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1. Introduction 

calculation method will be presented for the fitxural analysis of forces 
acting in sector shells cut out of a single-shell hyperboloid of reyolution. 
These shells are highly convenient as shallo"w shell roofs, taking into 
consideration also the aspects of construction. It follows that shell forces 
are decisively affected hy snow and dead loads. Consequently, in what follows, 
these two load types ,,-ill he com:iclered. In previous papers [9-11] the 
same problem was treated by the membrane theory and by the theory of geom
etry, respecti-v-cly. The presented analysis suits to rather exactly determine 
internal forces in shells and besides, it lends itself to check the earlier approxi
mation methods if a digital computer is used. 

2. Derivation and features of the shell surface 

In the co-ordinate system x,y,z (Fig. 1) the part cut out of a single-shell 
hyperboloid of revolution with axis ,Y defined by: 

X2+Z2 

rg 
1 (1 ) 

by two planes passing through the axis and including an acute central angle" 
lends itself as a shell roof over rectangular floor plan. b in Eq. (1) is the half 
length of the fictitious axis of the hyperbola in the meridian principal 
section. 

The so derived sector - surface part of hyperboloid of reyolution - is 
confined by two circular arcs of radius r1 in the yertical plane and hy two 
hyperbolic edges of skew plane (Fig. 1). Because of the skew-plane hyperbolic 
edges, the basis under this part differs from a rectangle. The difference i8, 

ho"wever, rather unimportant in case of shallow "hells deriyed from a hyper-' 

* Part of Candidate's Thesis by the Author entitlell "Statieal Analysis of a Sector' 
Shell Cut Out of a Hyperboloid of Revolution" defended October l,ph, 196'8. 

1* 
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boloid of reyolution with a relatively great radius and short aXIS, and can. 
still be reduced for eyen shallower shells. If a yertical gable 'wall is :required. 
a conoid part may be added to the ske'w-plane l~yperbola. 

Surface in Fig. 1 is seen to haye all sections in planes normal to or 
coincident with the axis of reyolution 'with negative or posltrve curvatUl"e5. 

respectively. Because of different signs of cun'atures for each section family. 

,,-x 

Fig. 1 

the Gaussian mdtiplication curvature IS negative 
so from differential geometry aspects, any point is 

of tue 

the 
surface is of constant curvature in one direction, and can be constructed v;ith 
straight generatrices: the resulting highly fayourable geometry faci.litates its· 
woe in practice. 

3.1 Assnmptiolls. The applied co-ordinate system 

In general~ spatial stress state prey ails in shell pOints. There aze ten 
internal force:; to be considered for the stress state, namely t·wo norma!' 
two shear forces, two tangential forces. t'wo flexural moments and torsional 
moments (Fig. 3). An analysis starting from this model invoh'es a com-
plex calculation problem, involving some steps practically inaccessible to 
conventional calculation e\'en after simplifications inherent v,-ith the shell 
shallowness. This fact urged the development of the algorithm to be presented, 
solved by means of a digital computer. This algorithm yielded numerically 
the order of magnitude of the flexural stresses, occurring also inside the shell 
hecause of the rectilinear generatrix of the shell surface, not only on the bound
.aries where edge beams do not foUo'w shell deformations. 
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Assumptions for the fundamental equations are the same as usual Il1 

the theory of elasticity of shell structures: 
1. The shell material (reinforced concrete) IS homogeneous, isotropic, 

elastic and fonows the Hooke law; 
2. the shell is thin as compared to other shell dimensions: 
3. the stress component G: normal to the shell medium ~urface is negli
as compared to other stress components; 
4. the Navier hypothesis is valid; 
.5. deformations are small as compared to the shell thickness: 

deformations due to flexural shear are negligible: 
7. shell surface is shano'w, i.e. rise to span ratio is less than 0.2 in either 

m the shell eqlHltlon.S the greater 

than are lovier derivatives, hence these latter can he considered negligible 
sake of convenience. 

ldea.li2;ing the shell geometry, its m;:>clium surface hah-ing the interspace of 
surfaces ,,·;ill be indicated in a convenient co-ordinate system 

defined as foHows: It is endeavoured to formulate the problem in a co-ordinate 
system leading to equations similar in form - with unayoidahl;:> deyiations -

results relating to translation shells consid;:>red in a plane orthogonal co
ordinate system. Such a co-ordinat;:> system consists of a cylindrical surface, 

coaxial and tangential to the shell surface, i.e. a cylindrical co-ordinate surface 
matched to the least circular arc of the surface, the co-ordinate lines of 'which 
are the directrix circle (arc length x or central angle r), the generatrix (y axis) 
and the normal (z axis). 

The sector shell surface cut out of a hyperholoid of revolution togeth;:>r 
with the co-axial cylindrical co-ordirtate surface, the co-ordinate lines and an 
infinitesimal part with sides dx, dy and dsp dsy helonging to an arhitrary 
point with co-ordinates x, )', z are sho'wn in Fig. 2. In the descrihed co-axial 
co-ordinate system the shell surface equation can he written hy means of the 
equation of the cross-wise hyperhola 

(2) 

3.2 Equilibrium equations 

The infinitesimal part (Fig. 2) and its projection III the co-ordinate 
surface are shown enlarged in Fig. 3, together with their :::tresses in positiye 
sense. Stresses acting in the surface part 
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are real stresses, "while their projections in the co-ordinate surface 

(Nx, Hx)" Q ... " lvlx, ll1xy and IVy, Hyx, Qy lVly .. 11-1yx) 

are redd stresses. 

Fig. 2 

dUJ '. 
Ry'x-:-~CY 

0,/ 

Fig. 3 
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The surface part and its projection in the co-ordinate surface are con
nected by the geometrical relationship: 

dx dsx 1 r 

J dy (lsy cos'p 
(3) 

where rl) radius of thc least circle (Fig. 2); 
r radius belonging to an arbitrary point of the hyperboloid; and 
1i' angle included between the tangent to the hyperbola and the 

generatrix v of the co-ordinate surface (Fig. 3). 

Six the equilihrium of the infinitesimal part referred 
to the co-ordinate surface v,'ill he 'written by mean:' of the reduced stresses. 
Since, how-eyer, relationships for the real stresses on the surface part are 
needed, correlations hetween reduced and real stresses have to be known. 
These can be 'Hitten by means of projection (Fig. 3) and. Eqs (3) as follows: 

cos 1jJ 

cos 1jJ 

r _ 
y = - (1\ ,. cos 11' - Q:, sin 11') r

o 
" , 

r 
-- (Q, cos 

ro 

= _r_ J:J.: 
ro 

r 
- 11,I vx co:" lr' , 

ro ' 

(4) 

Applying neglects usual and permissible for shallo,,' shells, the following 
approximations will he introduced: 

cos l' ; 1.0; sin If' tg 1;--1 

(5) 
and from (3) dy dsy • 

Terms Qx tg If' and Qy sin lp in expressions for Sxy and ~\Y' resp., Eqs (4), 
can be omitted. since flexural shear stresses Qx and Qy are much lower than 
are memhrane stresses and besides, they are multiplied by the tangent of the 
small angle If'. Right-side column of Eqs (4) contains the ratio rlro, that 
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can also be written as follows, assuming matching of the infinitesimal part 
to the section y = 0: 

r 
--='---~---'- = 1 -+- tg ljJ 

To 

Fig. -1. 

