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3. Introduction

A calculation method will be pre\emed for the flexural analvsis of forces

acting in sector shells cut out of a single-shell hvperboloid of revolution.

g
These shells are highly convenient as shallow shell roofs, taking into
consideration also the aspects of construction. It follows that shell forces
are decisively affected by snow and dead loads. Consequently, in what follows,
these two load tvpes will be considered. In previous papers [9—11] the
same preblem was treated by the membrane theory and by the theory of geom-
etry, respectively. The presented analvsis suits to rather exactly determine
internal forces in shells and besides, it lends itself to check the carlier approxi-
mation methods if a digital computer is used.

. Derivation and features of the shell surface

In the co-ordinate system x.y,s (Fig. 1) the part cut out of a siugle-shell

hvperboloid of revolution with axis v defined by:
X2z v2 .
TTE o 1)
s b2
by two planes passing through the axis and including an acute central angle
lends itself as a shell roof over rectangular floor plan. b in Eq. (1) is the half
length of the fictitious axis of the hyperbola in the meridian principal
section.

The so derived sector — surface part of Lhyperboloid of revolution — is
confined by two circular arcs of radius r; in the vertical plane and by two
hyperbolic edges of skew plane (I'igz. 1). Because of the skew-plane hyperbolic
edges, the basis under this part differs from a rectangle. The difference is,
however, rather unimportant in case of shallow shells derived from a hyper-

* Part of Candidate’s Thesis by the Author entitled “Statical Analysis of a Secfor
Shell Cut Out of a Hyperboloid of Revolution™ defended October 14, 1968,
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boloid of revolution with a relatively great radius and short axis, and can
still be reduced for even shallower shells. If a '»"ertlcal gable wall is required.
a conoid part may be added to the skew-plane hyperbola.

Surface in Figz. 1 is seen to have all sections in planes normal te or
coincident with the axis of revolution with negative or positive curvatures,
respectively. Because of different signs of curvatures for each section family,

the Gaussian multiplication curvature is negative in any point of the shell,

so from differential geometry a~g ects, any point is hyperbelic. Besides, the

urface is of constant

fh

u

traight generatrices: th

use in praetice.

two shear forces, two tangential forces, two

moments {Fig. 3). An analysis stariing fron thlu modei @oiv'

plex caleulation problem, involving some steps practically inaccess
conventional calculation even after simplifications inherent with the shell
shallowness. This fact urged the development of the algorithm to be presented,
solved by means of a digital computer. This algorithm yielded numerically
the order of magnitude of the flexural stresses, occurring also inside the shell
because of the rectilinear generatrix of the shell surface, not only oz the bound-
aries where edge beams do not follow shell deformations.
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Assumptions for the fundamental equations are the same as usual in
the t%zeozy of elasticity of shell structures:
. The shell material (reinforced comcrete) is homogeneous, isotropic,
-éea%’z elastic and follows the Hooke law;
the shell is thin as compared to other shell dimensions:

[S ) '<3

a

the stress component ¢. normal to the shell medium surface is negli-
campaxe& to other stress componentis;

1,
&
»
o

s
.
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the Navier hypothesis is valid;
.
1

5. deformations are small as compared to the shell thickness:
6. deformations due to flexural shear are negligible;
. shell surface is shallow, i.e. rise to span ratio is less than 0.2 in either

g

=]
]
e

8. in the shell equations the higher derivatives are significantly greater
are lower derivatives, hence these latter can be considered negligible

ce of convenience.

)a M

dealizing the shell geometry. its medium surface halving the interspace of

e
tWo Q@andar\ surfaces will be indicated in 2 convenient co-ordinate system
defined as follows: It is endeavoured to formulate the problem in a co-ordinate
system leading to equations similar in form — with unavoidable deviations —
to results relating to translation shells considered in a plane orthogonal co-
stem. Such a co-erdinate system consists of a cylindrical surface,
ential to the shell surface, i.e. a cvlindrical co-ordinate surface
the east circular arc of the surface, the co-ordinate lines of which
irectrix circle (arc length x or central angle ¢), the generatrix (y axis)
and the normal (z axis).

The sector shell surface cut out of a hyperboloid of revolution together
with the es-axial cylindrical co-ordinate surface, the co-cordinate lines and an
infinitesimal part with sides dx. dv and ds., ds, belonging to an arbitrary
point with co-ordinates x, y, z are shown in Fig. 2. In the described co-axial
co-ordinate system the shell surface equation can be written by means of the
equation of the cross-wise hyperbola

1o
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Equilibrium equations

The infinitesimal part (Fig. 2) and its projection in the co-ordinate
surface are shown enlarged in Fig. 3, together with their stresses in positive
sense. Stresses acting in the surface part

(N, Ny Qe My My, and N, Ny 0, My, M)
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are real stresses, while their projections in the co-ordinate surface
(N

are redd stresses.

N 0. M., U‘\ and N v N, s G}, .‘v-Iv 11_1\\)

<y X
/3

Fig. 3
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The surface part and its projection in the co-ordinate surface are con-
nected by the geometrical relationship:

dx = —:_i ds.. } )

dy == ds, cosw

where r, radius of the least circle (Fig. 2):
7 radius belonging to an arbitrary point of the hyperboloid: and

=

” angle included between the tangent to the hyperbola and the

generatrix y of the co-ordinate surface (Fig. 3).

Six equations expressing the equilibrium of the infinitesimal part referred
to the co-ordinate surface will be written by means of the reduced stresses.
Since, however, relationships for the real stresses on the surface part are
needed, correlations between reduced and real stresses have to be kpown.
These can be written by means of projection (Fig. 3) and Eqs (3) as follows:

T N x5 r .
N, =" N, = —(N,ycosy — Q,siny)
cos Iy

AL = M, =L um,
Ty
. M., o
M, =— M, = . My, cosy.
’ cosy ’ T ’

Applying neglects usual and permissible for shallow shells, the following
approximations will be introduced:

(5)
and from (3) dy »o dsy.

