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There exists a method to estimate the maximum error if the mean value
of the error series is known:
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Is this formula reversible? What are the conditions for this relation to
be valid?

From the distribution function of measurement errors the relationship
between magnitude and probability of occurrence of the error may be calcul-
ated. Denoting the error by v (deviation from the most reliable value), the
probability that only errors less than » - i oceur, is P(v). where x = v/pu.

The equation of the probability curve is [1]:
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In the series, errors greater than x - u also appear by a probability
1 — P(v). This is obvious because the sum of the two probabilities is the certi-
tude equalling unity.

The occurrence of an error greater than a given value in a series means
more exactly that at least one term in the series is greater than that value.

For a series of n terms (i.e., involving n measurements), this can be ex-
pressed as:

n[l — P(y)] = 1

expressing n:
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Let us see now how many measurements are needed that at least one error in
the series should be greater than 3 p?

Umax = 3

Integration yields: n = 385. So many measurements are not made in
practice, therefore it can be stated that in any series no maximum error greater
than three times the mean erroris found. Considering the v/u value a dependent
variable,
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let us compute the value of f(n) for different n values. The simplest way of
calculation is to apply formula:

and to use an integral chart from which the values of f(n) for integer n values
are recalculated. (The substitution is made at v = v,,,). (Table 1)

Table 1

f(n) values recalculated from an integral chart

n 3 50 10 | 15 20 | 385

fy  0.67| 1 130 164 18
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may also be written in the form
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an approximate formula for the mean error. It can be used, provided the series
of the measurements satisfies certain conditions, such as: uniform reliability
of the measurements and normal distribution of errors. The uniform reliability
warrants that no measurements giving extreme values are accidentally affect-
ed by a coarse error [2].

The sense of sign of inequality in the last formula is justified by the fact
that f(n) and F(-- are inverse functions and, in both cases, increasing argu-
ments are associated with increasing functions.

Caleulating the data in Table 1 between 2 and 15 one by one yields a
chart function from which the lower limit of the mean error may be determin-
ed if the range is known, range being the difference between maximum and
minimum of the measured values. If this lower limit is close to the mean error
then the chart function may be used as a good estimate formula for the mean
error. There are two ways to examine how erroneous the mean error is.

In both methods the n value limiting the table validity is sought for.
The deviation obviously increases with n.

How great is the error of the approximate function
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(i.e., of the chart function denoted by up) for a predetermined value of n? Or
better, what is the upper limit for the error in up to keep lower than a pre-
determined bound?

Mean error of the mean error is considered the error bound. Be the mean
error of the approximate mean error op, the approximate mean error pp, and
the exact, but unknown value of the mean error u, then:

lus — | <V 20s,

the difference of two erroneous quantities being equal to the square of the sum
of their mean errors. This follows from the law of the propagation of errors.
with the approximation that the values of the exact and approximate mean
errors have equal mean errors.

Since
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denoting by 4 the range of the measurement series, the above relationship
may be written in detail:

The right-hand side of the inequality is /2 o5, and

2a
og = — B
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it being the mean error of the mean error.

If 1 is known, n can be computed from this inequality. n represents the
number of measurements for which up is practically of the same accuracy
as . This problem, as has been said above, may be solved in two ways of dif-
ferent accuracy. The principle of the less exact one is as follows.

In lieu of u. another estimate formula (fully independent of ug) is estab-
lished, where onlv n and 4 are known.

g = tqn.d)

The independence is stressed, it being a condition for the abovestate-
ment concerning the mean error of the differences to be valid.

J. Scatxke [3] derived the lower and upper limits a and f, resp., of the
mean errors of each result in a series of measurements from the knowledge
of the maximum and minimum result as well as of the number of measure-

ments:
. /9
e A 12
2 Jn—1
P /n
2 Jn—1

Both formulae have been deduced analytically with considerations fully
independent of the deduction of up. While us roots in the theory of prob-
ability, @ and f are of purely algebraic origin.

Let the arithmetic mean u 4 of values a and f be the most reliable value
of the unknown mean error. Evidently, this is an approximation, without
knowing, however, the exact solution, it seems to be the most obvious. It
would be worth while to examine the distribution in the series with limiting
values @ and f and to establish the most probable value of the series. Actually,
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however, an approximate formula for 14 independent of up but not the best
approximation is sought for. Be then, for lack of a better one:

“wa+f__d Vg—'rl[r;
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The limit of validity of this formula is sought for by the trial and error
method, by substituting various n values both sides until the two sides are
equal.

For n =12,

0.17 = 0.17,

hence, this is the upper limit where the mean error of u and up is permissible.

E Ha
He
a
0,01 ,
Z 5 10 15 20 n

The four functions @, f, up and 4 are linear functions of the maximum

error, i.e., of the half range-;.Thus, dividing them by:?]—yields n-dependent

values (Fig. 1).