1-'-
.Jz 

/. 
d[. 

1 

(6) 

The shell being a shallow one, term ."..lzJr) can be omitted 'with respect 
to unity. Introducing the above simplifications, Eqs (4) will he of the form: 

y' tg ljJ (7) 

into cOll:"ideratioll relationships 

dx 
de 

(8) 

xy dy de xy clx d)' ",.dxdy 

related to Figs 3 and 4· as 'well as Figs Sa and b, the formula for JIx similar 

to Eg. (8) and approximations 

de 
cos- p~ 1,0; 

dq 
cos .~~ LO, 

2 2 
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projection equations for the three axes expressing the equilibrium of the 
infinitesimal part, and moment equations also for the three axes ,,-ill be of 

the form: 

1 

8x 

-- Y = 0 
8x 

-- Z = 0 
8x 8v 

== () 
8y 

=0 

r 
=0 

Fig. 5 

where X, Y and Z are load function components for the co-ordinate surface. 
The last equation of Eqs (9) corresponds to the known theorem of reciprocity 
of plane problems. This one will not he made use of. 

Eqs (7) will be applied to convert reduced stresses of Eqs (9) into real 
stresses. The fourth and fifth r-quations of this system of equations contain 
only flexural stresses, and in order to ayoid disturbance from flexural stresses, 
reduction of their importance, approximations Ox Qx and i}y PS Qy will be 
introduced in Eqs (7) (see [3], p. 99). 

In conformity with the aboye, after operations indicated in the first 
and third equations of Eqs (9) and arranging: 
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aNx _ aNyx 

ax ay 
2Nxy x o 

_aNy _ 8.Yxy -,-y=o 
8y 8.1.' 

aQx 8Qy --- -:---

ax 8y 
" ,- ,c 1 )r 

z _ '" y - 1" x - - tg 1p 
ro 

z o (10) 

/ 

D ~ /. 

c*>/ 

Figo 6 

3.3 Geometrical equations 

There exist several references, e.g. [3] and [4], on geometrical equations 
for an infinitesimal part (Out out of a sheil surfaci' of arbitrary form plotted 
in a surface co-ordinati' system. 

Original and deformed shapes of the infinitesimal part cut out in Fig. 2 
are shown in Fig. 6. 

Approximations applied when deducing Eqs (10) expressing the equi
librium of the infinitesimal :::hell surface are considered valid in relation to 
the geometrical equations too. 

From approximations (5) and (6) it follows that oSx and OSy: and ax 
and ay can be exchanged. The geodesic curvature pertaining to normal sec
tions z-y and distorsion of the surface (l/rxy) are zero. The geodesic curvature 
belonging to the normal sections z-x, can, howe,-er, be considered zero, if 
the slightly trapezoidal form of the shell part is ignored, in accordance with 
the above. 
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Accordingly, the geometrical equations ofthe shell part are the foHo'wing: 
Specific strains in directions x and y, rotation between the t·wo directions 

and rotations for the length of arch are: 

au IC 

1 
alC u I Ex = 

8x 
Xx 

re ax re 

at' 1r I (11) 
ale v I Cy 

1 

X-

I ay T" By I'y 

au 3v 1 ( :1' au ) I 
/ .Y.'1.' X - I ay 3x '1 . ox B.Y J 

(1:2 ) 

Cm'Yature changes rneans of and (1:2) : 

%,,= 
ax 

ay (13) 

ay 

Here u, l' and H' are displacements in directions x, y and ::;. and 1:1'". are 
curyatures of normal sectioll':;. Using the first two equatiom of (12) and the 

third one of (ll), curvature changes (13) can be expressed as: 

(14) 
1 av 
Ty ax 

_ ~ l( au _ + B1') (1 1 )] 
2 By Bx l T" ." -;;. • 

All of the Eqs (14) are composed of two parts. As compared to main terms 

containing It·, all other terms are negligible in conformity with assumption 
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3.1/8. Thus, unit deformations referred to the medium surface of the infinitesi

mal shel1 part can be expressed as: 

8u W 8:! le 

1 
ex %0: 

ox:! 8x To: 

8v If 8~w I ( 15) cy %v = ---
8y Ty 8)"~ I 
8u 8v 8~w 

J 
Yxy == I %o:y 

8)" 8x 8x8)" 

Stresses in a point of arbitrary ordinate ;:; can be expressed hy specific 
strain units for the same point. Hence, strain units (15) are to he replaced 
by deformation units for the surface of ordinate ;:;, On the other hand, the 
assumption made for shallow shells permits to apply simplificationi'. so that, 
a:3 a final result, stresses can he expressed by means of strain units for the medium 
surface. Purely to illustrate the transformations, let us see i'pecific ;:train in 
direction x: 

1 

;:;%,' 
-~.,~ Cx ;:; (%," ,', (16) 

Here th" approximate expn'ssion results from taking into consid"Eation the 

first t·wo teEms of the po\\er series 1 . (1 - ~') since: 
\ rx . 

1 
1-

~ 

1 
r._ 

:; 

1 .0 IS 

I X 

it corrects the term Cx. 

3.4 Physical equations 

~otations: 

/1 
{J 

D 

K 

El'; 

modulus of elasticity of reinforced concrete 
Poisson's coefficient of reinforced concrete 
5hell thickness 

tensile or compressiye rigidity 

flexural rigidity. 
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Hooke's law in the theory of elasticity is of the general form: 

E 1 1 __ ~ ,ll~ (4:) .uEi~)) 

a;':) = ___ E ___ (E~) -;- /!t~:)) I 
1 !/~ 

123 

Three 5tre5S components expressed in (17) help to write all ten functions 
of internal forces in Fig. 3. For instance., using the stress C0111pOllent (}x: 

/1 - ~ d:: 
r.,' 

dz. 

Suhstituting from (17) into 118), accomplishing operation:" and ar;rallglng 
yields for .\-:: and 

(19) for the normal force Nv con;::ist;:: of t-wo parts. <If' 

do those for internal forces .\\ and Nyx , namely the parts multiplied by D 
and hy K and E;r_~" respectiyely. Since D ~ Elr~ : K./r;" terms multiplied 
by I\: are omis5ible as compared to those multiplied hy D. 