Terms Q. tgy and Q, sin i in expressions for N, and N, resp., Eqs (4),
can be omitted. since flexural shear stresses {, and (, are much lower than
are membrane stresses and besides, they are multiplied by the tangent of the
small angle 1. Right-side column of Eqs (4) contains the ratio r/ry, that
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can also be written as follows, assuming matching of the infinitesimal part
to the section y = 0:

L:ww_:1+ﬁ_—/_tgw:1; Ay ds . ds (6)
To Ty Ty ry Ay ra

o
¢ . —
~ ) Q‘_ ot h
! e+ e — ——
Ny Od Yz
G R
—
ax &
A

]

he

to unity. Introducing the above simplifications, Egs (4) will be of the form:

w

hell being a shallow one, term zr, can be omitted with respect

aking into consideration relationships

; dx ; dxsinw f
af = —2 g = ————
Ty g
(8)
tgw
= dx dy —=—
Ty
related to Figs 3 and 4 as well as Figs 5a and b, the formula for M, similar

=3
o
o]
=]
o

to Eq. (8) and approxima
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projection equations for the three axes expressing the equilibrium of the
infinitesimal part, and moment equations also for the three axes will be of

the form:

where X, Y and Z are load function components for the co-ordinate surface.
The last equation of Eqs (9) corresponds-to the known theorem of reciprocity
of plane problems. This one will not be made use of.

Eqs (7) will be applied to convert reduced stresses of Eqs (9) into real
stresses. The fourth and fifth equations of this system of equations contain
only flexural stresses, and in order to avoid disturbance from flexural stresses,
reduction of their importance, approximations Oy = Q. and (j'\. == (J, will be
introduced in Eqgs (7) (see [3]. p. 99).

In conformity with the above, after operations indicated in the first
and third equations of Eqs (9) and arranging:
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BN BN,y ;g 1 '
L LU IS
ox 8, To T
BN, BN, ~Y =0
av\‘ dx
=0 (10)
=0
= 0.

3.3 Geometrical equations

There exist several references, e.g. [3] and [4], on geometrical equations
for an infinitesimal part cut out of a shell surface of arbitrary form plotted
in a surface co-ordinate svstem.

Original and deformed shapes of the infinitesimal part cut out in Fig. Z
are shown in Fig. 6.

Approximations applied when deducing Egs (10) expressing the equi-
librium of the infinitesimal shell surface are considered valid in relation ic
the geometrical equations too.

From approximations (5) and (6) it follows that &s, and 8s,; and 8x
and 8v can be exchanged. The geodesic curvature pertaining to normal sec-
tions z—y and distorsion of the surface (1/ry,) are zero. The geodesic curvature
belonging to the normal sections z—=x, can, however, be considered zero, if
the slightly trapezoidal form of the shell part is ignored, in accordance with

the above.
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Accordingly, the geometrical equations of the shell part are the following:
Specific strains in directions x and v, rotation between the two directions
and rotations for the length of arch are:

~ o

. _ Bu w . Bw . u
£, = 5% - Lx ™ 5x r.
o . DN .
o= — 2 2L (1 po= o . (12)
’ oy r. ) 3y r,
L Bu St L 1 v du
T ey Bx 2= 2 ( Bx 8y ] i

Curvature changes expressed by means of Egs (11) and (12):

A
3.
Py = -
Sx
3%,
s = K {13)
Bv
1|8y, 8y Yo |1 197
Ry == SE = S —
’ 2| 8« Bv 2 Ar, T,

Here u, v and w are displacements in directions x, v and z, and 1/r., 1/r, are
curvatures of normal sections. Using the first two equations of (12) and the
third one of (11}, curvature changes {13) can be expressed as:

2% 1 3u
o, = e
Bx* r, Ox
5% u 5 (1
Hy == - | — 1
oy* oy \r,
(14)
8w 178 [u 1 &
Hoy = de— e ] e —
Ox 8) 2 8y {r, r, Bx
1 /8u | Bv) {1 1
2 {8y 8x { Ty Ty

All of the Eqs (14) are composed of two parts. As compared to main terms
containing 1w, all other terms are negligible in conformity with assumption
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3.1/8. Thus, unit deformations referred to the medium surface of the infinitesi-

mal shell part can be expressed as

du w
£y mE e — =
Ox .
ov w -
&, B e e o, == (13)
> ~
8y ry,
Bw |, du 5" w
‘,yxg = LT Ay = =
3y ox Sx 0y
b 2

Stresses in a point of arbitrary ordinate z can be expressed by specific
train units for the same point. Hence, strain units (15) are to be replaced
deformation units for the surface of ordinate z. On the other hand, the
sumption made for shallow shells permits to apply simplifications, so that,

oW

]

v
s

»

(lJ

afinal result. stresses can be expressed by means of strain units for the medium
surface. Purely to illustrate the transformations, let us see specific strain in

direction x:

- j (16)

ration the

Here the approximate expression re=ult< from taking into ¢

first two terms of the power seriesl/ ll — ——1 since:
Fol
1 . =
B e ] -
i z r.
1 P
z#; the approximation 1/ —— sinee
r‘f
it only corrects the term ¢..
3.4 Physical equations
Notations:
E modulus of elasticity of reinforced concrete
i Poisson’s coefficient of reinforeced concrete
b shell th1ckn ess
Eb . ) o
D = _— tensile or compressive rigidity
P —
o LNE .
K = - {flexural rigidity.

12(1 — 2)
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Hooke’s law in the theory of elasticity is of the general form:

i . -
o) = e () - el?)

1 — w2

(17

Three stress components expressed in (17) help to write all ten func'zions
of inte forces in Fig. 3. For instance. using the stress component oy:

3
il

1 i} dz

,«
ot
les]

~—

e, TR

) -~ e R
5% from (17) into {18). accomplishing operations and arranging

- and M.:

vields for

No=Dle.+ pe,) + — (1 - »~l~:i—} (e. }

3 ry
o % (19)

. - 1 T,

M.=—- K|z, —ux, - — (1 + ——] e .

