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1, Imitrcduction

Since World War 11, the event of digital computers, together with prob-
fems raised by the airplane and rocket industry. stimulated the development
of appropriate up-to-date structural analyvsis methods suiting actual require-
ments and the available computer technique. Far from applying the methods
already known, making use of the possibilities presented by the speed of
computer methods to solve ever greater problems. theyv follow instead entirely
new ways.

The new methods apply the matrix calculus in a wide range, not only to
simplify the writing and programming of algorithms as the natural language
of computation methods, but also to present an elegant and concise mathe-
matical treatment.

The most widely extended of them iz the finite element method, called
by some authors the matrix displacement method, advantageous by its ver-
satility. Though initially it had been applied in structural engineering, just
as will be here, essentially it suits to anvy boundary value problem that can
be described by partial (or ordinary) differential equations, for arbitrary do-
mains, boundary conditions and loads. It is widely applied for vibration. heat
transfer and hvdraulic problems.

The disadvantage of the finite element method is that rather small
problems require operations with quite large matrices, exceeding the capacity
of comparatively up-to-date computers, at an important computer time
demand.

In what follows, the finite element method will be briefly surveyed and
a method will be presented, likely to cut computer time and storage capacity
for some frequent but special cases.

2. The finite element method
2.1 General

A well-known fundamental principle of the analysis of hyperstatic
structures is to consider the structure an entity of members connected at a
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finite number of nodes. If force-displacement relationships for each member
as well as statical and geometrical boundary conditions are known, the behav-
iour of the whole structure can be cleared up. This is the basis of the analysis
of hyperstatic trusses, frameworks, lattices ete.

For surface structures or continua there is in fact an infinite number
of nodes. The method of finite elements eliminates this difficulty by considering
the surface (for simplicity’s sake, continua will not be treated below) to be
divided into elements connected at a finite number of nodes, acted upon by
nodal forces between elements (replacing boundary stresses of elements), and
of course, external forces are also considered as acting only at these nodes.
Relationship between nodal forces acting at the elements and nodal displace-
ments are represented by the stiffness matrix of the element (not to be deter-
mined here because of space shortage). From the stiffness matrices of all the
elements, that of the entire structure can be determined, delivering the rela-
tionship between forces and displacements of the structure as a whole.

Thereby force-induced displacements and from them the stresses can be
determined.

Division of the structure into elements, as well as replacement of the
continuous internal stress svstem by nodal forces is an approximation of real
conditions. Another usual approximation is related to the establishment of
force-displacement relationships for the element. In spite of these approxima-
tions, the method is a wuseful one, not only by permitting the analysis of 1ill
now (in closed form) untreatable problems, but by increasing accuracy upon
making divisions finer. The fundamentals of this method are due to Turnes,
described in detail by Arevris [4] and Ziexxiewicz [5], or in Hungarian by
Ber#nyr [T]

2.2 Finite elemeni analysis of discs

the differential equation:
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~1
(1)

Validity of this method is restricted to edge-loaded discs.

Tn the finite element method. the disc is usually divided into triangular
elements (Fig. 1). Nodal forces and displacements can be divided into compo-
nents of x and v direction. Nodal forces and displacements will be expressed
by vectors p and d. respectively:

Ty,
H :éx
.
Fig. 1
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Displacements and Inads are related by the stiffness matrix k:
kd=op:
or, in particular
ki ki ky d; i
k; k; kg d, P

Blocks k are now size 2 - 2 and represent the force p at the node with
the first subscript produced by the displacement d of the node with the sec-
ond subseript. In case of isotropy problems according to Maxwell’s recip-
rocal theorem the matrix k is always symmetric. hence k;; =k ;.

A rectangular field is conveniently treated by rectangular elements.
Then d and p will contain 4.2 elements, and k 4-4 blocks, 64 elements.

Stiffness matrices of all elements being determined, matrix equation
of the entire structure can be composed. Vectors p and d will include forces
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and displacements of all nodes consecutively, and the stiffness matrix K of
the whole structure will contain as many rows and columns of blocks, as many
nodes there are in the structure. Each block k;; contains the sum of corre-
sponding blocks of the stiffness matrices of all elements involving 7 and jnodes.
Thus, the equation of the structure is of the form:

Kd=rp. 2.5)

Note that any block k;; differs from zero only if there exists at least one ele-
ment which involves both ¢ and j nodes. Thereby most blocks of matrix K
will be zero blocks. and the stiffness matrix K is invariably symmetrical.