Also thE' expressions (19) for the bending moment lvI x and for moments 
NIx)" Jly and .Hyx consist of two parts. One part contains the effect of termS % 

expressing the curyature changes and the other the effect of the specific 
strain or angular distortion, The latter i;:: in any case multiplied by a curyature. 
so this magnitude can he omitted as compared to the first part. Accordingly. 
the approximate physical equations of the problem are of the form: 

N x = D(E:: ,LIE",) 

N y = D(c,: - ,LlEJ 

(20) 
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4. Deduction of shell equations 

4.1 Load function definitions 

Dead load and snow load distribution diagrams plotted in planes x-z 

and y-z are seen in Fig. 7, together 'with the resultant diagrams. In load 
functions contained in the system of equilibrium equations (10), the load 
component in direction y equals zero (Y = 0) in view of the load projections 

I 

g~ 
~ -. >-

9 

r .~ !1 , 

Tz 

Fig. ;-

in the co-ordinate surface. whilt, load components in directions x and z can be 

t'xpressed as: 

z 

'I I' 1 p cos Cf - sin er 
I 1'1) I 

j 
I' i 

p cos (r 1'0 cos if'l 
(21) 

x 

cos 1jJ 

4.2 The first shell equation 

From Eqs (10) the terms containing Y vanish, at the same time (assuming 

the appropriate load case) the equation system differs from the equilibrium 
equations of shallow translation shells referred to an orthogonal co-ordinate 
system by its first equation containing also terms 2:\'x.\' tg and Qxfro 
and the fourth one including also the term NIx tg 'i'frO' These deviating terms 

can be interpreted as: 
Term Jd" tg 'i_,lr" in the fourth equation can be o:nitted as compared 

to the other terms, J-1x being not only small but also multiplied by a small 
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cun"ature and the tangent of lp, a small angle. Term 2:!vxy tg lp/To in the first 
equation will not be omitted, though its multipliers (tg 11' . 1/1'0) are small and 
so it cannot be of importance. Neither the term Qx/To will be omitted. The proce

dure will be simplified by making it iterative, that is, by solving Eqs (10} 
in two steps. The first :-tep will consist in solving the equation system - from 

which the term (2Nxy tg It' -'- Qx)/T o' has heen omitted - for load functions 

X and Z, then term (2.Yxy tg 11' ~ Qx)/To is established 'with values Nxy and Qx 
obtained in the first step. The second step consists in solving the problem 

again for the effect of this term as load L:cting in direction x. In spite of the 
iterative character of the prohlem, after the fundamental step at most one 

accessory step is needed. Taking the above into consideration, in the first 

5'tep Eqs (10) assume the form: 

8S 

8x 

8X .. 

3x 

3y 

3x 

8x 

3x 
Z" .!.Vy _ 1 cVx 

To 

--"~~- -i- Q y 

3x 

-----'--- -i- Qx 
8y 

Substituting relationships 

rx Xdx 
x()~/ 

c\'xy= 

o 

o 

o 

=0. 

(23) 

kno'wn from the literature into the first three equations of (22), the first two· 

equations are identically satisfied. while the third one assumes the form: 

3Qx _ 8Q,: 82 F 1 5:!.P 1 

J 
'X 

" =Z Xdx p] (x" yj (24} ~ --
~ .) 3y 2 6x 3,- ox- TO To 
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In view of (15), the last three equations of (20) are: 

JI:-: 

J], 

J1xy 

K 
8:2 lC , 3

2 W) 
3x2 

.u 
3)·2 

rv) 
It" 32 W 

K 
0-

- ,ll 
Oy:! ox:! 

8:! 'it' 
JF.'x =. K(I- Ill) 

3x3y 

(25) 

Substituting Eqs (25) iuto the last two equations of (22) yields for the shear 
forces: 

1 (26) 

__ 3 ( 
Qx = K -- _Jw) 

ox 

J 

where 

J 
3:2 6:! 

ox:! ay:! 
(27) 

Substituting (26) into (2-1) deli\"er~ the first shell equation: 

K I be - ::;' 
1 

(x,y) . (28) 

This is a rela LlUH"'.l1 fJ 

and the loads. 
function U'. ~iTe55 function F' 

-1.3 The second shell equation 

By means of Eqs (11), a compatibility equation deyoid of displacement 

(;omponents u and 1" can be written: 

&:2 3:2 1 82 If 1 62 U' 

81':2 ox:! ox 3.- ry ox:! rx By:! 
(29) 

omitting small terIllS of second order. 
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First three equations of (20) yield relatiomhip:3: 

(30) 

.-means or and (30) the left-hand side of (29) can he IHitten as: 

- I 

~b { 

6 i F 

1 J -I -j '":' ' D (. 0 1 ~. I - --11' - £2 01:,.,) I . 
.to l J 

(31) 

(29) and deli"'-eT the other shell equation: 

TO • [1 62 
It' 1 JJr -- Er) -- -- -

ry 8 x::! r:c: 
(32) 

where 

J.cl 
84 6-1 --+ 2-----

6-1 

(33) 

This is another relationship between displacement function IL stress function 
F and loads. 

4.4 Determination of the right-hand sides of shell equations 

Load functions in form (21) are inconvenient to integration and so they 
are from the aspect of boundary conditions, hence they -will be approximated 
by an appropriate function. The variation along the y axis of both functions 
is described by the cosine of the angle 11' and by the factor rlr o. Practically, 
this variation is easy to follow by an integrable hyperbolic cosine function 
of a single wave. Thus, exact load fUIlctions (21) will be replaced by: 

x = ch I' y(g sin x x + p sin x x cos x x) } 

Z = ch I' y(g cos x x ...:- p cosz x x) 

2 FeIr«~:C:l Polytechnica Civil 14/2. 

(34) 
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with j' = constant. obtained from: 

where 

p: --"g,--- + p) . T~OL 
cos Vll 

and 

(35) 

1 
(36) 

Accordingly, right-hand "ides of shell equations (28) and (32) can be deter
mined as: 

.:\" clx = ch y Y [ .. g p 'la co~ ~ ,. 1:; p CO~2,., X] -:- ........ ~./vw_-..L.v ;:'./",' 2 v -

a~ .:\" [ --- d.Y = ch -.' y 
i ~. 

a.y~ 

It l'~ i'~ 1 er ~ -, • . - . ,cl J. - - C CO" , .• t -
\ ::t.: 

er 
C I.Uy. - .i'~ I p 

2y. . -

(37) 

(38) 

Functions (37) and aT<' of "imilar character, both a constant 
of t·wo terms and a term multiplied by cos :x x and cos~:x x each. Functions 
(37) and (38) an: indicated by full thick lines in the section y = 0 in Figs 8 
and 9, respectively. 

The t"'ljSO slio,s a Tather ~irnilaI sllHpe for hoth func~tions. Fur (37) 
and (33) as right-hand sides of (23) and (32), l'esp., the shell system 
cannot be solved 'with the appropriate houndary conditions, hut the variation 
along the :X axis of hoth expressions can he followed by a second-m'der parahola 
expressed by the equation, in case of e.g. function (37): 

(39) 

Constant ql and term q~(1-x2Ia2) can, however, be separately expanded in 
simple trigonometric series. This expansion is done according to the principle 
of load distribution proposed and applied by HRUBA~ for the solution of hyper
bolic paraboloids [5]. That is, the load (shaded area in Fig. 3) that cannot 
be expanded into a FDurier series and affects a narro'w band of the edge x = =a 
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will he assumed to be absorbed directly by the shell edge (entity of edge heam 
and thickened shell edge) as houndary disturhances easy to determine in vie-w 
of the constant curvature along the x axis. 

o 

Fig. 8 

\ 
\ 

And with respect to the ahove, 

i \::") (12 11 -- -:~,-
a-. . 

n 

32 
-.,-q'l 

:L d 

1 )(n-1)12 1 . n';[l' r 
_ -SIn coslJnx 

n" a 

n 

1 
( ___ 1)(11-1) 1 cos 

n:~ 

the Fourier series for (37) and (38) are: 

PI (x,y) ?Co,:; ch y y cos On X 
n 

o 

Fig. 9 

2* 

1 
I 

J 

x • 

(40) 
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with constants delivered by: 

l)(n-l):~ 1 [ql a _' n:;;e -' - --,,In--
112 e a 

Bn = ~ (- l)(n-l)2 ~ [q~ a sin n:;;e + 8q~] 
:;;2 n- e a 11:;; 

,,:,2 (' q; = - -;- g - ,ux 

n:;; 

2a 

-,u:x (
.) 