Now, there are two methods for estimating the mean error; one of them
is a formula, the other consists in using a table and solving a formula. To de-
cide upon which of the i to apply, the aspect of economy is involved, their
accuracy being all the same.

In the traditional calculation of the mean error 4n 4 1 operations are
to be earried out.

By using the formula g4, the necessary operations ave: 1 subtraction,
2 divisions, 3 multiplications, 2 root extractions: altogether 8 operations.
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For the calculation of up one has to do with 1 subtraction, 1 looking up
1

2f(n)

and this number, just as for the calculation of 1 . is independent of the number

in the table and 1 multiplication. These are not more than 3 operations,

of measurements.
Percentage savings in the number of operations characterizing the eco-
nomy are:

: 4n+1—8 200
8% = e 100 22100 = 0 ,
' 4n-+-1 n

and
, dn+1-— ) 75
g% = mo ——§ 100 = 100 — 2 .
dn+1 n
!
' 1
- f(n)
1,54
407
05 e
00
2 5 10 15 20 n

The economy is seen to be better in the calculation of up, especially if
only a few measurements have been made, with the only disadvantage that
a table is needed. It is advisable to establish a formula by function adjustment
for the approximation of the data of the tabulated function [4].

The formula is required to be simple and sufficiently exact. Plotting the

1
function m gives a hyperbola-like curve (Fig. 2). It is the equation of a hyper-
bola with straight lines
n=1 and 1 =0
(n)
as asymptotes:
1 %

fn) -1y

where o and  are parameters to be determined by adjustment.
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Linearizing the unknown equation by plotting it to logarithmic scale,
the two unknown values can be determined by dual adjustment [4].

The adjustmentleads to 5 = 0.36; and to make the term (n — 1)8 acces-
sible to the use of a slide rule, let us write:

1
B =10,36 2% —r
3

Whence, z = 1.26.
Substituting them in the formula for yp yields

pal Ao 0,634
Hp = = , O lp=% ———
Vn—1

‘ 2 f(n) 2(n—1)° ‘
Caleulation with this formula requires four operations, but as

1
3

1

0.63 =~

—t

the formula will be transformed into

4

Hp T g

Vi =T

where only three operations are needed in case of not too many measurements,
because 4(n — 1) may be calculated in head.
The formula for np approaches 1 from the lower side. thus

4B =l
The formula may be refined by producing a great number of factitious

measurements, computing from the series of measurements both the mean
error ;1 and the estimated mean error up. Their quotient is

If y varies only in a narrow range. its mean value multiplied by uz yields
i with a good approximation.

A rather great number of factitious or simulated measurements were
produced using an instrument similar to a micrometer microscope [5]. A spac-
ing of 9 mm was halved at a 1 per cent accuracy, read off a graduated drum.
Since to halve aspacing by estimate 1s the same as to hit the bull’s eye in a
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score-card (the score card being here linear), the errors occurring are of normal
distribution. Thus, series of measurements of normal distribution arise. re-
markably suited for investigating the normal distribution. Production of an
error does not need more than 3 seconds, accordingly this method is a very
economic omne.

The simulated measurement is a model of a real measurement, a model
which from the viewpoint of the theory of probability mayv be characterized
and observed as the true ome and yields conclusions on the reality. This is
the characteristic feature of the Monte-Carlo methods [6]. This more exact
procedure mentioned on the second place is applied to refine the formula for
up and to expand its range of validity.

The number of the simulated measurements affects the reliability of the
conclusions to be drawn from them. It should be taken into account. however,
that the reliability must be both satisfactory and identicel. The satisfactory
or necessary reliability is defined by the magnitude of the deviations of the
mean errors of the simulated measurements from the estimated mean error.
For great deviations. reliable conclusions can only be drawn from a great num-
ber of measurements. Originally, 400 simulated measurements were to be
used, but owing to the small deviations of ; to pz, only thefirst 80 resulis were
utilized. The independence of measurements was safeguarded by utilizing them
in their order of succession. The identity between measurement reliabilities
was due to nearly equal weights provided by m - n = consi. taken arbitrarily
as 80 (Fable 2).

Table 2

Number m of measurement series of n measurements. Both m and n being naturally integers,
m - n is not absolutely 80

n 2 3 4 5 6 7T 8 9 1o 11 12 20

m 40 24 20 16 12 11 10 | 8 8 7 6 4

The tests were made by producing the series of measurements and caleul-
ating the mean errors both by the exact (1) and the approximate method
(pB), from the range of the series. Evidently, also in conformity with the de-
duction, the values

o> g

2

Hp

were calculated, showing but slight variations. The values showing the great-
est specific deviations have been compiled in Table 3.
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Table 3

Test values of exact (#) and approximate (#1g) mean errors and of their maximum deviations y,,.

n ® B Amax
20 7.1 6.2 1.2 6.6 6.6 57 6.3 5.9 1.15
19 9.6 55 1.5 4.9 8.1 8.0 5.4 7.4 4.5 7.3 126