’ r. | ry
Expr 1 (19) for the normal force NN, consists of two parts, just as
do those for nternal forces N, N, and N,., namely the parts multiplied by D
and by K ri and K/ri. respectively. ‘;mce D> Kiri: K, r> terms multiplied

by K are omi ~~1ble as compalvd to those rnult1phe>d by D.
Also the expressions (19) for the bending moment M, and for moments
My, M, and M, consist of two parts. One part contains the effect of terms
expressing the curvature changes and the other the effect of the specifice
strain or angular distortion. The latter is in any case multiplied by a curvature,
so this magnitude can be omitted as compared to the first part. Accordingly,
the approximate phvsical equat10n~ of the problem are of the form:

N.=D(e. — ue, o
—N;,‘ = D(E:, — [e,)
Ny =Nye=D L—¢ Vs
2 (20)
M, =— K(x, = nux,)
—XI;.' = — K%, — ux,)
M, =— K(1—3) u,,
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4. Deduction of shell equations

4.1 Load function definitions

Dead load and snow load distribution diagrams plotted in planes x—=z
and v—sz are seen in Fig. 7, together with the resultant diagrams. In load
functions contained in the system of equilibrium equations (10). the load
component in direction y equals zero (Y = 0) in view of the load projections

— e ]

i) Ll

in the co-ordinate surface. while load components in directions x and z can be

'

expressec as:

- | g , \l oo, 1
A=1— +peosgl —sing |
[ COS Y 7
? 0 { (21)
— g VT [ '
Z =|—5— - peosg|—cosq.|
cosy o j

4.2 The first shell equation

From Eqgs (10) the terms containing ¥ vanish, at the same time (assuming
the appropriate load case) the equation system differs from the equilibrium
equations of shallow translation shells referred to an orthogonal co-ordinate
system bv its first equation containing also terms 2V, tgyr, and Qi/r,
and the fourth one including also the term M, tgy/r,. These deviating terms
can be interpreted as:

Term M, tgy/r, in the fourth equation can be omitted as compared

to the other terms, M, being not only small but also multiplied by a small
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curvature and the tangent of y, a small angle. Term 2N, tgy/r, in the first
equation will not be omitted, though its multipliers (tgy - 1/r)) are small and
g0 it cannot be of importance. Neither the term Q./r, will be omitted. The proce-
dure will be simplified by making it iterative, that is. by solving Eqgs (10}
in two steps. The first step will consist in solving the equation system — from
which the term (2N, tgy = Qx)/ry, has been omitted — for load functions

X and Z, then term (2!

w gy -+ @)fr, is established with values Ny, and Q.
obtained in the first step. The second step consists in solving the problem
again for the effect of this term as load acting in direction x. In spite of the
iterative character of the problem, after the fundamental step at most one
accessory step is needed. Taking the above into consideration, in the first

step Eqgs (10) assume the form:

(22%

(23)
No=— 5° F_
i Sx B

known from the literature into the first three equations of (22), the first two
equations are identically satisfied. while the third one assumes the form:

T Xdx = P, (x.y). (24)
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In view of (135), the last three equations of (20) are:

M= K ot w P G-wJ
CES 3v*
M, = K(C" S O'w} (25)
| 82 da?
M=M= K1 -0 2%,
Sx 0y

Substituting Eqs (25) into the last two equations of (22) yields for the shear

forces:
s \
Q\ = K D (-Jw) !
Bx i
(o
5 g \..6)
Q, = K —(.hw)
B a
3y ]
where
52 a2
_' = . - ——‘)‘ (24)
3x* v
Substituting (26) inte {24) delivers the first shell equation:
= P {x. ) {28}
This is a relationship between displacement funection 1

Py

and the loads.

4.3 The second shell equation

By means of Egs (11), a compatibility equation devoid of displacement
components u and v can be written:

~ —~ 3 —~

£ 3 1 3%u 1 8w

Ql* —_— = — ——— (29)
By= 3x*° dx 8y r, ox* r. Sy-

omitting small terms of second order.
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First three equations of (20) vield relationships:

1 .
&, = Ny uN
=y (V= Ny
I~ \
&y 5 (N, — uN,) (30)

(31)
(29) and (31} deliver the other shell equation:
JaF o Es[ L B L E py (32)
r, Ba? r. 9y?
where
ot Al o4
Ad=-"_r3 > _+ = (33)
gat Bx?5y? Ayt

This is another relationship between displacement function i, stress function

F and loads.

4.4 Determination of the right-hand sides of shell equations

Load functions in form (21) are inconvenient to integration and so they
are from the aspect of boundary conditions, hence they will be approximated
by an appropriate function. The variation along the y axis of both functions
is described by the cosine of the angle y and by the factor rjr,. Practically,
this variation is easy to follow by an integrable hvperbolic cosine function
of a single wave. Thus, exact load functions (21) will be replaced by:
X=chy v(gsinz x4+ p sino x cos % x) }

(34)

Z = chy y(g cosx x 4 p cos®a «x)

9 Fericdiva Polytechnica Civil 1472,
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with v = constant, obtained from:
chwb =22 (35)
Qo
where
& | ™ 1
W= t—pi g —E— | and 2= )
cos w, J A T,

Accordingly, right-hand sides of shell equations (28) and (32) can be deter-
mined as:

s
. p = -
Pr.v)=Z- 2 Ndx = ch"'\'i} g - ;)~— 2gcosxx — 1.5 pcos?xx]
o 2
(37)
[~ . ~9 - 3] 0
AN 3* X o2 32
Flxy)y=p— - | ——dy = chyyi— ‘g~ luzt —-—|p 4
3x o Al % 2z
/ / o g )
B cx o 2ue ——} peostuxi (38)
{ \ 2z

Functions (37) and {38} are of similar character, both including 2 constant
of two terms and a term multiplied by cos z v and cos? 2 v each. Funeciion

(37) and (38) are indicated by full thick lines in the s

18
i ctien v = & in ¥igs &
and 9. respectively.

(".)

The two diagrams show a rather sim ”‘»r shape for both fu
and (38) as right-hand sides of (28) and (32), resp., the shell ¢

cannot be solved with the appropriate boundary conditions, hut the variation
along the x axis of both expressions can be followed by a second-order parabola
expressed by the equation, in case of e.g. function (37):
e
el - (39)
\ a”

Constant ¢; and term g,(1—=a%a” can, however, be separately expanded in
simple trigonometrie series. This expansion is done according to the principle
of load distribution proposed and applied by HruBaN for the solution of hyper-
bolic paraboloids [5]. That is, the load (shaded area in Fig. 8) that cannot
be expanded into a Fourier series and affects a narrow band of the edge x = +a
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will be assumed to be absorbed directly by the shell edge (entity of edge beam
and thickened shell edge) as boundary disturbances easy to determine in view

of the constant curvature along the x axis.