2g cos x a -'-- 1.5 P cos2 x a 

}'2 ') I (' I 1'2) I -,- P -,- px T -- gCOBxa,-
2x. , ::t. 

P cos2 x a 

and n 1,3,.5,1, ... 

(41) 

In view of assumption 3.1/7, l/rx ill (32) can he replaced hy 1jro' liry ~ :;" 
while surface equation (2) can he approximated by the first term of the power 
series of the term under root sign, hence: 

---''--___ ,,2 = 

2 

In the foUo'wing, :;" will be replaced by f :;" /, the negative sign in (42) 
being already reckoned with in the deductions. Because of (42) and making 

use of (40), shell equations (28) and (32) can he 'written as: 

ICLlzt, 

J.dF 
82 tt' 
---x 

8x2 

ch i' Y ;;;; An cos On X 

rz 
(43) 

= - ch ") Y ':>' B cos {} X 
I ~ n n 
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5. Detennination of the functions of stress aud displacement 

5.1 Boundary conditions. Solution principle 

131 

Edges formed along the shell boundaries are of lo'w rigidity normally 
to their plane, therefore it is expedient to set absence of lateral pressure 

as boundary condition, thus: 

at boundary x= 0 

at boundary y= 
-' 

- O. (44.) 

Another boundary condition permitting to determine the unknown con-
stants and the effective forces acting in the shell structure is 

as follows: 

at houndary x = -'-a 

at boundary y = 

IV 0; 

H' = 0: 

=0 (4.5) 

JI" = 0: Qy = o. 

Boundary conditions (44) and (45) a8sume the shell to be simply support
ed along its edges so that part of the external load is transmitted in form of 
tangential forces by the edge beams to the supporting structure, and the rest 
as shear forces but only through edge arches x = a. 

In view of the nature of the right-hand side of shell equations (43), 

there is a possibility to find a solution satisfying boundary conditions for edge 
x = -'- a while there is not for y -~ b. ~ evertheless, there are altogether 
eight unsatisfied boundary conditions to determine eight unknown con" 

stants. 
Solution for F and/{' of equation system (43) can he composed of two 

parts, namely a particular solution of the inhomogeneous equation system~ 
and a general wlution of the homogeneous one. Both solutions can be made· 
to satisfy the equation system, but the boundary conditions not. These unsatis
fied boundary conditions are satisfied hy superposing the two solutions so 
that the arbitrary constants in the general solution are determined hy co11oca-. 
tion at the boundary y = -'- b. 

5.2 One particular solution of inhomogeneous shell equations 

Particular solution of the inhomogeneous shell equation system (43) is 
sought for in the form: 

Fp =-~ ::E Fn ch;; y cos {)r; x 
II 

::5' 11' ch~.,. CO" {) r 
~'-~n J -' ..... n-· 

II 
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Fn and lC" being constants of the Fourier series. Substituting ex:pressions (46) 
into (43), we ohtain for Fn and U',,: 

yielding expressions 

9{J2 '):! ..L v.t) ... F (R{)! _ 
.... !if!/ n{Jnl =.4." 

.An(17;' .- Y~)~._.!!n(P{}fl + 
J(({}fly~)2..L Eb(p{};, + :xi'F 

.5.3 General solution of the homogeneous shell equations 

Since left-hand side of Eqs (43) contains eyen deriyatiyt,s 

(47) 

"ince furthcrmore shelt loads are symmctrieal, function:" and as PDss:lb!e 
solutions for the homogeneous part of the equation system may h", ',Titten 
in the form: 

r;' 
1. ii 

" 

T1 

x. 

Here 1:3 as defined in (4,1), \vhile and (;In are uilkiliY'+;~H cnHstants .. 

The former ean he determined from the houndary conditiOIlii. while (i)l: can 
he obtained as foHI)"ws: Replacing (48) 
thp algebraic systeIl1 

- :2(07: Cl') 8 (1) ('l.W;' Ui1 

((0;\ :2W~1 
'1., [fA) Eb(;J.wf, pO?, ) Uti I 

Replacing Gn expressed from one equatlOIl mto the other one; 

hy Rn yields for (')" an equation system of eighth ordcL 
po,Yer;;: 

4{j2 6 If 6 {jl - - -± n (}) f! -:- ) ii 186 1 ~ - n (On === 
I 

(
' Eb_ D2{}l ..L {jS) 

.,,_}) n' n' 
, ~( . 

(50) 
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In this expression E D, K, x, ,] and ti/1 being posItlYe and its right-hand 

side being in fact negatiYe, (0/1 may be a complex number. The eight complex 
roots conjugated in pairs can he "lnittE'l1 in the form: 

1t is 

ECl' (50) 

COlt: 

(')'2.1: 

(!);~r: 

(I).j:" 

--- I)v: -'- TIn (')5:: Cl IT: - TIn i 

-- (J In - TIn (uf}r: (j In - T]n i 
(51) 

G'2r'. -- f'2.n CV,n 0' 1 Y? T:1n i 

(j '2n -- {:!;; ('),,, r'7:;:" - {27: I 

hE'rE' to d('al with the pl'actical calculation of thesE' roots, 

rathE'r tedious to calculatE' eithE'l" ('xactiy fir approximatE'ly by 
manual Ill('an:3. ThereforE' it is ach-jsahk to apply a compntn method. To this 

and then 

for n 

rnent . 

Introducing 
fourth order: 

or~ In factcrrizl:"tl f01'll1: 

which npnn 
Computation f-,rocess will he -writt(,l1 

can al;co he ",oh;ed for an" IT upon ll1put "for :"tat('-

I) 

m. thc equation can hi' r",hlf'ed from eighth to 

(5:2) 

(53) 

(54) 

From Eq;; (54), constants of factorE of the -f-cowl order of (53) can he 

obtained by iteration (e.g. starting from P:l = 0). If (~quations of second order 
are known. m, and Tn3 can be obtained from 

m2 Plm -'- pz = 0, and 

m2 
- }Jam P4 = 0, 
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respectively, then roots (»1 = Vml and (»3 = m3 yield all roots of (50). 
If roots (51) are known, Fh in (48) assumes the form: 

F = Y [e"'''Y (G eiT",y..L G e- iTwY ) - eG,,,Y (G 
li ~ In '2n 3fl 

11 

(55) 

first subscripts of constants G referring to suhscripts of roots ill (;,)1). 
In view of 

foIlo"wing from the Euler relationship, applicable to the :"('nse to all other 
expressions "with inside hrackets. Eq. (55) is transformed into: 

where 

:::E [e"uY (C1r1 cos Tlll Y ~ C2!! sin T]l1 Y) 
11 

G.SIl 

i(G.)r: " 

(56) 

(57) 

Function (56) 15 eertainly :"ymmctrical "with rc:"pect to the '" axis because 
of the nature of the co:" Drr' function. and its symmetry ""ith respect to the 
x axis can he \\"arranted hy satisfying the requirement 

F,(T y) = F1l (-- y). 

