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Introduction 

There exist several methods to analyze plates loaded in their plane 
(discs). ~umerical approximate mcthods markcdly dcveloped since the event 
of digital computers. The t"WO methods most in use are: 1. Production of the 
,-aIuc set of the stress function by finite difference approximation of 
the homogeneous biharmonic differential equation: 2. establishment of clis
placement functions by the method of finite elements. 

In spite of thc rapid deyelopment of numerical methods, the interest 
in modelling the problems subsisted, both to facilitate simulation of special 

conditions and to makc use of illustratiYe, "enginecring" approximation, of 
Yariation pos!'ibilitics. ~Ioclelling is done primarily by lahoratory small-scale 
specimens or hy photodasticity means. Electric modelling is, however. much 
more convenient. 

Any modelling is based on the similitude bet"wcen physical processes. 
Analogy betwecn t-wo proccs",es can he descrihed hy a common mathematical 
model. Theoretically, for cach approximate mathematical model of the out

lined problem, an electrical circuit can be developed, likely to simulate it. Sey
eral such solutions have been Eugge"'ted or applied in the last 20 to 25 yearE, 
such as the analogue network proposed hy GrTEN?liABER in 1943, likely to pro
duce the Airy Etress function hy modelling the hiharmonic differential equation 

,LdF = O. 

Several varieties of this model have been described e.g. by PREDTECHE='<SKY 

(USSR), LIEB31A0"='< (U. K.) and BOSCBER (France). 
Another "well-known model type is based on the displacement method 

to produce displacement function values, a special application of the method 
of finite elements. This idea had been puhlished in the USA hy KRON in 
1944 [1], while his co-worker. CARTER demonstrated its application [2]. In 
1959, GOLOYKO directed the construction of such a model to analyze wall 
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slabs in the USSR [3]. This was easier to use, more eonvenient to simulate 
boundary eonditions and more illustrative than the former. At the same time, 
however, the required equipmeNt was rather complicated and costly. 

To case application, an equipment of the latter type has been constructed 
at the Department of Civil Engineering Mechanics of the Budapest Technical 
University permitting to analyze discs with multiply connected domains, con
fined by rectangular edges acted upon by arbitrary forces or displacements, 
for arbitrary boundary conditions. 
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2. Fundamentals of the analogue network 

rectangular co-ordinate~ of place 
network divisions along co-ordinate axes 
plate thickness ~ 
itumber of elements in directions x and )", resp. 
consecutive subscripts of elements and nodal points in directiom x and :y 
displacement in direction x or y 
strains 
distortion 
inflection of skew ~traight lines 
cross-sectioll al area 
cross-sectional area in the plane including normal x or :' 
concentrated force 
concentrated forces parallel to the respective axes 
intensity of distributed force systems parallel to axes 
density 
dead load of an element 
normal stresses 
shear stresses 
modulus of elasticity 
modulu~ of elasticit)· in shear 
Poisson's ratio 
Lame constants 
curren t in tens; ty 
electric potenti~1s 
ohnlie I'esi~tance~. 

2,2 Elasticity relationships 

Let us determine the displacement funetions of a plate suhjl'ct to in
plane forces (eventually displacement5), Displacement functiom u and /.; in 

the orthogonai X-J co-ordinate directions will he obtained from the static 
equilibrium equations. 
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Substituting the displacement functions leads to the Lame partial differen

tial equation system: 

with 
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i.e. yalue of the Lame coefficient for plane stress state. 
Besides. functions hayc to two houndary conditions of t'ithcr 

(2) 

a) displacement type (giyen II and t· "alues along the boundaries): or 

b) force type (edge loads): 
in this case functions 11 and t' along the boundaries haye to satis±\

the folIo'wing t·wo conditions: 
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:t. - direction angle of the normal to the limiting cur"e: 
px, py - components in directions x and y of the specific __ alue of the edge load: 

c) some combination of the former two kinds. 