0ig

f= - -
Fig. 8
g

since. with respect to the above,

e
tederd
)

4 a . i ne
g o — £ (e D2 sin cos¥, x
7* e 5 n? a
4'.‘ 32 < (n-1)12 :i -
. ¥ i=1hd PR
o li L (—1) cosy
\ st n 1

for (37) and (38) are:

P (x.y)mschyy = 4, cost,x }
n
o | o
B(x.y)~~chyy 2 B,cos¥,x ]
i -
Q' :
/p‘; i X
2 ! g
, 9
-’ i3
e a
Fig. 9

[
3%
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with constants delivered by:

o

4, =2 ya-ve L [@e g me 8¢ } |

9 2
o n* e a ns
4 . 1 ia . nie 8q,
B,': = (_ 1)(11——1)'1—_)“ q sin + q."
:-l‘l n- e a nst
. o P D P = 1 1 3 2
91—_'c—".7_—a~c‘30=°‘a_ D pceostaa
. 4 pro—
9> = 4o —9q15 G = H2g, (41)
. 2 . V2
- g — |yx L2 + lux 4 —locosna -
g3 ol g Ty P i > 1
% K] Z
2
-+ |2y 4+ ——| pcostxa
2o
VT
ql:qo—ql. Q:O.Ib;ioo
ni . - .
? = e and n=1,3,5717,.

' ’e

In view of assumption 3.1/7, 1/r; inn (32) can be replaced by I/r,, 1fr, ~ z

)

i I
while surface equation (2) can be approximated by the first term of the power
series of the term under root sign. hence:

where
2 Ti— T
4= - .
ro b*
In the following, z'’ will be replaced bv | z'"/, the negative sign in {42)
= iy 4o ;2 o tw) 4
being already reckoned with in the deductions. Because of (42) and making
use of (40), shell equations (28) and (32) can be written as:
o2 Pt ]
- ‘ g o F
KAdw +p —a——=chyy ¥4 cosd, x
Ba® 5“ 2 n
(43)
) 3% w 82w
AAF — Eo | B — :vch;/yZBncos{} x
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5. Determination of the functions of stress and displacement

5.1 Boundary conditions. Solution principle

Edges formed along the shell boundaries are of low rigidity normally
to their plane, therefore it is expedient to set absence of lateral pressure
as boundary cendition, thus:

a Ny=0
= 0. (44)

at boundary x =

H-

Cyme

at boundary v =

Another boundary condition permitting to determine the nuknown con-
1

stants and approximating the effective forces acting in the shell structure is

at houndary x = ~«¢ w =0 MH.=0 (45)
at boundary v = - w = 0: M, =0: . =0.

Boundary conditions (44) and (45) assume the shell to be simply support-
ed along its edges so that part of the external load is transmitted in form of
tangential forces by the edge beams to the supporting structure, and the rest
as shear forces but only through edge arches x = —a.

In view of the nature of the right-hand side of shell equations (43),
there is a possibility te find a solution satisfying boundary conditions for edge
x = --a while there is not for y = —b. Nevertheless, there are altogether
eight unsatisfied boundary conditions to determine eight unknown con-
stants.

Solution for ¥ and 2 of equation s

£1]

stem (43) can be composed of twe
parts, namely a particular solution of the inhomogeneous equation system,
and a general solution of the homogeneous one. Both solutions can be made.
to satisfy the equation system, but the boundary conditions not. These unsatis-.
fied boundary conditions are satisfied by superposing the two solutions so.
that the arbitrary constants in the general solution are determined by colloca-.
tion at the boundary y = -Lb.

5.2 One particular solution of inhomogeneous shell equations

Particular solution of the inhomogeneous shell equation system (43) is
sought for in the form:
Fp = 2 E ch V¥ cos {):: x

n

< (46),
w, = S w,chyyeosd, x.
n
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F, and w, being constants of the Fourier series. Substituting ex
into (43), we obtain for F, and w,:

K, (5},
‘Fn(ﬁ;z — 2 ;1

vielding expressions

General solution of the homogeneous shell equations

Since left-hand side of Egs {Js) contains even deriv

since furthermore shell loads are symmetrical, functions
solutions for the homogeneous part of' the equation

in the form:

Here 4, is as defined in (41), while &, H, and

The former can be dctermmed irom the }wundo
1

be obtained as

the algebraic equation system containing alse unknow
’ 2 .02 05y IF B oy D
Kol — 203805 -+ 05) H, — (a0} — U5 G, = ©
(49)
3 At a9 iy L e L Dt >0
(i - 2007 Uq + Un) s 7 EOnei - 505) ‘T_i =

Replacing G, expressed from one equation into the other one; and dividing
by H, vields for @, an equation system of eighth order, ini

powers:

. o . ( FOI . Eb N
oy — 407 of, — |60} + —— 1’-" w412 afd; - %z?';l‘ wE =
FiS I\, i

(Eo N
e (50)
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In this expression E 4, K, o, p and ¢, being positive and its right-hand
side being in fact negative, », mav be a complex number. The eight complex
roots conjugated in pairs can be written in the form:

Oy ™= Tr — Tyl 0y, = Gy — Ty, 1
3y, = Oy = Ty t gy, = Ty — Typ 't
(51)
Wy = Tapy = Typ L Wy =5 = Gap = Tap
03,0 = oy, ~— Top 1 Top 1
it is expendient here to deal with the practical ¢ of these roots,

i& 1. (DO‘) L)t“l g
manual means. Therefore it is advisable to apply a com

n, wi
-

= rather tedious to calculate either exactly or approximately by

water methed. To this

i

Yy

TO'C

aim we developed the following algoritl upon programming

ot

and then to be rather helpful. Computation process will be written

can also be solved for anv n upon input “for state-
Eq. (30 can also be written as:
wd — a, 0% — g, 0! e =g, =)

Introduciz

w® = m, the equation can he reduced from eighth to

fourth order:

m' — a,m® — a,m* — am -+ a, = 0 (52)
o : - 1
or, in factorized form:
(53)
whore 5, ==
11, T=
(54)
a,
Py =
Py
Py = Oy — Py

From Eqs (54), constants of factors of the second order of (533) can be
obtained by iteration (e.g. starting from p, = 0). If equations of second order
are known. m, and m, can be obtained from

n

2 — pyn + p,= 0, and
m* -+ p,m -~ p, =0,
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respectively, then roots o, = |/m; and ;= |'m, yield all roots of (50).
If roots (51) are known, F) in (48) assumes the form:

Fi: = : [eo—:”}' (Glrz eirm}' - Gﬁr: e_frwy) - ea:,,,v (G3rz e:T; S

n
= Grln e_fT‘my) ~+ T (Gsn ety L GGn eayrmy) +
L e (G e - G em ) [ cos 8, x {(55)

first subscripts of constants G referring to subscripts of roots in (31).