By meeting this condition, i.e., substituting y and v into (56) and equaliz
ing the ohtained expressions, the number of eight con;:tants according to (57) 
is halved, thereby: 

( :38) 
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In yie'w of (58), of the relationships 

2sh an Y 

and of the analogy het\\"epn functions Fh and l{'h, yielding for l{'iz an expression 
differing from (56) only hy its constants, general solution of the homogeneous, 
part of equation system (43) consists of the function sums: 

n 

sh u:'!..r7. ~\' sin T:2T: ~y] cos x 

ch (j 171 y' COS T 1T: ~y 5h a,,,Y sin T!n Y 
11 

- I(3n ch a 2n Y cos T 2.'; Y -'- Kin sh a 211 y sin T 2n y] cos x 

where 

Hill 
(60) 

In yie'w of the eharactf'ristie equation system (49). if (!)11 IS known, fIn and Gn 
ean he related as: 

(61 ) 
where 

:au~, -'- p{)?, 
K(w~ ()gy 

(62) 

Then (61), (60) and (57) help to express the KI1 bv means of the CIl yaIue:-, 
as follows: 

K]n 
R ln - Rzn CIIl 

RI" - R2n C2·, -,. 

:2 2i 

RI') ..L R21l RI" R2., 
Kz,) - Cln Cln 

2 2i 
(6:3 ) 

K~n 
Ra.) R ln 

C3" 
R31l Rl!l 

Cln -
2 2.i 

Ki!l 
R 3 ., - R4n C IIl 

Ra·: R.!n 
C3 ·)· .-

2. "' . . d 
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The Cn are in turn expressed by means of the Kn: 

Cln 

R 2n K ln 
RIll R 2 r. 

K 21: 

R~n Ri" mn 

C~r: K 2n 
.. 

K 1" 
Ri" - R}" 

(64) 

C:;.: 
~:l': K:\., .K!I: 
R~., Ri" R~r: - R~n 

C'lll 
R 3n R.", K 4n i Ii3!l .R4n K .. ~ 

Ri" R~!1 R~n --'-- R2 3Tl 
·In 

::\0 computation reasons require the numerical determination of the Gn and 

the HIl in the right-hand sides of (57) and (60), respectiYely, neyertheless it is 
important to know that they are complex numbers conjugated in pairs (e.g. 

Gin and G:?,,). Thus, hoth their sum and their difference multiplied by the imagi
nary numher i are real numbers. Hence, constants en and Kn sought for are 
re8.1 numbprs. 

Finally, the displac('mc'll t fUIlction and the "tre~~ function, general solu
tions of the inhomogt>neou,; differential equation system (43). can be written 
as sum of (46) and (59). 

6. Stress deterrninatioI1s 

6.1 Stress fUTlction., 

In view of (23), (25), (26) and (37), Ri' 'weH 
f' (' _. 

a~ or Iunctlo213 

and (59), shell str'·i';: formulae can be written as: 

n 

(If 1'. 

('lilTi sh r; 1.'; _v :--:in T - Y -- 2a In TIll ch r; 1-; 0/" COS T 

ch (j::'r,_t" c{-,s T:.!.l:}" 2u:?n T~n S11 C:?,. :.'" Sill T:U1.V) 

5h ()::':i~Y sin T1::.Y -:-" 2C};2tZ T::.r. ell r):2r Y COS T Zr1 }<)] cos J: 

~1_ ch ;' g P g co~ y.x p cos~ xx) 
x 2 C) 

ch '.'1' , , co:" x 

11 

(66) 



JL 

FLEXCRAL _,L\-AL Y.~JS OF SECTOR .'HELLS 

n 

22'8/l[Clll(UlnshulnYCOSTinY 
n 

K ich i' Y cos 
11 

J.~ -

2 ::::: [1\:11: (113" ch U in Y COS T l ,: Y 
i7. 

K zn (ui:: ch Tl"y sin T l ;;,' 

- K:l': (u:!/l sh u2n ycos T 2 ·, y 

T~1l sh u~::ysin T 2 /lY) 

2u.:,: T2,: ch u 2,:Y ('os TlIlY)] CO'3 

x-
11 

Tl!! sh ulnYCO~ TInY) 

T c'l ch U~n Y sin T 2': ,v) 

- K.l!l (uen ch u2n .Y sin T2"." -- Tln sh u~nY cos T2n .V)] sin Oil x) 

K Ich;,y2'wn 8,,(8g 
11 

- ::.:E 8n [KIn (1]ln ch u1n Y cos T 11l Y + 2uln T ln s11 u!n.Y sin T 111)') -
11 

- K~r. (i);n sh U In Y sin TIn Y 

- },~;)': (i7<r: ch U 2n)' cos T 2" Y 2u 21l T 2n sh u~n.Y sin T 21:,v) ~ 

KIn (ihn sh uzn)' sin T 2n Y 2u~,: T2" ch u:Ul.V cos T2n Y)] sin D" xi 

137 

(70) 

(71) 
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Q.... K I .. ~h A} Y "'" W (,/2 ~ fP) cO~ {} X ~.: 1/-- I,./.b n / n .... n~ 
n 

+ ~ 2,' [Kln (179-' sh 0ln)" COS Tin)" . "f)lon ch 0 In)" sin TIn)") 
n 

where 

'J5n = 17171 ,u{}~, 

lIon == "7:2n "- p"O;: 

ihn {}~ -iiln 

liSn = {}?, -rhn 

118n = a In (/lln ~Tin {}~) 

l/lOTl TIn (ihn -:- 2ai" O~) 

O~1) 

0;1)' 

(72) 

(73) 

Some of these stress functions haye to :-atisfy houndary eonditions (44) 
and (45), a requirement already met or to be met after duly choosing the un
known constant:", except the last term of the normal force expression (67). 
Namely, this term fails to meet boundary condition in (44). This deyiation 
can, however, he disregardcd, since the prdctically fayourahle shell slope of 
Cl 30'· is accompanied a lateral pressure not high(~r than to be absorhed 
by an edge arch of the anyhow required size. The more shailo\\" the shell, 
the less,>r i8 the deyiatiol1. 

6.2 Determination of the Unkn01Gn constants 

Because of the mentioned symmetry with respect to the x axis. the num
ber of unknown constants diminishes to four, in conformity with (58), and 
so does the numher of unsatisficd boundary conditions (44) and (45) hence 
this is a statically determined problem. 

