with a month as unit) and of water-Ieyel (e.g. 
;:; cm interyals) is considered for technical reasons as discrete. The model is 
suitahle to determine the optimum (monthly changing) sluice regulating in­
structions for a period of time (e.g. 10 years). A finite time interval has to he 
supposed becaus~' of the inhomogeneity of the lVIarkoy chain [1]. 

Denote the end of the investigated period hy To and the nth time inter­
val (month) counted hackwards hy T". Let ~" he the reserYoir water leycl 
interval at a time Tn' The process is to he assumed homogeneous in the state 
space i.e. the probahility of a displacement by h intervals of the water level in 
the given period is independent of the interval it belonged to at the heginning 
of the period. 

In symhols: Pr{ n, i, j} = p(n, j i), where 

Pr{ n, i, j} Pr{$"_l =j ;11 = z}, 

* Based on research performed at the Institnte of ,",'ater 3Ianagement and Hydraulic 
Engineering. Technical University, Budapest. 
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and p( n, h) is the displacement prohability by h units in the interval [Tll' Tn _1]' 
In the .ame interval a possible sluice instruction is denoted hy s(n, i) if ~rz = i, 
and a fixed system of instructions hy sl(n): 

sl(n) = {s(n, i); i E I} 

where I is the set of the possihle states, and s l( n) a single-step strategy, Similar 
is the definition of a strategy srz_1(n - I) of .on I steps" in the interval 

[Tn_l' To]' 
Any deviation from the specified water-level is undesirable and involYes 

a loss that is great if the deviation is great, Denoting hy l'{ srz(n)} the loss 
over the interval [Tn' To] for strategy srz(n), it holds: 

Denote the conditional expectation 

hy r(n, i, j) and the corresponding transition probability ,,-hen applying thf~ 
strategy s(1I, i) (sluice regulation) by 

PrS(Il,i)JJ: _j'lt -z'"). 
ll;o,Tl-l - i'='n - j. 

Supposing the numher of possihle states to he cV --'-- I, from the theorem 
un the total expected value we have: 

II 1 Jl(l'{sn(ll)}~;n = i) = ~ {r(n, i,j)+ 
j=O I 

I (I) 

J 

Introducing the notations: 

pS(I;, i) I t __ . '.t _ " (( .)' • '} 
t ~n -1 - j I ~n - 7 f = Pin, S lZ, z , 7, j , 

i) = v{ n, srz(n), i} 
and 

mlll, v{n, srz(n), i} = v{n, i} 
s,,(n) 

Le, the expected loss in the course of the process of n steps minimized }YV 
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applying the optimum strategy (if ~" = i), (1) takes the form: 

N 

v{n, sll(n), i} = .2' {r(n, i,j)+v {n-1, 
j=O 

sn_l(n -1),j}} ·p{n,s(n,i),i,j}. (2) 

Considering that sn(n) sl(n) -+- s" _l(n - 1) and the two strategies on 
the right side can be chosen independently of each othel', i.e. 

mm. v{n, s,,(n), i} = mi~ [ mill v{n, s,,(n), i}], 
s,,(n) S,(I.) S,,_1(1.-I) 

hence 
N 

v{n, i} = min ~ {r(n, i,j)+v{n--1,j}} X p{n, S(ll, i), i,j} (3) 
s(n, I) j=O 

a recursive formula delivering the minimized expected losses v(n, i) and the 
optimum strategies s( n, i) if the "initial losses" v{ 0, j} are given. 

Foundations for the computation 

Transition probabilities p(n, h) serying as data can be replaced by the 
available data of frequencies. 

Finiteness of the state space (i.e. of the number of occurring states) was 
assured as fo11o'ws: A total of states i = 0, 1, 2, ... , lY are permitted. With 
regard to actual conditions, states A and B (1 A < B < NI) are 
marked out. For arbitrary n (month), if ° < i < A, i.e. the water-leycl is 
"too lo'w", the only permitted strategy s(n, i) is that providing the highest 
rise of the ·water-leyel. For a 'water-level "too high", i.e., B + 1 <: i <;; lY, the 
only permitted strategy s(n, i) is the one lowering maxim ally the water-levd. 
For A 1 <; i <; B, any of the "permitted" (considered) strategies s(n, i) 
can be chosen. When the strategies are chosen in this 'way, the probahility to 
reach or exceed "limit" states 0 or lY is very small, therefore this iatter pro­
bahility may he neglected, or hetter, transition probahilities adequately re­
written. 

The effect of "permitted" sluice regulating instructions is to rewrite the 
transient probahilities p(n, /z); computerized rewriting can he based 011 the 
actual conditions. 

The single-step losses r(n, i, j) and the initial losses ~.( 0, i) are given 
arbitrarily, of course with the restriction that they must reflect correctly the 
economic target. Two cases will be considered no-w, emphasizing that the use 
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of other, economically hetter motiYated functions may result in more cxact 
approaches. 

1. It is supposed that for every month, a specified optimum water-level 
interval a(n) is to he kept, 'where A 1 < a(n) < Band a(n --L 12) = a(n) 
for every n. Furthermore, the initial loss and the single-step loss are supposed 
to be essentially proportional to the square of the deviation of levels, more 
exactly: 

v(O, i) = - a(OF (4) 

and 

r(n, i,j) = max {[i a(n)F, [j a(n)F} (5) 

respectively, for each n. The "scope" of this hypothesis is naturally to keep 
the water-level always near the optimum state. 

n. In thl' second case it is only desired to keep the water-Ievcl always in 
thc interval A 1 to B. In this case the loss is wanted to he 0, otherwise it 
would increase very quickly (cubically), more exactlv: 

and 

r(n, i,j) = 

respectively. 

V(O, i) f ° for A 

t 
(i Bp 
(A 1 

llnax. { .lnax. 

r( 11, J, I) 

[(A --'-1 

for 

1 / i 0:;;; B 

for i> B 
i)3 for i < A 

i):l, 0], max [(j 

i >. j 

(6) 
1 , 

B)::'O]) for i?:'j 

(7) 

Case n is also interesting because - going reyersely - comparison of the 
minimized expected losses v(n, i) (i = 0, 1,2, ... , N) in the months of the 
last year demonstrates the state starting from 'which yields the least expected 
loss minimized hy the optimum strategy i.e. which is the optimum state 
(proposed to he kept). 

This method lends itself to computer use, especially for a hig storage one; 
a program has heen prepared for computer Rasdan -3. 

Summary 

A mathematical model has been presented, based on the theory of 2I-Iarkoy chains, in­
homogeneons in time, snitable to establish the monthly changing optimnm slnice regnlation 
instrnctions (water quantities to be drawn off) for a finite period. The scope is to minimize 
losses due to deviation from the optimum level or excess of the determined limits. The model 
has been analyzed by dynamic programming. assuming different practical alternatives, using 
the lOO-year data series for water reserve changes of the Lake Balaton. 
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