2.3 Definition of the problem 

Restrictions are: 

a) The examined domain is outlined by straight runs parallel to the 

perpendicular co-ordinate axes x and y. 
b) Curved or rectilinear outlines including skew angles with the axes 

can only be approximated by staggered lines parallel to co-ordinate axes. 
c) The domain can be multiply connected. Inner edges conform to items· 

a) and b). 
d) The disc will be modelled by decomposition into rectangular elements· 

of finite dimensions. Accordingly, displacement function valnes are to he 

produced in a finite number of points. 

e) The disc is of isotropic material. 
f) The plate may be braced in co-ordinate axis directions. 
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2.4 Conversion to elements of finite dimensions 

The designated domain is divided into rectangular elements of Jx, .dy, 
h dimensions. Let the division be of constant value in one direction (Fig. I). 

Let the net'work lines numbered from 0 to m or n. Indicate nodal points 
by double subscripts and the elements by their corner of the least suhscript. 
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Fig. 1 

Let us determill!o normal stresseE of co-ordinate axis diTeetion actlllg 

in the mi{lpoint of each element e.g. (O"o:)i.J and (u .. .)i j 1'01' the element i,j. StTeSi' 
distribution in an inter;,~al is considered unifoTll1 III an:y direc
tion. By oth cl' 'Wonh, elements of finite size are treated as clastic 
hoclies acted upon by central forees of co-ordinate axis direction. \,~lith this 
approximation, normal stTesses or strains and (eJi.j can he 
from displacements at the edge mid-points of the element: 
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Suhscript of the displacement function values 'will he the same as that of the ele' 
ment edges converging at the nodal point of the given notation, as seen ill Fig. L 
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At point i, j of the network (i.e. at corner points of elements meeting 
there) also the value of the shear stress (TXy)i,j = (Tyxkj and the distortion can 
be expressed from the displacement values at edge mid-points: 

( 
Sv 1 
Sx, iJ = 

Vu - Vi-l,j 

L1x 
(5) 

It is obvious from Eqs (4) and (5) as well as Fig. 1 that function values v and It 
are to beproduced along edges in directions x andy, at (n+l) . m and n . (m+l) 
points, respectively. Equilibrium equations (2) are to be written in finite form, 
with respect to these places. One unknown value at one point being sought, 
a single sufficcs, in directions x and Y' may 
be written for u and v, respectively. In conformity 'with the applied approxima
tion, equilibrium conditions are thus met only in the mid-points of the element 
edges, different conditions for edges in directions x or )', but both conditions 
in points though different but spaced apart by Llx and L1y, respectively. 

Differential quantities in (1) ",ill be by finite quantities 
corresponding to the model. Stress increments betv;een points spaced apart 
by L1x are: 

or 

while for Lly 

and 
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Taking into consideration a uniform stress distribution. the finite form of 
Eqs (1) at point i, j for a disc of constant h thickness: 

.:1xL1y h ( oax 
)' + L1xL1)' h ( aTyx

) = 0 
Sx i,j ay i,j 

(6) 

LlxLly h -2L + L1xLly h --y + L1xLly h qy = 0 ( aT. ') I' Sa ) 
8x , i,j ,8y i,j 

4 Periodica Polytechnics Civil 14,12. 
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where LlxLly h qy = Qy is the total dead weight of an element. 
Let Eqs (2) be transformed according to the same principles: 

( 
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( 

82Z; ) 

8x2 , i.J = 

.dxJy 

Finite form of the Lame equations is, by substitution: 

( 
-, 
J. 2G) h(U'-lf 

Llx . 

+ (1.' + G) h (Vl-J./ + 

I ("' I (;) - ( , , I. -;- J h Ui.j-l -;- (/.' -,- G) h ( -Ui-l.i-l = O. 

2 .. 5 Fundamentals of the electric ne/Kork analogue 

The presented problem will be analyzed by an electric network. The 
method is based on the analogy between the solid behaying elastically and the 
electric stationary flow field. In mathematical form, this analogy is giyen by 
the confrontation of the Hooke law and the Ohm law. The linear flow in a single 
conductor of an electric network is analogous to the behayiour of an elastic 
straight bar subject to an axial load. ::YIutually corresponding quantities i.n 
physical processes are: 

elastic solid: 

displacement (ll) 
force (P) 

(
EA) rigidity -z-

The two analogous laws are: 

P = .EA Ju 
Jx 

electrical conductor: 

potential (U) 
current (I) 

conductivity 

where: Jlt - total strain of the bar of length Jx 
JU - potential difference between conductor ends. 