As it has been mcntioncd earlier, the unknown constant." will be deter
mined by boundary collocation. There being 4 )< 11 unknows where Il is arbi-
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trary, the required number of collocation points is also 4 X n. Conyerting con
stants ell in (66) to constants Kn according to (63), and making use of relation
ships (46), (59), (69) and (72), a system of 4 X n inhomogeneous linear equa
tIOns containing 4 X n unkno'wns, of the following type, can be written: 

[Km ch Uln b COE T1r; b 1~"n sh u 1n b sin T ln b 
11 

.K31: ch U~" b cos T~n b - KIn 5h U2n b sin T~n b] cos x= 

I R) . R) 
in -.:.... 272 

11 

+ K'!n (lion sh U In b sin T IT; b 

ch 

:2 

ch b 

b 

11 

n 

2UITl TIn ch Uln b cos TIn b) 

1(311 (16" ch u2n b cos T:!n b 2u211 T zn 5h U:!T1 b sin Tin b) 

shul/,bsinT,,,b \--'-1 . - . ~ 

I ' 

,h a" b ,on", b I-I 
I 

:::h ul' b sin T) .. b 1-'--1 

X== 

+ K 4n (')6n 5h u2n b sin T ZT1 b + 2u2n T 2n ch U~n b cos T~11 b)] cos {)n x = 

ch b 0 >' w" (I'~ 
') ...". 

- n 

.::E [KIn (1)g/7 Eh U 111 b COS TIn b - ')lOn ch U 111 b sin TIn b) + 
n 

+ K jn (1J1111 ch Gin b sin Tin b + IJlin sh u~n b COS T 1n b [(COS ()n X 

a~) COS an x 
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Besides of Eq. (50), equation system (74.) is also one inaccessible to con
ventional calculation methods, these being rather tedious even for the insuffi
cient n = 1 case. A digital computer has to and can be used without difficulty, 
since equation system (74) is an ordinary linear onc, for which there are suhrou
tines available. 

6.3 _vext step of iteratioll 

In conformity ·with item 4, using ~·Yxy and Qx ohtained in the first step 
involving (67) and (71), an expression of the character of a load acting in 
direction x can he cstablished: 

1 
Q --x (75) 

I"tJ 

Since (75) cannot he uscd in this form, it will he replaced by Cl close approxi
mate function, convenient hoth from integration and computation aspects. 
The common function 5in z7 nX expre5sing the variation along the x axis of 
hoth stresses in (75) is convenient also for the next steps. :'\eyertheless, ex
pressions of the variation of stresses along the J axis are rather complex and 

differ from each other. Expression of Qx according to (71) as a function of'y 
consists purely of terms ·with even functions, ·while that of according to 
(67) has terms of odd functions. This latter hecomes eyen upon multiplication 

J in (75). 
In yic"\\· of thc ahove, the hest approximate function furm of (75) is 

that ·where the right-hand side of the shell functions is not or little transformed 

in the second step, or that differing only by constants An' En and }' in (4-0). 
Hence, the imaginary load fUllction (75) depending un )" will he Tcplaccd by 

a function of form Ch/'Lv, where constant f l can lw determinerl a"': 

76) 

Here qo and q~ are the values of function in (75) at)" = 0 and x = Xl COllst., 
and at )" = b and x Xl' respectively. If values of and 1/.,., obtained III 

the first step are known, both q~ and q(; can be determined. 
·h being known, expedient forIll of approximate function Si is: 

Xl :"",. ch (1)".2E En sin 19" x 
Tl 

(77) 

the En heing constant, "with values deliyered by a linear equation system hay· 
ing coefficients ohtained from values at the matching points of the approxi-
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mate expression (77), right-hand sides being deliyered by the exact (75). 
If several terms are reckoned with, this problem is a150 to be computerized. 
Unknown con5tant5 determined according to the aboye, as well as according 

to (77), the right-hand side of (2S) in the second step can be expressed as: 

where 

And the 

p.; 

'where 

p~ (x, y) 

A;, = :z [1 
On 

B' n = 

side of 

,il 8}'~1 
ox 

,il En 

(32) : 

., 
"Cl 

x (7S) 

4 
(79 ) 

ch = ch /,Y B;, cos {! . x (SO} 
n 

[1 -1 

:7 
-~J. 

71 

(SI) 

Functions (78) and (80) are seen to be formally identical with the right

hand side of the equation system (43), hence the equation system can be 
soh-ed the same 'way in the second step as in the first one. 

Since practically, the first, not more than t'wo :3teps may he of importance. 

the final stresses are ohtained as the true to sign ;;;Un! of corresponding stresses 

obtained in the first two 5te13:O. 

7. Numerical example 

:'\ otations are the same as in Fig. J. 

7.1 Geometry 

b = 5.0 m 

10.0 m 

k = 2: 

i5 = 0.05 111 

sin 'PI = 0.5 20.0 m 

cos ~' = 0.9659 : Tl = __ Tc..0 __ -:-::; 20.706 In 
rp, 

cos 2 

'h = 0.5236: a = q)lT" = 10.+72 m 

0: = _1_ = 0.05im : 
TO . 

p= = O.0566im 

fa = 20.0 - 20 . 0.866 2.68 111 

tg rp, = 0.577; fb = Tl - T" = 0.706 m. 
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.7.2 cVlaterial constants and rigidity data 

E = 275 000 kpJcm:!; /' 16 

Eo = 137500000 kp/m ; K' - ~03 _ "9 v< ')8- k 
- 12(1 _ ,u") - - 70",._ J pm . 

.7.3 Load values 

g = 1.1 (0.0.5 . 2400 -,- 25) = 160 kp/m:! 

p lA· 80 = 112 kp!m" 

impermeable layers weighing 25 kp m:!. 

7.4 Computation technique 

The description of the computation method inyol-ved two partial problems 
(5.3 and 6.2) suggesting the use of a computer. In addition, however, auxiliary 
computations for establishing the equation system in itf'm 6.2, as 'well as eyalua
tion of stress functions in item 6.1 in kno\dedge of integration constant5 

even for a low number of terms and nodal point:" requires a lot of compu-

tation work utmost tedious and time consuming for manual calculation. 
The possibility to use the computer "Lral-2" of the UniYcrsity Comput

mg Center allowed us to computerize nearly the whole process. 
Steps of the computation involved three stages each. 
The first stage in',olYed auxiliary computations for 'writing the linear 

equation system (74) including solution of Eq. (50) of eighth order, The 
second stage was that of the solution of Eqs (74), and the third one the eyalu
ation of stress fUl1ctioI18 described in item 6.1. 

In knowledge of stress functions and obtained in the first 
the yalne set of tllf' imaginary load function 
and so 'were the constant ;'1 and the linear equation system needed for the 
detcrmination of constants En' both in imaginary approximate load function 
-(77). This linear equation system 'was solved by a computer, then the second 
step consisted in calculating the stresses by repeating the aboye procedure in 

three stages. 

