REGULATION OF THE WATER-LEVEL OF A RESERVOIR
WITH APPROXIMATELY PERIODICAL WATER RESERVE
CHANGES*

by
B. Nacy
Department of Civil Engineering Mathematics. Technical University. Budapest

(Received February 8. 1972)
Presented by Prof. P. Rézsa

Let a reservoir have natural water reserve changes determined primarily
by prevailing rainfall and weather conditions affecting smaller natural affluxes
(e.g. a major lake). It is supposed that records on the resultant monthly water
reserve changes are available for at least 40 to 50 vears, to be considered as
statistically (approximately) cyclic within a period of one year. The water-level
can be regulated (sluiced) by controlling the capacity of the flow into or out of
the reservoir. Sluicing instructions (optimum strategy) are to be established
to assure a reservoir water level within specified limits. The mathematical
model developed to solve the problem makes use of the techniques of in-
homogeneous Markov chains and of dynamic programming.

The mathematical model

The change, both of time (with a month as unit) and of water-level (e.g.
5 cm intervals) is considered for technical reasons as discrete. The model is
suitable to determine the optimum (monthly changing) sluice regulating in-
structions for a period of time (e.g. 10 years). A finite time interval has to be
supposed because of the inhomogeneity of the Markov chain [1].

Denote the end of the investigated period by 7, and the nth time inter-
val (month) counted backwards by 7,. Let &, be the reservoir water level
interval at a time 7,. The process is to be assumed homogeneous in the state
space i.e. the probability of a displacement by h intervals of the water level in
the given period is independent of the interval it belonged to at the beginning
of the period.

In symbols: Pr{n,i,j} = p(n,j —1i), where
Pr(n,i,j} = Pr{Sy =1 &0 =1}

* Based on research performed at the Institute of Water Management and Hydraulic
Engineering. Technical University, Budapest.
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and p(n, h) is the displacement prohability by A units in the interval [7,, 7,, ;]

In the same interval a possible sluice instruction is denoted by s(n, i) if §, = 1,

and a fixed system of instructions by s,(n):

si(n) = {s(n, i); 1 € I}

where I is the set of the possible states, and s,(n) a single-step strategy. Similar
is the definition of a strategy s, ;(n — 1) of “n — 1 steps’ in the interval
[Tn—-v TO]‘

Any deviation from the specified water-level is undesirable and involves
a loss that is great if the deviation is great. Denoting by »{s (n)} the loss
over the interval [7,, 7,] for strategy s,(n), it holds:

(s} = visy(m)} + r{s, n — D)} .
Denote the conditional expectation
M@p{s(n)} | 5, =i &, =])

by r(n,i,j) and the corresponding transition probability when applying the
strategy s(n, i) (sluice regulation) by

Prstnd {‘Ezz—l :]‘Eﬂ - Z}

Supposing the number of possible states to be N - 1, from the theorem
on the total expected value we have:

n
J](z'{sn(_n)}fs&” = i) = > {r(n, i,j)+ ]
j=0 f
; ! (1)
-;_JI('I’{Sn—l(”‘ =5 _‘*])1 A< | .
KO G =g, =1} l

Introducing the notations:

POy =, =i} =pin, (nz i) 1. j}
M(risp(m)} | 5 = 1) = v{n, s;(n), i}

i \n
and

m(llu v{n,s,(n), i} =v{n,i}

i.e. the expected loss in the course of the process of n steps minimized by
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applying the optimum strategy (if &, = 1), (1) takes the form:

N
v{n,s,(n), i} = = {r(n,i,j)—i—v{n-l.

Sn (Tl - 1) J}} ' {Il-, S(n” 1’)7 l‘J} : ) (2)

Considering that s,(n) = s;(n) + s, _(n — 1) and the two strategies on
the right side can be chosen independently of each othez, i.e.

min. l/{n sn(n), i}_—-min[ min L{n sp(n 1}]

S,(n) 51(”) Sp_q(nn—1)
hence
! S { N { (3
mi. n,i,j)+v{n—1, Vx pdn, s(n, i), 1,5
. ] s<n,z;§1( J) 7Yy > pin.s(n.d). 1,5 )

a recursive formula delivering the minimized expected losses v(n, 7) and the
optimurm strategies s(n, i) if the “initial losses” v{o, j} are given.

Foundations for the computation

Transition probabilities p(n, k) serving as data can be replaced by the
available data of frequencies.

Finiteness of the state space (i.e. of the number of occurring states) was
assured as follows: A total of states i = 0, 1, 2, ..., NV are permitted. With
regard to actual conditions, states 4 and B (1 << 4 < B<N —1) are
marked out. For arbitrary n (month), if 0 < 7 < 4, i.e. the water-level is
“too low”, the only permitted strategy s(n, ) is that providing the highest
rise of the water-level. For a water-level “too high”, i.e., B 1 «<{ ¢ < N, the
only permitted strategy s(n, i) is the one lowering ma\unaﬂv the water-level.
For 4 -1 < i< B, any of the “permitted” (bor.:lcleled) strategies s(n, 1)
can be chosen. When the strategies are chosen in this way, the probability to
reach or exceed ““limit” states O or N is very small, thelefou this latter pro-
bability may be neglected, or better, transition probabilities adequately re-

written.

The effect of ““permitted” sluice regulating instructions is to rewrite the
transient probabilities p(n, k); computerized rewriting can be based on the
actual conditions.

The single-step losses r(n, i, ) and the initial losses v(o0, i) are given
arbitrarily, of course with the restriction that they must reflect correctly the
economic target. Two cases will be considered now, emphasizing that the use
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of other, economically better motivated functions may result in more exact
approaches.

I. Tt is supposed that for every month, a specified optimum water-level
interval o(n) is to be kept, where 4 + 1 < o(n) < B and o(n + 12) = o(n)
for every n. Furthermore, the initial loss and the single-step loss are supposed
to be essentially proportional to the square of the deviation of levels, more
exactly:

2(0,1) = i — o(0)2 (4)

and
rn. i, ) = max {[i —o(m)], [j — o(n)]?} (5)

respectively, for each n. The “scope” of this hypothesis is naturally to keep
the water-level always near the optimum state.

IL. In the second case it is only desired to keep the water-level always in
the interval 4 - 1 to B. In this case the loss is wanted to be O, otherwise it
would increase very quickly (cubically), more exactly:

[OforA%-l < i< B
0.i) = 4§ (i — B) for i > B (6)
l (44+1 —~iPfori<<Ad-1,
and
max { max. [(4 +1 -1)3, 0], max [(]B)O]} fori>j
r(n, l,]) == . (7)
r(n,j, 1) for i>j

respectively.

Case Il is also interesting because — going reversely — comparison of the
minimized expected losses v(n, i) (i =0,1,2,..., N) in the months of the
last year demonstrates the state starting from which yields the least expected
loss minimized by the optimum strategy i.e. which is the optimum state
(proposed to be kept).

This method lends itself to computer use, especially for a big storage one;
a program has been prepared for computer Rasdan —3.

Summary

A mathematical model has been presented, based on the theory of Markov chains, in-
homogeneous in time, suitable to establish the monthly changing eptimum sluice regulation
instructions (water quantities to be drawn off) for a finite period. The scope is to minimize
losses due to deviation from the optimum level or excess of the determined limits. The model
has been analyzed by dynamic programming, assuming different practical alternatives, using
the 100-year data series for water reserve changes of the Lake Balaton.
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