Of course, values of analogous quantities are only proportional, but not 
identical. This proportion can be expressed by proportionality factors, deter-

4* 
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mined from the condition of analogy. Quantities in the above relationships are 
made dimensionless as: 

p = ( !: ) L1u [( ~: L ~~o J -I 1 --[ 1 ~u 1 = -=-.JU -- __ 0 

R Ro 10 _ 

indicating by top line the dimensionless quantitieS and by subscript 0 the 
dimension multipliers. The analogy has as condition: 

Relationship between proportionality factors can be expressed from condi
tion (8): 

where: 

1 

Ro 

(EA) 
.:1x " 0 

I 

~U __ D 
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m[ =--ml' 
mR 

(9) 

[A/kp] - proportionaiity factor of currents 

.dUo [--. -mu = -- V/cmJ 
c::.1uo 

mR = I .:1~o)- [Q/(cTIl/kp)] 

lEA,Q 

ractor of the pe.tentlal 

factor of conductor resistances. 

The further relationships of the analogy between both physical processes 
are those between the elastic solid modelled by the set of finite elements and 
the net"\vork composed of elementary conductors. 

A network of several conductors permits to electrically simulate the 
physical equations of the theory of elasticity (generalized Hooke law). 

Concentrated forces at defined points of the body replacing distributed 
imw ... load systems satisfy the finite form of Eqs (1), in short: 

and 

It is evident from item 2.4 that these two conditions are to be satisfied in 
different points. On the electric model two interdependent networks will be 
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developed, simulating strength quantItIes in directions x and y, respectively. 
Currents flowing in and out of nodal points of the two networks satisfy the 
Kirchhoff nodal law: 

J: I;; = 0 
(k) 

Currents flowing in the conductors being the analogies of mechanical forces, 
nodal law in the two networks is the analogy of the statical equilibrium 
equations. 

Similarly, it can he verified that for a duly constructed network, the 
Kirchhoff loop la"w the compatibility equation of the theory of 
strength that will not he treated here in detail. 

2.6 electric networi; 

In item 2.5 it was seen that two networks "were to be built. Nodal points 
of the one belong to those points of the domain where displacement values 
in direction x are sought, hence to mid-points of element edges parallel to the 

u 
" ~ 

Fig. 3 

y axis, and vice versa. Adjacent nodal points of both networks (i.e. on edges 
of identical elements) are also connected by conductors. 

A detail of the networks is shown in Fig. 3, representing by a continuous 
line the conductors of the network U in direction x, by a clash-ancl-clot line 
those of the network V in direction y and by a dashed line the conductors 
connecting both networks. Resistances are denoted as: 

Rl1x of direction x in network U 
Rlly of direction y in net'work U 
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B.·x of direction x in network V 
B n of direction y in network V 
Br, .. bet'ween two networks. 

Potential:;; on networks U and V are denoted hy Ui,j and l/f,j' respecun;-ly. 
Let us write the nodal law for points i, j of net"works U and V, respect

ively. To maintain trueness to sign, potentials are considered as to increase 
in the positive direction of the co-ordinate axes and in the positive direction 
of x between two points of different net'lYorks: 
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Equations are arranged so as to be formally identical to 
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modelled: 

Confrontation of Eqs (7) and (10) yields the value of network resistances. 
With due regard to the proportionality factor: 
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Both expre~SiO!15 contain one negative term, A model analogous to Eqs (7) 
can only he produced by inserting "negatiye re:::istances" in the place of the 

corresponding conductors. As to the origin of negative terms, "negative resiEt

ances" turn out to he placed in those brancheE denoted R;;:. in Fig. 3 connect-
the t'Wl) netwoTks which nm along the ske'w straight lines including a nega

tive angle \\'ith the x axis. Along these conductors the potential has to grow 

instead of to as indicated by the denomination, Thus. in fact, "nega
tiye resistance" is a supply to he adjusted so a:3 to produce a potential increase 

of the ;;;ame ahsolute value as the decrease along resistance;; R::, 

Cunen t I, repre:3ents the dead weight Q,. L Q.,. m i' 