In view of

Gine™Y -+ Gy e~ ™ = (G, — G,,) cos Ty, y

— UGy, — Gyy) sinTy, Y
following from the Euler relationship, applicable to the sense to all other

expressions with inside brackets. Eq. (53) is transformed into:

Fo= > [e%:}*’ (Cricosty, v+ Cypsint, v) +

— e, cos Ty, y + Cysin Ty, ¥) ] cos §, x (56)
where
Csn = Usn T {;'rjr' %
Ct;f: - i(G.sr: o Gb )% o
i . t (37)
C?rz = ey T G:‘: g
C,;: — Z(G;)r; o {;) {:‘\ = 7[\ 7v7fz o {’ E

Function (56) is certainly symmetrical with respect to the v axis because
of the nature of the cos # v function, and its symmetry with respect to the

x axis can be warranted by satisi‘ying the requirement

Fil+ ) = Ful— »).

By meeting this condition, i.e., substituting —y and — inte (56) and equaliz-
ing the obtained expressions, the number of eight constants according to (57)

is halved, thereby:
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In view of (58), of the relationships

«=2sho,y

and of the analogy hetween functions Fj and wy. vielding for w; an expression
differing from (56) only by its constants, general solution of the homogeneous
part of equation svstem (43) consists of the funetion sums:

Fo==2 2|Cchoy, veosty, v+~ C, sho, vsint, y —

\‘\'h e
KI,’; = I‘;?r = Hg'z e H.gr: (60\
)~
K, = Ko — i(H,, — H,).

In view of the characteristic equation svstem (49). if s, 15 known, H, and G,
can be related as:

H,=R.G, (61)

where
sk - B0

3 0245

= 2 (62)
K(e — 82 ’

Then (61), (60) and (57) help to express the K, by means of the C, values,
as follows:

(63)

I\:'” — Rﬂrz B R;’z C.m . R:}»: : R.m C.’;'z'

1]
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The C, are in turn expressed by means of the K,

Ry, -+ Rsp - . R, —~ Ry .-
= ‘])h ;” I\;lrt -1 .1,“ K ;f? j&_’r:
in T Rin Rin - RE:;

R\:s T R;le

C._.,: =y “—T’ K'lrz Tl T I(m
:‘:Ii “ REII Rl—fi — :.-;71

(64)
Ry — Ry

I 7

2 9

3 T Ay

(-.1:: = ,' "_,A Sy L I\gn .

An

3n 2R

No computation reasons require the numerical determination of the & and
the H in the right-hand sides of (37) and (60), respectively, nevertheless it is
important to know that thev are complex numbers conjugated in pairs (e.g.
Gy, and G.,;). Thus, both their sum and their difference multiplied by the imagi-
nary number { are real numbers. Hence, constants €, and K, sought for ar=
real numbers.

Finally, the displacement function and the stress function, general solu-
tions of the inhomogeneous differential equation svstem (43). can be written
as sam of (46) and (39).

P

6.1 Siress funcitons

In view of relationships (22}, (25). (20) and (37), as well as of functions
{40) and (39). shell stress formulae can be written as:

=

-

PN N
Ny oyt ehyy

(65}

(66)
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w
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Losind, x -+

PN < AP .o e
-2 i, [Cln (01.sho, veost, v ~ 7, cho,vsint, v} +

ch O ¥ SINT, v Ty, SN Gy, ¥ COS Ty, V) —

-+ Cyn(Gysh oy, y cos Ty v

}‘ [*Kllz (#an ch o, v cos

— (88

26}:: Tln Ch 61:: " cosg Tln _\‘) -

Uign ch Gon ¥ COSTap ¥ 264, Ty, sh Gon Y sin 7, V)
26, Tynch 04, ¥ cos Ty, v) | cos ¥,

+ Ko (o cht,vsint,, v+ 7,,sho, veos 7., v) +
T,,cho,, vsint,, v) —

< K, (G‘_‘rz sh Gon YCOS Ty, v
j (70

+ K, (g, cho,, yvsint,, v - 7,,sho,, vcos T_,,:_v)] sind,, x|

Q.= K [chyy S, 9, (92 - ) sind, x
n
+ 2 2 f’:? [I&’ln <77112 Ch Gl«'? _1’ cos Tlr: y -+ 2517: T}n Sh Gll: Y Sill Tlr”z }) -
n
+ K, (o, sho, vsint,, v - 20, 7, cho,,veos T, v) —
— K, (5. ch oy, v cos1,, v + 20,, 15, sh 0y, v sin 7,,, 7)) —
""’ K.zn (]]811 Sh GZIE ,,V Sill T;’.n ,\,' ) 202'2 T'l': Ch GZN }" cos T"ZH .Y)] Sin l?’ x;
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Q;.r = K }‘: sh 7}2 Wy (72 - ﬁé) cos ﬁn X+
n

RIS
T~ s
n

[Kln (779'? sh O1r Y COST 1Y = Yo ch TinY sin Tln}') -

-+ Ky, (gnch oy ysin 1), v 4+ 49p8h o), veos 7y, y) +

— Ky (Munsh oy yeos 1y0y — 1y, ch 6y, ysin 7, ) +

+ K.m (771112 ch Gony sin Ton ¥ -t M1an sh Oap V COS Ty, .})J cos 1971 x[' (72)
where

. 2 22 7 e 4 p ,19'2

Hin = 01p — Tin Han == Ui — Uy

I 2 2 e - 19'.7.

Hap = Oap — Tiy, Nan == Wlyy — Uy

2 » 2 .

My = M1 -~ wdy, Noe = T3 — i1,

, e G2 - 2

Hgn = Tlon — ut Han = ﬁri T Tan

N = Oy (’hn B 2‘(%, 1951)
Non = Tyn (N1 = 205 - 07)
1 = Gan (77zn o ZT:: ]9;)1)
Mo = Tap (on 263 I();zz)

Some of these stress functions have to satisfy boundary conditions (44)
and (43). a requirement already met or to be met after duly choosing the un-
known constants, excepti the last term of the normal force expression (67).
Namely. this term fails to meet boundary condition Ny in (44). This deviation
can, however, be disregarded, since the practically favourable shell slope of

¢ = 30% is accompanied by a lateral pressure not higher than to be absorbed
by an edge arch of the anvhow required size. The more shallow the shell,

the lesser is the deviation.

