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1. Imtroduction

exist several methods 1o analvze plates loaded in th

T

here eir plane
(dises). Numerical approximate methods markedly dev eluped since the event
of digital computers. The two methods most in use are: 1. Production of the
value set of the Airy stress function by finite difference approximation of
the homogeneous biharmonic ditferential equation: 2. establishment of dis-
placement functions by the method of finite elements

In spite of the rapid development of numerical methods, the interest
in modelling the problems subsisted, both to facilitate simulation of special
conditions and to make use of illustrative, “engineering” approximation, of
variation possibilities. Modelling is done primarily by laboratory small-scale
specimens or by photoclasticity means. Electric modelling is. however. much
more convenient.

Any modelling is based on the similitude between physical processes.
Analogy between two processes can be described by a common mathematical
model. Theoretically, for each approximate mathematical model of the out-
lined problem. an electrical circuit can be developed, likely to simulate it. Sev-
eral such solutions have been suggested or applied in the last 20 to 25 vears,
such as the analogue network proposed by GureENyMABER in 1943, likely 1o pro-
duce the Airy stress function by modelling the biharmonic differential equation

;']_/,}F = 0.

Several varieties of this model have heen described e.g. by PREDTECHENSKY
(USSR), Liesvan~ (U. K.) and Boscrer (France).

Another well-known model tyvpe is based on the displacement method
to produce displacement function values, a special application of the method
of finite elements. This idea had been published in the USA by KRrox in
1944 [1}, while his co-worker, CARTER demonsirated its application [2]. In
1959, Govrovko directed the comstruction of such a model to analvze wall
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glabs in the USSR [3]. This was easier to use, more convenient to simulate

boundary conditions and more illustrative than the former. At the same time,

however, the required equipment was rather complicated and costly.

To case application, an equipment of the latter type has been constructed
at the Department of Civil Engineering Mechanics of the Budapest Technical
University permitting to analyze discs with multiply connected domains. con-
fined by rectangular edges acted upon by arbitrary forces or displacements,

for arbitrary
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2.2 Elasticity

Let us
plane forces

boundary conditions.

2. Fundamentals of the analogue network

— rectangular co-ordinates
— network divisions along
— plate thickness

— number of elements in directions x and ¥,

of place
co-ordinate axes

resp.

— consecutive subscripts of elements and nodal points in directions x and y
~— displacement in direction x or y

— strains
—- distortion

— inflection of skew straight lines

— cross-sectional area

— cross-sectional area in the plane including normal x or v

— concentrated force

— concentrated forces parallel to the respective axes
— intensity of distributed foree systems parallel to axes

— density

— dead load of an element
— normal stresses

—— shear stresses

— modulus of elasticity
— modulus of elasticity in
— Poisson’s ratio

— Lamé constants

— current intensity

— electric potentials

— ohmic resistances,

relationships

shear

determine the displacement functions of a plate subject to in-

(eventually displacements). Displacement functions u and v in

the orthogonal x—y co-ordinate directions will be obtained from the static

equilibrium equations.

o

oX
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Substituting the displacement functions leads to the Lamé partial differen-

tial equation system:

n? n9 .~
. &%u g ., . 3%
(7 +26)—- — G -+ =6y ——=10
Bx* 8y Bxdy
vy 2 (2)
—~0 o~ fale
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Le. value of the Lamé coefficient for plane siress state.
Besides. functions have to satisfy two boundary conditions of either
a) displacement type (given u and v values along the boundaries): or
b) force ivpe (edge loads);
in this case functions u and v along the boundaries have to satisfy

the following two conditions:

., cu . or . | Du ov

(' = 2G)cos—~—— 4+ 7/ cosx - Gsin 2 {--A -+ ~—-—} = p.
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% — direction angle of the normal to the limiting curve:

Px» Py — components in directions x and v of the specific value of the edge load:
¢) some combination of the former two kinds.

2.3 Definition of the problem

Restrictions are:

a) The examined demain is outlined by straight runs parallel to the
perpendicular co-ordinate axes x and y.

b) Curved or rectilinear outlines including skew angles with the axes
can only be approximated by staggered lines parallel to co-ordinate axes.