For a domain decomposed into :3quare elements (. Ix = I.'"). Rm: = Ri,' 
and R u}' 

F or a Tibhed plate. values .lxl1 or lyh may he replaced hy the Cr0:35-

:::ectional area calculated with the rih, Be A.\ and A:: the cross-sectional areas 
of an element each in planes of normals x and \', Transformation of Eqs (2) 
Yields: 

C' :?G) ( 3~H ) -G I, lxAx --. 
8x:2 i,J 

G. lyAy] 0 

( 
8~H ) 
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Accordingly, lletwork re"istances are: 
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1 fl2.dy 
-----mR 

E Ay 

2(1 + fh) 
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Of course, other cases of orthotropy may also be modelled by duly selecting 
resistance values. 

2.7 Boundary conditions 

2.7.1 Edge displacements. If displacement function values along the edge 
are known, then this can he expressed by appropriate potentials: 

and 

Fig. 4 

The yoltage rejEesenting displacement of the houndary point normally to 
the edge will he conducted to the point of the net'work helonging to the 
given direction, and the voltage l'epresenting the displacement parallel to the 
edge, to a point neal' to the edge of the network in that direction (at a distance 
.Jx/2 and .Jy/2, respectiyely). Fig. 4 shows a case of an edge pal'allel to the 
y axis. 

The most frequent case is that of zero edge displacemellts. In this case 
the corresponding network points will he connected to the earth point. 

2.7.2 Edge loads. Edge displaccments due to edge loads have to satisfy 
relationships (3). This is automatically so in the electric network if, by analogy 
to the equilibrium equations (3), external loads are modelled by corresponding 
current supply to peripherial network nodal points, applying the Kirchhoff law. 
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For specific po.: and py values of load components in directions x and y, respec-· 
tively, the corresponding currents for an edge ef e.g. y direction are: 

Ix = Px i1yh m[ 

Ix}' = py i1yh m!. 

Notation Ix)' refers to the shear force character. Of CQnr:"e, this current has to 
be fed to the corresponding network nodal points by a half division inward, 
these being quantities in direction y. Also this case is illustrated in Fig. 4. 
The former are valid to the edge in direction x, to the sense. 

--x 

Fig. 5 

A frequent casc is that of a free edge, along which: ay: = 0, T.,,", = 0 or 
ay = 0, Tyx = O. Zero normal stress is represented by no external supply to the 
edge point. Zero shear stre;;:ses have, ho'weyer, other con;;:equences too. Fig. 5 

;;:hows a part of the networks along an edge in direction y. There is no supply 
to the point;;: near the edge of network V, 8incE' Txy = O. At the 8ame time in 

. . • 8T\,:,: 
each pomt TO'" = 0 or between the;;:e pomts the shear stress vanes by -_. - = O. 

8y 
Equation in direction x of expressions (6) can be ·writtenfor edge poi~t i,j as:. 

iJxiJy h ( ~a.y) = 0 
oX I 

or. the Lame equation: 

( '/ I. ZG) h(uH.j 
iJx 
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boundary conditions involving Uf-l,j -Ui,j = 0 andVi,j_l -l'i,j = O. 
Accordingly, no current can flo"w between edge points of network U. 

(R,,), = =), and resistance of conductors connecting both networks is: 

1 1 

,u(i.' - 2G)h 
lnR = ---'--mR. 

,IJ.Eh 
(12) 

TIlU;;:, in the edge point the Kirchhoff law can be written a;;:: 

1 
(Ui • -- T' 

. ,j =0 

2.7.3 General conditions. Boundary conditions may vary periodically, 
corre;;:ponding to the division, and the two types can be realized mixed. One 
great advantage of the applied model is exactly to ease designation of the 
domain and specification of either inner or outer boundary conditions of any 
type, varying even along one edge. 

The potential represents the displacement values true to ;;:ign. Therefore 
the origin of the co-ordinate system has to be indicated unambiguously. For 
most problems this is done automatically by designating point;;: of zero dis
placement. OtherwisE', however, specially to this aim, at lea;:t threE' nodal 
points of zero potential have to he designated. 

Schemc of the constructed model is seen in Fig. 6. Boundnry conditions 
are given by current and voltage supplies. The two networks are balanced bv 
means of negative resistancE's. 