6.2 Determination of the unknown constants

Because of the mentioned symmetry with respect to the x axis, the num-
ber of unknown constants diminishes to four. in conformity with (58). and
so does the number of unsatisfied boundary conditions (44) and (45) hence
this is a statically determined problem.

As it has been mentioned earlier, the unknown constants will be deter-
mined by boundary collocation. There being 4 xn unknows where n is arbi-
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trary, the required number of collocation points is also 4 % n. Converting con-
stants C, in (66) to constants K,, according to (63), and making use of relation-
ships (46). (59), (69) and (72), a system of 4 X n inhomogeneous linear equa-
tions containing 4 < n unknowns, of the following type, can be written:

= [I‘:m Ch Uln b cos Tlrz b -+ f\.zn Sh Gln b Sin TU: b -+
n

~ K, cho,, beosty, b+ K, sho,, bsint,, b]co

(l)

chyb
=— . W, cos,x

cho,beast,. b

sho,,bsinT,, b ? -+

¢, x

(74)

-l - .
2 [-Kln (’;3 ch Tin b cos Tyn b~ 261:2 Tyr
n

sho, bsint,,b) —

-+ K, (jgnshoy, bsinty, b= 20y, 74, ch oy, beos 1y, b) -

-+ K, (gn ch 0y, b cos 1,5, b — 20,, 75, sh 6y, bsin 7, b) -

4 K, (gnsh oo, bsin1,, 0 + 20,, 75, ch oy, b cos 1,, b)] cos ¥, x =

chvd 5
— ,“;— Vw (“— . Ul9 )CO“ ?9/1:C
= n

Z [ in (g sh oy, beos 13, b — 7y, ¢h oy, bsin Ty, b) +
n

+ Ky, (jgrch oy, bsinty, b+ #y4,5h oy, beos 1y, b) +

N K3n (77]1r‘: sh Oan b Cos Ty, b — M12n ch Gan b sin Tan b) -

i

+ Kyn (11, ch 0y, bsin 7, b + 75, sh 64, b cos 74, b [ (cos v =

= N, (? — 9f) cos P x
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Besides of Eq. (50), equation system (74) is also one inaccessible to con-
ventional calculation methods, these being rather tedious even for the insuffi-
cient n = 1 case. A digital computer has to and can be used without difficulty,
since equation system (74) is an ordinary linear one. for which there are subrou-
tines available.

6.3 Next step of iteration
in conformity with item 4. using N, and Qy obtained in the first step

involving (67) and (71). an expression of the character of a load acting in
direction x can be established:

(75)

Since {73) cannot be used in this form, it will be replaced by a close approxi-
mate function, convenient both from integration and computation aspects.
The common function sin #,x expressing the variation aleng the x axis of
hoth stresses in (75) is convenient also for the next steps. Nevertheless, ex-
pressions of the variation of stresses along the y axis are rather complex and
differ from each other. Expression of Q. according to {71) as a function of ¥
consists purely of terms with even functions, while that of N, according to
{67) has terms of odd functions. This latter becomes even upon multiplication

In view of the above, the best approximate function

irm of (75) 1s

ook
o)

at where the right-hand side of the shell functions is not or little transformed
in the second step, or that differing only by constants 4, B, and y in (40).
the imaginary load function (73) depeuding on y will be replaced by

a funection of form chy,v, where constant y, can be determined &

’

g A -
chy b= j:f . 76)

'
Here g and g are the values of funciion X in (73) at y = 0 and & = x, const.,

and at ¥y = b and x = x,, respectively. If values of N, and (), obtained in
first step are known, both ¢j and ¢; can be determined.
v, being known, expedient form of approximate function X is:

the

En sin 19” X (77)

the E_ being constant, with values delivered by a linear equation system hav-
ing coefficients obtained from values at the matching points of the approxi-
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mate expression (77), right-hand sides being delivered by the exact (75).
If several terms are reckoned with, this problem is also to be computerized.
Unknown constants determined according to the above, as well as according
to (77), the right-hand side of (28) in the second step can be expressed as:

1 rx

Pz y) == — J XNydurechy,y 34 cosd, x (78
'I'D i} n
where
' E 3 'i‘ { 39 1 ~Q 3
B = | R R (79)
{j:: T n
And t (32):
SR A
32X .
— L dx=chy,yv ¥ (80}
By* i
where
. B 1 . 1
B,=uE 4§, — 2001 D Rl (81)
T i H L 0 — :
Uy T n

Functions (78) and (80) are seen to be formally identical with the right-
hand side of the equation svstem (43), hence the equation system can be

solved the same way in the second step as in the first one.

Since practically, the first, not more than two steps may be of impoertance,
the final stresses are obtained as the true to sign sum of corresponding stresses .
sbtained in the first two steps.

7. Mumeriecal example
Notations are the same as in Fig. 1.

7.1 Geometry

b= 50 m 6= 0.05m
¢ = 10.0 m ¢, = 30°
sing, = 0.5 : ry = o = 20.0m
sin @,
cos TL = 09659 : 5= —0— = 20706 m
- cos TL
2
@y, = 0.5236: a = ¢r, = 10.472 m
1 R
o= — = 0.05'm : b= L——L = 0.0566/m
To ry b*
E=2: fa=20.0 —20 - 0.866 = 2.68 m
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7.2 Maierial constants and rigidity data

E = 275000 kp/em*: ;= 16

Eg°

Ed = 137500000 kp m ; K= mTr—) =

29 464.285 kpm.

7.3 Load values

g = 1.1 (0.05 - 2400 — 23) = 160 kp/m’
p=14-80 = 112 kp/m*

impermeable layers weighing 25 kp/m-.

7.4 Computation technigque

The description of the computation method involved two partial problems
{5.3 and 6.2} suggesting the use of a computer. In addition, however, auxiliary
computations for establishing the equation system in item 6.2, as well as evalua-
tion of stress functions in 1tem 6.1 in knowledge of integration constants
— even for a low number of terms and nodal points — requires a lot of compu-
tation work, utmost tedious and time consuming for manual calculation.

The possibility to use the computer “Ural * of the University Comput-
ing Center allowed us to computerize nearly the whole process.

Steps of the computation involved three stages each.

The first stage involved auxiliary computations for writing the lnear
equation system (74) including solutien of Eq. (50) of eighth order. The
zecond stage was that of the solution of Eqs (74). and the third one the evalu-
ation of stress fumetions described in item 6.1.