¢) The domain can be multiply connected. Inner edges conform to items.
a) and b).

d) The disc will be modelled by decomposition into rectangular elements.
of finite dimensions. Accordinglv, displacement funection values are to he
produced in a finite number of points.

e} The disc is of isotropic material.

f) The plate may be braced in co-ordinate axis directions.
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2.4 Conversion to elemenis of finite dimensions

The designated domain is divided into rectangular elements of sx, Jy,
k dimensions. Let the division be of constant value in one direction (Fig. 1).
Let the network lines numbered from 0 to m or n. Indicate nodal points
by double subsecripts and the elements by their corner of the least subseript.
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L*t us deier‘-ninv normal stresses of co-ordinate axis direction acting
- and (o, i

rthe deuegt 1,7. Stress

I
hs'mbn ion in an inte

s

tion. By other words, elemer ated as elementary elastic

3

s
bodies acwd upon by central forces of co-grdinatc axis direction. With this
and (e;);; can be expressed

ts of the element:

i

Subscript of the displacement function values will be the same as that of the ele-
ment edges converging at the nodal point of the given notation, as seenin Fig. 1.
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At point i, j of the network (i.e. at corner points of elements meeting
there) also the value of the shear stress (7..);, ;= (1), ;jand the distortion can
be expressed from the displacement values at edge mid-points:

2 AP e SR LS B e B (
lid Ay Az

W
~—

it is obvious from ¥qs (4) and (5
in

4

5) as well as Fig. 1 that function values v and »
directions x and v, at (n+1) *mandn - (mL+1)
points, respeciively. Equilibrium equations {2) are to be written in finite form
with respect to these places. One unknown value at one point being sought,

are to beproduced along edges i

single equation suffices. ﬁquzhbrmm equations in direetions x and y may

i g

©

o]

be written for u and v, respectivei 4 onformity with the applied approxima-

on, equilibrium cenditions are hu< met only in the mid-poinis of the element
es, different condlnons for edges in dlrechona x or ¥, but both conditions
poinis though different but spaced apart by dx and Ay, respectively,
Differential quantities in HEgs (1) will be replaceé by finite quantities
corresponding to the model, Stress increments between points spaced apart

by dx ave:

M

(JQ

d

s ’Bax)

ox

and

o1,
Ay |25 1,
3( dy ]

Taking into consideration a uniform stress distribution, the finite form of
Eqgs (1) at point i, j for a disc of constant i thickness:

Axdy b [ 2% } < dxdy h (—%“] =0
8x )i 3y . (
6)
AxAy b {EE_Y) + Axdy b °“y) + dxdy hgy =0
Ox /;; 8y i

4 Periodica Polytechnica Civil 14/2.
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where dxAdy h g, = @, is the total dead weight of an element.
Let Eqs (2) be transformed according to the same principles:

3%u
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O Ju, L8y )y
6 ey k|2 — 0
W 7 (8.1:83;‘ i
26 dx v b [22] gty b [ 22| -
" Sv2 '} ooy
LOYT Ty ox2 | ;;
4 (2 = G) dxAdyh ( Xl L0,=0
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Fig. 2
With notations ential quantities can be

differences as:
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2
S'L“} Uiy, 205 Vs
8x?); Ax?
mo
6%u Uijg — gy joq — Ui Wiy
Bx8y | ; AxAdy
SORN )

Finite form of the Lamé equations is, by substitution:

_j\f . - ”/:-:‘ 151‘.,1”;) ——~G j}:

Jx Ay

fz(u!—’j_l - 21!1-‘: -—— Zl«_;”;‘;li) —‘

(7)

5

2.5 Fundamenials of the eleciric network analogue

The presented problem will be analyzed by an electric network. The
method is based on the analogy between the solid behaving elastically and the
electric stationary flow field. In mathematical form. this analogy is given by
the confrontation of the Hooke law and the Ohm law. The linear flow in a single
conductor of an electric network is analogous to the hehaviour of an elastic
straight bar subject to an axial load. Mutually corresponding quantities in

elastic solid: elecirical conductor:

displacement (u) potential (U)

force (P) current (I)

o EA . 1

rigidity |— conductivity |—| -
l . R

The two analogous laws are:

‘EA Au I :'E“JU

pP—-."
Ax R

where: Jdu — total strain of the bar of length Adx

AU — potential difference between conductor ends.