6.1 6.2
11 9.1 7.3 7.2 7.8 76 81 61 7.0 7.7 7.0 1.90
6.5 6.2 59 5.2
10 9.6 71 6.9 6.6 671 85 67 7.3 5.8 6.4 114
7.5 64 7.0 73 6T U6
5 9.5 78 T4 63 47 76 64 6.0 44 L1
8.0 6.4 6.1 8.6 54 10
5 L 9.4 3.7 8.3 1.9 7.9 8.2 3.0 7.9 1.9 1.3
6.0 8.0 6.5 6.3 7.7 1.9 8.9 3.6 7.2 3.2
7.4 113 35 7.4 5 6.9 9.7 3.1 6.9 5.0 1.19
7 5.6 54 8 7.0 9 5.2 45 04 5 7.5
6.1 5.9
7.3 124 6.4 6.7 3.0 69 103 59 6.1 8.3
6 6.4 42 5.7 9.8 6.6 4.9 L 3.4 3.5 1.23
6.6 6.1 6.9 6.9 59 5.9
45 1L3 6.9 3.8 311 44 102 5.9 3.3 2.9
5 9.8 57 6.1 5.5 2 8.4 1 55 1.4 2.6 1.1%
8.7 7.1 48 8 7 8.7 1.3 8.0 6.2
6.5 6.6
3.7 50 12.2 7.4 20 40 52 109 T4 3.9
3.6 7.0 8.0 1.8 3 3.5 65 14 4.4 3.9
4 9
4 35 05 115 63 7. 35 04 1L6 61 7.4 1.20
6.8 16 1.8 7.1 4.3 57 4.8 7 7.4 4.4
4.5 7.2 148 120 6.5 4.5 7.0 140 120 6.5
. 3.8 14 3.6 8.7 7.2 3.5 40 35 7.5 6.5
3 7.6 50 3.8 1.6 6.2 7.0 3.0 35 4.0 6.0 1.20
0.6 6.0 12.0 8.7 0.5 6.0 120 3.5 8.5
6.8 59 74 8.2 8.6 6.5 1.0 6.0 3.0 8.5
5.3 5.0
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shown in the table, also y.. is but slightly scatiered. The mean
Since gy, = 1. the mean value of ¥ may be taken as

As is

of this maximum yis 1.2

/mm 7ma\ — 151‘

\
[\ f]~

Be 1y the corrected value of ug.
0,63-1,1 4
et
Vrn—1

up = yug

thus
0,69 4

,
bp =3

and since
1

we have
il

In Table 3 the value n = 2 is not included. Firstly. the formula does not
give a good result, namely

A A |

A . .
1= e == e and g == - = -
i g i 3 -
- 1.59

2 141 Vi

are rather different.
The second reason is that in case of two measurements pp is easier to

caleulate by the usual exact formula

A

72

The corrected formula is hetter also from this point of view, because it

can also be used for n = 2. Namely, between

Mg =

P |
‘u,—_——?—()tl_l and ;lé:—T_“06Q]
12 V3

there is a deviation of only 3 per cent. In general. the corrected formula gives

very accurate values. Fig. 3 is a plot of values
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with ¢ = pp = maximum. Even these are seen in Fig. 3 to be very small
values.

The advantage of the corrected estimate formula is its wider range of
validity. Also this faet may be examined in two ways, either with ua or with
# (mean errors with pg = i = maximum among those of the simulated meas-
urements).

o~
~3

e

Comparison with p4 can be expressed as:

’
g~ M

A

Simplified and rearranged:

7
pp—ty 1

Ug T Jn—1

I

In this expression different n values are replaced to find the n values
where left-hand and right-hand sides are equal.

For safety’s sake n = 16 is taken as limiting value, accordingly the range
of validity of pyp is 2 <{ n <L 16. The other method is similar, only that here
15 is compared with the true mean error computed from the simulated meas-
urements. Obviously, this method is nearer to the reality:

5 Puriodica Polytechnica Civil XIV/I.
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The formula can be utilized up to n = 20.
Economy of this formula is:

o Zod

{o
0/ e ——
g%, = 100 20 a2 969
i.e., only 4 per cent of the operations have to be carried out for ohtaining the

estimate value.
Summarizing what has been said above, an estimation formula for the

mean error has been found:

, A
Hp = 3 T
V3 (n —1)

with an inherent error practically identical to the mean error of the mean error,
and may be calculated in the range

9 .
2

I\

n < 20.

The formula involves three operations accessible to the use of a slide rule. It
has been deduced in conformity with the theory of probabilitv, and its accu-
racy and range of validity have been increased by using the simulation method.

Summar

()

Probability considerations permit to set a lower limit for the mean error as a function
of number and range of the measurements. The formula can be refined and its range of validity
widened by the method of simulation. The advantage of the formula is to need only three
elementary operations, and the error involved does not exceed the mean error of the mean
error, accordingly, it lends itself to the estimation of the mean error.
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