In knowledge of stress functions Ny,

[

the value set of the imaginary load Tuzﬁction (75) was estehﬁshed manually.
and so were the constant ;| and the linear equation svstem needed for the
determination of constants E_, both in imaginary approximate load function
{77). This linear equation sysiem was solved by a computer, then the second
step consisted in calculating the stresses by repeating the above procedure in
three stages.

7.5 Stress values obiained in the first step

Shell stress values obtained in the first step for n = 11 are compiled
in Table 1. Tables 2 to 5 contain some stresses of importance. again from the
first step. reflecting convergence conditions of the problem. All tabulated
~values refer to kilopond and meter units.
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Table 1
Shell stress values in the first step for n = 11
N xa E A B i
[} 0.20 0.40 0,50 .75 .90 1.00
AN ! i !
N, o 10621 —10208 {_ 7701 — 5643  — 1588 — 851 — 709
Normal 25 ‘— 9700 — 8802 !~ 6835 — 5738 !— 2876 — 146 — 719
force 50 ¢ — 9342 — 5386 — 3362 — 4956 -— 4247 — 602 | — 751
N, 0 — 4662 — 4370 — 2176 — 268 '— 3370 3450 0
Normal force 2.5 . — 4139 - 2838 948 — 304 1868 1897 0
R 0 0 0 0 f { 0
Ny 0 0 0 0 s 0
Tangential 2.5 0 — 1637 — 4015  — 44 — 1096
force 5.0 0 - 5238 — 4370 . — 440 — 3435
M. 0 1.81 —0.28 9,12 O
Flexural 2.5 5.66 443 —5.77 4
moment 3.0 0 0 O 0
M, 0 7.1 —554 —1422 0 —0.25 0
Flexural 2.5 —7.65 0.70 1.26 0 —6.00 0
moment 3.0 0 ] 0 ] 0
M., 0 0 0 I L 0
Torque 2.5 0 —7.03 . 136 2.53 3.32
3.0 Y 1,49 8.29 10.21 8.77
0. L0 0 14.58 358 0 —0.86 0.97
Shear 25 Y —08.11 —1143 —7.09 —1.20
force 5.0 0 0 & ! & 0
. ] 0 ] : it 1]
Shear’ 2.5 13.87 —1.54 7.58 0.19 0
force 3.0 0 4 & @ 0
Table 2
Normal force V.
xial |
¥ | 0 0.5 ! 5.9 1.0
n z i
3 —10 786.47 —5758.55 -~ 682.07 —708.72
7 —10611.10 —3 634.55 —838.55 —708.73
0 9 —10622.74 —5642.78 — 849.82 —708.73
11 10 621.91 —5643.37 —850.65 —708.73
13 —10621.93 -—5643.36 —850.66 —T708.73
5 —9626.01 ‘ -5 683.83 —1540.35 —1719.15
7 -9 706.88 —5741.02  ~  —1468.29 —719.15
2.5 9 —9701.36 —5737.11 | —1462.8¢4 —719.15
11 —95700.13 —5737.98 = —1464.06 —719.15
13 ~—9700.51 | 573771 —1464.40¢ —719.15
5 —17806.77 110047 | - 283095 —750.72
T —9628.74 —5388.79 . —1207.55 —1750.68
5.0 9 —9179.06 —5070.82 —763.39 —750.68
11 —9342.05 —4955.55 —602.40 ~—750.67
13 —9310.03 —4978.17 | —573.89 —750.67
i

3 Periodica Polytechnica Civil 1472
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Table 3

Normal force N,

e x;a
¥ - 0 0.50 0.90 1.0
n .
' 5 —4588.92 ~299.60 2095.33 0.01
| 7 —4754.33 ~416.57 2242.72 0.02
0 } 9 —1603.29 —309.77 2391.89 0.02
‘ 11 —1662.39 —267.98 2450.36 0.02
13 —4652.41 —275.04 2459.16 0.02
5 —3639.86 —52.21 1042.59 0.01
7 —4281.98 —506.25 1614.73 0.02
2.5 9 -—-4067.48 —304.58 1826.59 0.02
11 —4138.51 —304.35 1896.75 0.02
13 —4127.38 —312.22 1906.66 0.03
5.0 5—13 0 0 0 0
Table 4
Tangential force .V,
X'a
¥y . 0 ‘ 0.50 0.90 1o
n S~
0 5—13 0 0 0 it
5 —1184.49 —804.66
7 —1300.04 —1059.18
2.5 9 —1304.77 —1089.44
11 —1303.71 —1096.22
13 U —1303.34 —1097.03
5 —-5189.93 —5232.61 —5 351,
7 —4.183.16 —4586.26 -3 927
5.0 g —3935.26 —4531.42 —357
11 —4021.59 —4550.52 —3 45
13 0 —1037.83 —4560.95 — 3438

7.6 Siresses from the second step

compiled in Table 6.

If matching is done in sections x = 0.

according to (70):

chy, b=

i

~185.30
0.18

Values of exact, imaginary load function

75. Vo= 50

b

— 1029.44 ~
9

*Xl = 1(263‘;\'}}' - Q:\‘) are
and ¥ = 0.75, v = 0 then,
v, = 1.526
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Table 5

Flexural moment A,

v R 0 050 0.90 1.0
i n . .
5 429 | —1135 | 3.40 0
7 722 928 079 0
0 9 718 —930 0.75 0
11 710 —9.35 0.83 0
13 712 | —9.36 0.84 0
5 —1.63 —109  —8.33 0
7 —8.01 —6.40 31 0
25 0 —748 | —612 0
11 -7.65 | —6.00 0
13 —7.62 —6.02 160 0
5.0 5—13 1] 0 0 0
Table &
N a;/‘va ; ¢
“IT 0.2 0.4 0.3 0.75 0.9 1.9
¥ .
0 0 013 —0.18 —0.04 | —0.05
2.5 0 —23.62 | 3543 —18.80 | —1557
5.0 o 14823 | 12368  —113.81 18530 12878 & —97.78

According to (77), making use of values in Table 6 for section y = 5.0, and
for n =1,3.5,7,9,11, the following equation system can be written for
constants E:

—0.4653 = E, = 2.6191 E, — 3.2362 E, — 2.6181 E. E, — E,
—0.2039 = E, + 1.6180 E, — 0 — 1.6180 E. — E, - E,
—0.1561 = E, + E,— E, — E, + E, - E,
_0.1945 — E, — 0.4142 E, — 0.4142 E. — E,— E, + 0.4142 E,,
—0.1249 = 0.9877 E, — 0.8910 E; + 0 7071 E, — 0.4540 E. — 0.1564 E_— 0.1364 E,,
—0.0048 = E, — E, + E, — E, — Y — E,

having as roots:

E, = —01741; E,= —0.0495;: E, = —0.0223:

o

E,= —0.0391; = E, = +0.009: E,= —0.0034
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to yield an approximate, imaginary load function:

X, = ch 1526y | — 0.1741 sin —— x — 0.0495 sin 3

2a

g
i~ ‘x o
Za

9

— 0.0223 sin 2= % — 0.039Lsin —— x + 0.0096 — x -

2a 2a 2a
. 11z
— 0.0034 sin x|,
za
Its value set is compiled in Table 7.
Table 7
= — L
~. xja ! - -
S 0.2 | 04 0.5 0.75 9.9 1.0
5 S - - B o B
0 0 —0.14 —0.12 | —9.11 —0.18 —0.12 —0.09
2.5 Y —3.26 —32.72 —2.50 —4.08 —2.84 —2.13
5.0 0 —147.93 —123.22 —113.55 —184.9% —128.58 —-97.59
Constants E, lead to ], and B values according to (19) and (81}, respectively:
Ar= 0.0159; A =—0.0078: Ay = 0.001%;
AL = 0.0022: Ag= 0.0003: Apy =~ 0.0001.
g

B = 0.7344:
Bl =-0.1092;

‘

in their knowledge, o

[
(]

Pi(x.y) = ch 1.520y |0.7344 cos

ght-hand sides of 2

L §.0003 cos

— 90.3686;

x —0.0001 cos

= 0.0544;

0.0061 .

hell eguations {43) are:

[ Av = T PN 37
00158 cos x -~ 0.0078cos — x —
2a 2a
- . 5.’? 73
— 00011 cos= 1 --0.0022c08 —-x
9,
2a 24

ilm

e

2a 2a

~ -z — 0.3686 cos 31— x -
2a 2a

— 0.0544 cos i x— 0.10%92 cos e X —
2a 2a
b1 11s

—0.0120 cos = x — 0.0061 cos - x|
2a 2a
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Shell stresses from the second step (complementary stresses) are compiled
in Table 8, in the same order as in Table 1:

Table 8

\ x/a| | | !

) _\‘ 1 G 0.20 0.40 | 0.50 0.75 0.90 1.00

7 ~ . e .
& — 28 —19 4 i3 14 5 4]
2.5 — 21 —15 -7 4 3 3 0
5.0 —114 —213 — 333 — 374 — 260 — 110 0
0 - 30 —18 6 i6 16 6 0
2.5 L — 13 —8 i 2 10 9 0
5.0 : 0 i i} 0 0 0 0
il 4 0 G s 0 e o
2.5 O —18 — 22 —15 G 11 io
5.0 { : 23 13 —8 —56 —50 — 46
Y 0.2¢ —0.07 —0.06 — (.08 —1.6 —10.12 {1
2.5 0.11; (.09 —0.40 ¢ —0.14 —0.06 0.04 0
3.0 Q i} 4 ¢ 4} 4 0
0 0.16 —0.03 (.02 - 0.02 —0.12: —0.10 0
2.5 0.10 0.06 — (3,04 —0.10 —0.04 0.01 0
5.0 [ 0 0 0 0 0 0
0 0 il 0 0 0 0
2.5 Q —0.07 —0.02 -—0.02 0.08 0.12
5.0 i —0.04 —0.10 .11 0.02 —0.02
¢ 0 0.12 —0.02 —0.035 ~,14 -~ 0,20
2.5 G 0.05 0.10 —0.14 0 0.06
5.0 i 0 Y 0 0 0
0 ‘ 0 o 0 0 0 0 0
2.5 0.11 —0.03 —0.03 0.05 —0.11 —0.16 ¢
5.0 (0 0 [0 0 0 0 0

8. Conclusions and evaluation

slope over no special floor plan,

The presented method lends itself for shallow shell structures of any

This kind of treatment, leading to a practical method, relied upon a
mobile co-ordinate system matching the least circle of the hyperboloid of

revolution where the sector shell to be used as a shell roof was described.
Even so, the problem is a rather complex one, therefore, when developing

this relatively exact method, already in the formulation stage -— in writing

the subsequent equation systems — neglects resulting from the usual simpli-

fications have been taken into comsideration.
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This method offers the most of advantages if a computer is used. The
solution may be a mixed one if only stresses of the characteristic points are
computed, namely by computerizing the characteristic equation of eighth
order and the equation svstem of boundarv collocation, and doing other
calculations manually. This is of course more difficult and lengthy than a fully
computerized solution.

The second step of the procedure is seen to little depend on shear Q.
in the imaginary load function, it having the only aim to lead to an approxi-
mate function, similar in form to that in the first step.

Comparison between value sets of the imaginary load function and of
the approximate function in Tables 6 and 7. respectively, shows the approxi-
mation to gradually roughen from the boundary with rather high values to-
wards the centre of the demain with much lower values. This deviation due
to approximation is, however, of little importance, as demonstrated by numeri-
cal values in Table 8. Namely, tabulated values are quite unimportant. e*{cept
the N.. N, and N
unimportant in itself. The iteration mayv be continued at will, so that the

v values in Table 8 allowing some correction, but this is

load fraction omitted in the step before is taken into consideration.

In conformity with the above statements as well as with the numerical
solution of a shell structure steeper sloping than that in the numerical example,
it can be stated that provided the floor plan data and load values of the shell
structure differ by not tco much from the data of the numerical example,
up to the limit of concreting without top shuttering (< 35°) the second step
s unnecessary.

Significance of this statement is pointed out by the fact that the compu-
tation volume for the second step is equal to that for the first one.
Summary

A method based on the flexural theory has been developed to determine stresses acting
on a shallow sector shell surface cut out of a single-shell hyperboloid of revolution over rectan-
gular floor plan, of arbitrary proportions. taking into consideration both the dead load and
the snow load.

This analysis leading to a practical procedure was allowed by the description of the
sector shell problem in a mobile co-ordinate svstem matched to the least circle of the hyper-
boloid of revolution.

This problem being a complex ome, it is most advantageously solved by a computer
soon delivering final results, as it appears from the numerical example.

This relatively exact method lends itself to check approximate methods published in
the literature.
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