Of course, values of analogous quantities are only proportional. but not
identical. This proportion can be expressed by proportionality factors, deter-

4%
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mined from the condition of analogy. Quantities in the above relationships are
made dimensionless as:

P= 2w

EA | Juo] 7 :l_ﬁ 1 _'luo}
T ), B R "UlR, T, |

Ax

indicating by top line the dimensionless quantities and by subscript 0 the
dimension multipliers. The analogy has as condition:

E4J du, 1 AU,
0

| x P R, I,

Relationship between proportionality factors can be expressed from condi-
tion (8):

1
I, R AU,
el ok 1 :
A EA duy,
x |
®
1
my = My
mpg
where:
0 c i o .
my = [A/kp] — proportionality facior of currents
0
AUy oo N
J— st . £ . L
my = ——[¥fem] — proportionality factor of the potential
dug ;
RO ,{) /',_ '% o « o .
mp = Tl 1£/(em/kp)] — proportionality factor of conductor resistances
E-l}o

The farther relationships of the analogy betw

(53

en both physical processes
are those heiween the elastic solid modelled by the set of finite clements ana
the network compeosed of elementary conductors.
A network of several conductors permiis to elecirically simulate the
physical equations of the theory of elasticity (generalized Hooke law).
Concentrated forces at defined points of the body replacing distributed
inner load systems satisfv the finite form of Kgs (1), in short:

%ka = and 2 B, =0.

Tt is evident from item 2.4 that these two conditions are to be satisfied in
different points. On the electric model two interdependent networks will be
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developed, simulating strength quantities in directions x and y, respectively.
Currents flowing in and out of nodal points of the two networks satisfy the
Kirchhoff nodal law:

I, =0

d T
(]
Currents flowing in the conductors being the analogies of mechanical forces,

nodal law in the two networks is the analogy of the statical equilibrium

equations.
Similasrly, it can be ve 1fzed that for a duly construcied network, the
E‘f chhoff loop law represents the compatl blt*v equation of the theory of
rength that will not be treated here in detail.

2.6 Developmen: o

In item 2.5 it was seen that two networks were to be built. Nodal points
of the one belong to those points of the domain where displacement values

th
in direction x are sought, hence te mid-points of element edges parallel to the

o,

¥ axis, and vice versa. Adjacent nodal points of both networks (i.e. on edges
of identical elements) are also connected by conductors.

A detail of the networks is shown in Fig. 3, representing by a continuous
line the conductors of the network U in direction x, by a dash-and-dot line
those of the network V7 in direction ¥ and by a dashed line the conductors
connecting both networks. Resistances are denoted as:

R, of direction x in network U
R, of direction y in network U
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R.. of direction x in network V7
R,. of direction v in network I
R,.. between two networks.

Potentials on networks U and ¥ are denoted by U;; and T respectively.

Let us write the nodal law for points i, j of networks U and ¥, respect-
ively. To maintain trueness to sign, potentials are considered as te increase
in the positive direction of the co-ordinate axes and in the positive direction
of x between two points of different networks:

T, U e U Ui ) + (Ui = U —
Rllf‘{ ’ ) Rux - i RLI_\.’
1 ‘ 1 B 1 . .
UL U U V) e (Ve - U
Ru}. ( i 1) RUT SN 1‘1) le ( N ,/)
1 1 . _
U T ) — (T, Us)=0
R. j+1) Ruz' ( )
1 . i _ 1
e (Vo Fogy——A Vi) = —Viey; - Vip) -
7 - % )

1 . i _ 1 B _
S (T ;:— ) T I i] z— -— ) D — “.z'."*‘ —1 at «\‘ -
R':'.\.' - RUT ( 1 RUL '

1 i _
U L A I)=20
RY ( ) Ru‘ ( 1.7 )
modelled:
(16

Confrontation of Eqs (7) and (10) vields the value of network resistances.
With due regard to the proportionality factor:

1 dx 1 1 — 2 Ax
Rll.\{ = . - an — e ——— 1, 24
AL26 dy ok Eh  dy
1 dy 1 201 4+ ) Ay
R = = J— R = ——(— ) R
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Both expressions contain one negative term. A model analogous to Eqs (7)
can only be produced by inserting ““negative resistances™ in the place of the
corresponding conductors. Asto the origin of negative terms. “‘negative resist-
ances” turn out to be placed in those branches denoted R, in Fig. 3 connect-

ing the two networks which run along the skew straight lines including a nega-

1

-

tive angle with the x axis. Along these conductors the potential has to grow

instead of to decrease, as indicated by the denomination. Thus, in fact. “nega-

tive resistance’ is a supply to be adjusted so as to produce a potential increase
of the same ahsolute value as the decrease along resistances R,

Current I, represents the dead weight Q.. I. = ¢.m;.
For a domain decomposed into square elements (JJr = lv), R,
and R, = R..

For a

ribbed plate. values Jxh or [vh may be replaced by the cross-
sectional area calculated with the rib. Be A4, and 4, the cross-sectional areas

of an element each in planes of normals x and y. Transformation of Eqs (2)
vields:

(3 — 26) 1x,_4x{c'“J + G, A, {ilf (3 = 26) Ax A~

Accordingly. network resistances are:

1 —u? lx

R, = "m
> 1 R
_2(1 -+ "'), v

mp
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1 —u* dy
Ry =-—+t =%

m
E 4,
2 4
R, = -———“(1 tH) dx mg
E A.\'
21 — & dy du

- mg -
E 2uA. (1 —p4d,

Of course, other cases of orthotropy may also be modelled by duly selecting
resistance values.

2.7 Boundary conditions

2.7.1 Edge displacements. If displacement function values along the edge

ad o L

are known, then this can be expressed by appropriate potentials:

U j=mypuy; and V= myv; ;.
R
v
Unmpi ot/ =
| !
" 5= >
1 ~ | By
Vam, v N ; :
\_&a____hi i
- I
Ly =4y T 4
N Loy >
I g ’-ID‘ .’:’y ’//775 ~ '/W\
&-————-‘ : i R
T
j
gz
Fig. 4

The voltage representing displacement of the boundary point normally to
the edge will be conducted to the edge point of the network belonging to the
given direction, and the voltage representing the displacement parallel to the
edge, to a point near to the edge of the network in that direction (at a distance
Ax/2 and Ay/2, respectively). Fig. 4 shows a case of an edge parallel to the
¥ axis.

The most frequent case is that of zero edge displacements. In this case
the corresponding network points will be connected to the earth point.

2.7.2 Edge loads. Edge displacements due to edge loads have to satisfy
relationships (3). This is automatically so in the electric network if, by analogy
to the equilibrium equations (3), externalloads are modelled by corresponding
current supply to peripherial network nodal points, applying the Kirchhoff law.
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For specific py and p, values of load components in directions x and y, respec~
tively, the corresponding currents for an edge of e.g. v direction are:

I.=p.Adyhm,
Ixy = Pv _j}h my.

Notation I, refers to the shear force character. Of course, this current has te
be fed to the corresponding neiwork nedal points by a half division inward,

these being quantities in direction y. Also this case is illustrated in Fig. 4.

The former are valid to the edge in direction x, to the sence.

A frequent case is that of a free edge, along which: g, =0, 7, = 0 or
gy = 0, 1yx = 0. Zero normal stress is represented by no external supply to the

edge point. Zero shear stresses have, however, other consequences too. Fig, 5

shows a part of the networks along an edge in direction v. There is no supply

to the points near the edge of network V. since 7., = 0. At the same time in
. . . 0Ty

each point 7, = 0 or between these points the shear stress varies by —— = 0.

)

oy
Equation in direction v of expressions (6) can be written for edge point 7. as:

Iy

go, |

dxdyh
| ox

iy
or. the Lamé equation:

Ay . ,
Py ;o up ) = p(A = 2G) k(v — vy jey) = 0
Ax '

(7 = 26)
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boundary conditions involving u;. —u; ;=0 and v;; ; —v;; = 0.
Accordingly, no current can flow between edge points of network U.