Fig. 6 

The equipment models 6 >8 = 48 elementary fields (m = 8, 11 = 6). 
Diyisions are equal in both directions (Jx = .::1;-). Incorporated resistances 

Ruc:, R"y, Rn:, Ri'" arranged as seen in Fig. 3 are of constant value. If the domain 



SOLL'TIOS OF DISC PROBLE1f' 169 

to be modelled cannot be covered by a square net, among the constant resistan
ces one of the required value has specially to be in5erted. To this aim 52 resist
ances of yariable yalue are available on a special board. In addition to the 
resistances RUl connecting the two net,,'orks, those of Nu;' yalue haye also been 
inserted to permit realization of the free edge anywhere by simple plugging. 
Anv resistance can simply be disconnected to ease formation of the domain. 

Fig. 7' 

Constant l"Psistance yalues permit to determine proportionality factors 
from the re:::istance yalues in conformity with the "tarting data. For in;;tance. 
from the R .. ( ,'aiue, applying (11): 

Eh 
mR R"x -1 =- ,1,2 1 , " x 

For eOllyenience of reading ofL it i5 ach'isable to cho05e a rounded up yalue 

for the IHoportionality factor m u of the potential. 
Them Hll can be computed from (9). 
The "negatiyc resistances" haye been realized hy the GOLOYKO method [3] 

by supplying I LT between two corresponding point':' of both network,:,. in 
C V 

conformity with the giyen resistance yalues Rw' = .. ---. Circuit diagram is 
I Cl' 

shown in Fig. -;-. Yoltage is adjusted by means of yariahle resistances K,:) and 
Rs:~ to zero the gal"vanometer G. Since resistances Rj and R., are equal. current 
I LT corresponding to Rr.;I' is fed into the net\\'ork. 

Presented yoltage supplies U are 24. V each, setting the maximum yolt
ages in the network at about -10 V. The equipment contains 96 "negatiye 
resistance" units. 

The problem is soh-eel by adjusting these ct:rrents I v in the model. 
Becau5e of the network reaction. the adjustment is done by successivt' approxi
lnations. 

Fig. 8 shows a circuit diagram representing the supply needed for the 
boundary conditions. As compared to the resistance R, the resistance r repre
senting the network can be neglected (0.5-1.0 KD as against 50-100 KD). 
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Fig. 8 

The exact current intensity can be adjusted by means of the variable resistance 
R sz . Voltage supply U is of 200 V. 

Voltage supply was made hy transforming AC of 24 V .50 Hz. Its lo"w 
inner resistance provided for a convenient operation. 

All units (Fig. 6) of the equipment in Fig. 9 "were housed in a common 
doset together with meters and accessories. 

Fig. 9 

Before constructing the final system, Ineasurements were made on a little, 
temporary network model to collect observations applicable to the design of 
the final equipment. Recently, model tests "were hegun ·with. Test results, 
outcomes and accuracy data will be described in a subsequent paper. 
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Summary 

An electric analogue model has been built at the Department of Civil Engineering 
2\iechanics of the Budapest Technical University to analyze plates loaded in plane (discs). 
G. Kron (USA) published in 1944 the fundamentals of the applied network analogy. then 
:M. D. Golovko (USSR) practically developed it. The constructed equipment applied the 
displacement method to produce displacemcnt function values in a finite number of points 
for rectangular discs outlined by rectilinear edges. with multiply connected domains. for 
arbitrary boundary conditions. Plates may be braced by ribs parallel to the rectangular 
co-ordinates. or may he orthotropic otherwise. 

References 

1. Kno:\" , G.: 
2. CARTER, G 
3. farapliH(J, Hanp5iXeHHOro COCT051HH;R l;(pyrr-
HOpa3;\lepHllx CTeHOBb!X i1aHe.l(:f\ ;\lCTO;:J.ml 3;lCKTpll'leCKllX aHanoniI!. 

First Assistant lvim HAVAS, Budapest lIr1uegyetem rkp. 3. 
Gyula PIKLER. R<'search Institute for Automation, Budapest 
13/17. Hungary 

Hungary· 
Rende u. 