I.;) Stress values obtained in the first step 

Shell stress values obtained in the first step for 1l 11 are compiled 
in Table 1. Tables 2 to 5 contain some stresses of importance, again from the 
first step, reflecting conyergence conditions of the problem. All tabulated 
values refer to kilopond and meter units. 
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Tahle 1 

0.20 0.-10 0.90 LOO 

;vx \J 10621 10208 7701 851 709 
:'\ormal 2.5 9700 8802 6835 1464 719 

force 5.0 93,t2 5386 3362 247 602 751 

cV}' 0 ,1662 -1379 2176 3370 ::: ·~50 0 
:'\ ormal force 2.5 4139 2838 948 I 868 1 897 0 

5.0 () 0 0 r, () 

i\-xv 0 0 0 0 (I G 0 
Tangential 2.5 0 1637 1015 -1168 2 ·1-63 130-1 1 ()96 

force 5.0 0 5238 4,370 4,022 6::;18 -±551 3455 

IJ 12.21 1.81 -9.28 --9.12 5.82 -0.-1;:) 0 
2.5 - '1.72 5.66 ·t:1.3 -J.it 12.20 0.56 0 

moment 5.0 0 0 () 0 0 

J-Iv 0 7.10 ~5.7:1, -l-t.22 -9.25 104·0 0.33 0 
Flexural 2.5 -7.65 0.70 1.26 -6.00 -13.13 -1.63 0 

rnornent 5.<) 0 n 0 0 (1 0 

JIx;' 0 0 0 0 0 0 
Torque' 2.5 0 -7.03 0.52 '1 ~.., 1.56 2.53 3.32 ·).10 

3.0 0 ·U9 -8.57 -10.73 8.29 10.21 8.77 

Qx 0 0 H.58 -1.21 -5.90 -3.58 -0.86 0.97 
Shear ~.~ I) -9.11 10.91 16.()7 11.43 7.()9 -1.20 

force 5.0 () 0 (I 0 (r 0 

Q., 0 I) l} 0 (I {t (I 

Shear 2.5 13.87 -1.51 -12.95 -3.09 7.~8 0.19 0 
force .l.O 0 n (I 0 (t 0 

Tahle 2 

:'\ormal force cVx 

~' y 
x,la ': 

0 0.5 O~9 1.0 
n 

-10786,47 -5758.5.5 ·682.0:- -708.72 
-10611.10 -563'L55 -838.55 -708.73 

0 9 -10622.74 -564·2.78 -849.82 -708.73 
11 -10621.91 -56/13.37 -850.65 -708.73 
13 -10621.93 -5613.36 -850.66 -708.73 

-9626.01 -5683.83 -1540.35 -719.15 
-9706.88 -5711.02 1 '168.29 -719.1.5 

2.5 9 -9701.36 -5737.11 1162.84 -719.15 
11 -9700.13 -5737.98 1164.06 -719.15 
13 -9700.51 -5737.71 -1464.40 -719.15 

5 -7806.77 -.} 100.17 2830.95 -750.72 
-: -9628.74 -5388.79 1207.55 -750.68 

5.0 9 -9179.06 -5070.82 -763.39 -750.68 
11 -9342.05 -4955.55 -602.40 -750.67 
13 -9310.03 -4978.17 -573.89 -750.67 

3 Periodica Polytechnic-a Civil 1·1.,/2 
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Table 3 

:\"ormal force Ny 

.,.~ 
xf'a 

y 0 0.50 0.90 1.0 
Tt 

5 -4588.92 -299.60 2095.33 0.01 
7 -4754.33 -416.57 :2 242.72 0.02 

0 9 -4603.29 -309.77 2391.89 0.02 
11 --1, 662.39 -267.98 245U.36 0.02 
13 -4652.41 -275.04 2459.16 0.02 

-3639.86 -52.21 1042.59 0.01 
--1, 281.98 -506.25 1614.73 0.02 

2.5 9 ---1, 067A8 -30-1,.58 1826.59 0.02 
11 --1, 138.51 -304.35 1 896.75 0.02 
13 -4127.38 -312.22 1906.66 0.03 

------

5.0 5-13 0 0 0 0 

Table 4 

Tangential force '''-xy 

~" wY,i a 
y o 0.50 0.90 1.0 

rz 
----------- --'-- -------:--- ... _--------_._--------- ---------------

0 .;-13 o 0 0 0 
-~-~----~--. 

:) -.1, 271.15 -1 18-1,.49 -80·1.66 
-4 -1,~1.l3 -1300.0'1 -1059.18 

2.5 9 --1,472.53 -1304.77 -1089A4 
11 -4467.7-1 --1303.71 -1096.22 
13 --4467.16 -1 303.3'~ -1097.03 

--5 189.93 -5232.61 -53;;1.51 
-4183.10 -·I586.26 -3927.7-1· 

5.0 9 -3935.26 -4531.-1,2 -3577.16 
11 -4·021.59 -4550.52 -34.,55.08 
13 o --1,037.83 -t 560.95 -3 -1,32.12 

7.6 Stresses from the second step 

Values of exact, imaginary load function Xl =- x(2{3 yiVxy 

compiled in Table 6. 
If matching is done III sections x = 0.75, Y = 5.0 and x 

according to (76): 
0.75, Y = 0 then, 

ch i'[ b 185.30 = 1029.44 _~ _~2~ : 
0.18 2 . 

,'I = 1.526. 
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Table 5 

Flexural moment Jly 

x/a 
0 0.50 0.90 l.0 

n 

5 4.29 11.35 3.40 0 
7 7.22 -9.28 0.79 0 

o 9 7.18 -9.30 0.75 0 
11 7.10 -9.25 0.83 0 
13 7.12 -9.26 0.84- 0 

.s --1.63 -·J..(J9 -8.33 0 
7 -8.01 -6.·j·9 -~.31 0 
9 7.48 -6.12 -·Li9 0 

11 -- 7.6.) -6.00 -·L63 0 
13 -7.62 -6.02 --1·.60 0 

-------.~ -~~.- ~--~-----~ --

)-13 0 () (I 0 

Table 6 

a'x 
{I u.2 0..1 0 . .5 0.7S 0.9 1.0 

(I {I 0.73 -0.06 -0.30 -0.18 -0.04- -0.05 

2.5 (I -23.62 -56.27 -35.4.3 -18.80 15.57 

5.0 (t -148.23 -123.68 113.31 -185.30 -128.78 -97.78 

According to (77), making use of values in Table 6 for section y = 5.0, and 
for n = 1, 3, 5, 7, 9, 11, the follo"'ing eCluation system can be written for 
constants En: 

-0.4.653 Et -;- 2.6191 E3 -;- 3.2362 E5 2.6181 E, E, Ell 
-0.2039 = Et -;- 1.6180 E3 0 - 1.6180 E, - E9 -;- E tt 
-0.1561 = Et E3 - E5 E, - Eo Ell 
-0.1945 Et - 0..1142 E3 - 0..1142 E5 - E, E9 - 0.4142 Ell 
-0.1249 0.9377 Et - 0.8910 E3 -;- 07071 E5 0.4540 E, 0.156·1 E. - 0.1564 Ell 
-0.0948 = Et - E3 -;- E5 E, - E9 - Elt 

ha ving as roots: 

3* 

El -01741; 
E7 = -0.0391; 

E3 = -0.0495: E5 -0.0223:, 
E9 = +0.0096; E 11= -0.0034 
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to yield an approximate, imaginary load function: 

ch 1.526 'V ('- 0.1741 sin ;r x 
~ ') , ~a 

0.0495 sin 3;r x 
2a 

O 0
')') . 5;r . 7:r 9:r 

. :..:..3 Sill - X -- 0.0391 Sill x + 0.0096 - x -;-
2a 2a 2a 

0.0034 sin Hn x). 
2a 

Its value set is compiled in Table 7. 