(R,, = =>c). and resistance of conductors connecting both networks is:
~ 1 1 — 2
R, = ——-— mp= — Mg, (12)
u(A = 2G)h uEh :

. . 1 _ g
Vi) = (U= Ty = 0

ue

2.7.3 General conditions. Boundary conditions may vary periodically,
corresponding to the division, and the two types can be realized mixed. One
great advantage of the applied model is exactly to ease designation of the
domain and specification of either inner or outer boundary conditions of any
type, varying even along vne edge.

The potential represents the displacement values true to sign. Therefore
the origin of the co-ordinate system has to be indicated unambiguously. For
most problems this is done automatically by designating points of zero dis-
placement. Otherwise, however, specially to this aim. at least three nodal
points of zero potential have to be designated.

3. Tes

o=

o

equipmen

Scheme of the constructed model is seen in Iig. 6. Boundary conditions
are given bv current and voltage supplies. The two networks are balanced by

means of necative resistances.

The equipment models 6 <8 = 48 elementary fields (m = 8, n = 6).
Divisions are equal in both directions (ix = /y). Incorporated resistances
R Ry, R, R,y arranged as seen in Fig. 3 are of constant value. If the domain
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to be modelled cannot be covered by a square net, among the constant resistan-
ces one of the required value has specially to be inserted. To this aim 52 resist-
ances of variable value are available on a special board. In addition to the
resistances R, connecting the two networks, those of R.. value have also been
inserted to permit realization of the free edge anywhere by simple plugging.
Any resistance can simply be disconnected to ease formation of the domain.

Constant resistance values permit to determine proportionalitv faet

el
it
i

from the resistance values in conformity with the starting data. For instance,
from the R.. value, applving (11):

For convenience of reading off, it is advizable to choose a rounded up vatue
for the proportionality factor my of the potential.
Them m; can be computed from (9).
The “negative resistances” havebeen realized by the Gorovko method [3]
bv supplving I, between two corresponding points of both networks. in
v -1

conformity with the given resistance values R, = T Circuit diagram is

Tov

shown in Fig. 7. Voltage is adjusted by means of variable resistances R, and
R, to zero the galvanometer G. Since resistances R, and R, are equal. current
I corresponding to Ry is fed into the network.

Presented voltage supplies U are 24 17 each, setting the maximum volt-
ages in the network at ahout +107. The equipment contains 96 “‘negative
resistance” units.

The problem is solved by adjusting these cvrrents Iy in the model.
Because of the network reaction, the adjustment is done by successive approxi-
mations.

Fig. 8 shows a circuit diagram representing the supply needed for the
boundary conditions. As compared to the resistance R. the resistance r repre-
senting the network can be neglected (0.5-—1.0 K@ as against 50—100 K0O).
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Fig. 8

The exact current intensity can be adjusted by means of the variable resistance

R;.. Voltage supply U is of 200 V.

Voltage supply was made by transforming AC of 24 77 50 Hz. Its low
inner resistance provided for a convenient operation.

All units (Fig. 6) of the equipment in Fig. 9 were housed in a common
closet together with meters and accessories.

. . o
255 5 COUG CUUoTY
SES000 costaes Sotois tiiese
Ceswecy ouoga

Fig. 9

Before constructing the final system, measurements were made on a little,
temporary network model to collect observations applicable to the design of
the final equipment. Recently, model tests were begun with. Test results,
outcomes and accuracy data will be described in a subsequent paper,



SOLUTION OF DISC PROBLEMS 171

Summary

An electric analogue model has been built at the Department of Civil Engineering
Mechanics of the Budapest Technical University to analyze plates loaded in plane (dises).
G. Kron (USA) published in 1944 the fundamentals of the applied network analogy, then
M. D. Golovke (USSR} practically developed it. The constructed equipment applied the
displacement method to produce displacement function values in a finite number of points
for rectangular discs outlined by rectilinear edges., with multiply connected domains, for
arbitrary boundary conditions. Plates may be braced by ribs parallel to the rectangular
co-ordinates, or may be orthotropic otherwise.
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