Table 7 
, 

" ."Cla il I ", 0 0.2 0.4 0.5 0,75 0.9 " 

Y "~: 

0 0 -0.14 -0.12 -0.11 -0.18 -0.1:: 
------

2.5 () -3.26 -2.72 -2 . .50 -4.08 -2.84 
---- -----

5.0 0 -147.93 -123.22 113.55 -134.99 -128.58 

1.0 

-0.09 

-2.15 

--97.59 

Constants En lead to A;, and B:Z values according to (79) and (81), re:3p,'ctlyel)': 

--1~= 0.0159 : 0.0078 : A~ = --- O.OOll : 

A~ 0.0022 : 4' - 9 0.0003 ; 0.0001 . 

B{= 0.7344 : B~ 0.3686; B' , 5 0.0544·; 

B~ 
I 

0.1092 ; B~ = -- 0.01:20: B~l = 0.0061. 

In their kno\dedge, right-hand sides of shell equations are: 

= ch 1.526 J 

_ S~ 7~ 
0.001l cos -- x -- 0.0022 cos -- x 

2a 2a 

9n 11n 
0.0003 cos x- 0.0001 cos 

2a 2a 

p; (x, y) eh 1.::526 y 0.7344 cos - x - 0.3686 cos 
(

' n 3n 

2a 2a 

on in 
0.0544 cos -x - 0.1092 cos x -

2a 2a 

9n Iln ') - 0.0120 cos x -- 0.0061 cos --x. 
2a 2a 
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Shell stresses from the second step (complementary stresses) are compiled 
III Table 8, in the same order as in Table 1: 

Table 8 

~ x/a I 
y ,,' 
---- "'---------

0.20 0.40 0.50 0.75 0.90 1.00 

----------------- - ---------------------- ------

-19 15 
-IS 

o 
2.5 
5.0 

- 23 
21 

-lH -213 -353 -3H 

5 
3 

no 

o 
o 
o 

o 
2.5 
5.0 

o 
2.5 
5.0 

o 
2.5 
5.0 

o 
2.5 
5.0 

o 
2.5 
5.0 

o 
2.5 
5.0 

o 
2.5 
5.0 

30 
18 

(} 

(I 

o 
(I 

0.20 
0.11 
(I 

0.10 
0.10 
o 

(1 

I) 

o 

18 
-8 

(I 

1I 
-13 

23 

-0.0:: 
0.09 
I) 

-0.03 
0.06 
o 

\l 
-(1.07 
---0.04-

------- - ---- -- -

II 
(j 

o 
0.11 
(I 

0.12 
0.05 
o 

o 
-0.03 

o 

G 
1 
If 

I1 

13 

-0.06 
-0.'10 

(l 

--0.02 
---0.0-1 

Cl 

----,---- --- -- --------

16 
2 
o 

o 
-15 
-8 

-0.08 
-O.H 

o 

0.02 
-0.10 

o 

16 
10 
o 

-1.6 
-0.06 

o 

-0.12 
-0.04 

o 

6 
9 
(I 

u 
11 

-50 

-0.12 
0.0-1 
I) 

-0.10 
0.01 
o 

o 
u 
n 

10 
--16 

o 
If 
o 

o 
I) 

o 
------- --------- ------- ----- ----~ 

\l 
-0.02 
-0.13 

0.02 
O.U 
(1 

o 
-0.02 
-0.10 

--0.02 
0.10 
o 

o 
0.05 
o 

I) 

--0.02 
0.11 

-0.05 
-O.H 

o 

o 
-0.11 

o 

o 
0.08 
0.02 

--0.1-~ 
I) 

I) 

o 
-0.16 

o 

o 
0.12 

--0.02 

-0.20 
0.06 
o 

o 
o 
o 

8. Conclusions and evaluation 

The presented method lends itself for shallow shell structures of anv 
slope over no special £]001' plan. 

This kind of treatment, leading to a practical method, relied upon a 
mohile co-ordinate system matching the least circle of the hyperboloid of 
revolution where the sector shell to be used as a shell roof was described. 

Even so, the prohlem is a rather complex one, therefore, 'when developing 
this relatively exact method, already in the formulation stage - in writing 
the subsequent equation systems neglects resulting from the usual simpli
fications have been taken into consideration. 
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This method offers the most of advantages if a computer is used. The 
solution may be a mixed one if only stresses of the characteristic point5 are 
computed, namely by computerizing the characteristic equation of eighth 
order and the equation system of boundary collocation, and doing other 
calculations manually. This is of course more difficult and lengthy than a fully 
computerized solution. 

The second step of the procedure is seen to little depend on shear Qx 
in the imaginary load function, it having the only aim to lead to an approxi
mate function, similar in form to that in the first step. 

Comparison between value sets of the imaginary load function and of 
the approximate function in Tahles 6 and "7, rcspectiyely, shows the approxi
mation to gradually roughen from the boundary with rather high values to
-wards the centre of the domain -with much lo-wer values. This deviation due 

to approximation is, ho-wever, of little importance, as demonstrated hy numeri
cal values in Tahle 8. :;\"amely, tahulated values are quite unimportant, except 
the iY,,;, iYy and }Yxy values in Table 8 ail owing some correction, hut this is 
uIlimportan t in itself. The iteration may be continued at -wilL so that the 
load fraction omitted in the step before is taken into consideration. 

In conformity \\-ith the above statements as well as with the numerical 
solution of a shell structure steeper sloping than that in the numerical example, 
it can be stated that provided the floor plan data and load values of the shell 

structure differ hy llot too much from the data of the numerical example, 
up to the limit of concreting without top 5huttering « 35:)) the second step 
IS unnecessary. 

Significance of this statement is pointed out hy the fact that the compu
tation volume for the second step is equal to that for the first onc. 

A method based on the flexural theory has been developed to determine stresses acting 
on a shallow sector shell surface cut out of a single-shell hyperboloid of revolution over rectan
!-,ular floor plan, of arbitrary proportions. taking into consideration both the dead load and 
the snow load. 

This analysis leading to a practical procedure was allowed by the description of the 
sector shell problem in a mobile co-ordinate system matched to the least circle of the hyper
boloid of revolution. 

This problem being a complex one, it is most advantageously soh-ed by a computer 
soon delivering final results. as it appears from the numerical example. 

This relatively exact method lends itself to check approximate methods published in 
the literature. 
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