2.3 Finite element analysis of bending plates

In the case of bending plates, the nodes have three degrees of freedom
(neglecting other displacement possibilities), thus. an element in the xy plane
has all nedes acted upen by displacements wy, ¢, ¢ and force components
P.. M., M;,. For instance. for a triangular element (Fig. 2):

7

i P,
q M.,

g, T B My
;s

d=|d |=| "= and p=|9 |= (2.6)
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; will be 3 - 3. Thereafter the procedure

s1

Accordingly, si

will be as before.

ze of the block k

thod of treatment for the hypermairix equation

3. Proposed m

3.1 The hypermairix equaiion
was seen to lead to the matrix equation

The finite slement method
Kdéd=p (3.1)
(3.2)

K in the equation can be composed of stiffness matrice
P - v ..,.— A‘/—

airix
yoth the domain and the elements are rectangular, matrix K

Stiffness ma
of the elements. If'1
is a hypermatrix of special structure. with hypermatrix blocks:
=1 A B
B* A B
B* A B
B* A
where
A=|a b
b* a b
b* a b
b* a
and -

(3.4)
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Blocks a, b, ¢, d; and d, are linear combinations of elementary stiffness matrix
blocks, with sizes equalling the numbers of freedom of the nodes.
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matrix, with non-zero b

most blocks of this hypermatrix ar
{Fig. 3) the matrix of order m - n - s contains m? - n? - 5* elements, among
them at most (3m—2) (3n—2)s* non-zero ones, a minor part o

it

[

thu

egl

s uneconomical to store and handle the entire matrix both from storage

with (m—=2) - m - n - s* elements, but alse here the non-zers clements are
minority, at most 4mns-.

Fig. 4 shows the logarithmic plot of the above values for the range
g g P g

s=2tom=n =4 ~ 22. For m = n = 22 the entire matrix contains nearly

2ed

one million elements, with less than 29 non-zero ones, there being about
50,000 elements in the half-band, with a mere 159, non-zero ones.
Because of the high number of elements, the main store of the computer

is insufficient even for rather modest problems, hence external stere {magnetic
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drum, magnetic tape) has to be applied, inconvenient because for xternal
accessible

store the frequent input exchange much increases running time.
The proposed method demands a mere ~ 5Smns, thus it is

to rather small computers.

3.2 Some matrix relationships
Without entering into details, some less known matrix relationships will
briefly be presented, described with all particulars by e.g. MacDUFFEE [3].
(3.5)

Direct product of two matrices is defined by the identities:
and A X B=[q;B].

From definition (3.5) is is easy to verify the following identity:

(A - X By) (A, - X By) = (A Ay) - < (B, By).
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Introducing symbol /T of the direct product defined by the identity

n
ITA=A A -x ... - 7A X ... A

i=1

the identity

I (A,-Bl-co;-(ﬁ 4 (ﬁ Bi} o | (3.7)
f==] i=1 ] i=1 f==] /

that will be later of importance, can be proved by mathematical induction.

Applying direct multiplication, the hypermatrix K, resembling to the
hypermatrix K, and subject to stipulations

a == ao,)

b =5b" = a,

¢ =¢" = a, (3.8)
d=4d* =a;

K= ay. - X Em o E Ay B)z E, -+ ay c ;.7 b grz i
+ap X By B, (3.9)

where E,, and E, are unit matrices of m and n order. respectively, and B,
m n d i S m
denotes the uniform continuant matrix of order m.

B, =10 171

Yot

[

(3.10)

ok

fond
<

m

In view of the fact that the zero-th power of anv (square) matrix is the
unit matrix of corresponding order:

1 i
K= > ¥a; B, - x Bj. (3.11)

=0 i=0
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3.3 Quasi-spectral decomposition of a direct polynomial

Tet us solve the problem for the general case first. Let the spectral
decompositions of matrices A, A,...4A;... A of simple structure and of
n. 7y ...n; ...n, order in the form:

A = U, A UL (3.12)

Theorem: The so-called quasi-spectral decomposition of the direct polynomial

o m, m,
N S S S . R ¥ . ALe
N= >0 3 3Cuhuy oo py - AR AR 0 Lo AR (313)
115=0 pry=0 g =0

of the order

1
h

given by the formula:

e o o ML 2o
{==1 } le_.,WO =0 =0 =1
' o
Er:@ = Ev‘l_l = V[V (3 13)
[=1
In the following the matrices
2 hY
V=E, - » [0
i=1
and E (3.16)
ng m, om, 13
. - N\ N N ©
F-,;:"'E > C;zwe"'»\’féf X T A
tig=0 =0 =0 i=1

will be called quasi-modal and quasi-spectrum. respectively.
Proof: Consider a term T, , , of the direct polynomial (3.13) belonging

to settled ), ity . . . g, values and substitute the spectral form of A; matrices
as well as the identity

C Lgten o = EHU Cg_qug PR ;AQE tl (3'17)

o no

to vield:

T = (B G W Eu) - I U, A¥ U (3.18)

[=1




182 T. NAGY

From the identity (3.7):

Summing up and factoring out the first and the last term in brackets (occur-
ring in all terms of the sum):

; a 3 me m, m ¢ / e

N == <N 7. N S‘ . N ! B T—1

:\'_' Eno I ]7 Ul’ :\ =y Z Cy.l.u.g,...u.g 7~ H Al{‘ E.’;u H Li ] .
Hg=0 2y =0 pry=0 i=1 | i=1

Q.E.D.
Note that the proved theorem can be considered a generalization of a
theorem by EGERVARY [1]. It should be stressed that proof of the theorem had

the only restriction for the coefficient matrices to be regular and the

blocks were not required to be commutable.
In the special case of the general theorem above where the direct polv-
nomial has scalars ¢, as coefficients, the spectral decomposition of the

gl

g ; order
1

©

hypermatrix of n = ﬁ

wher

modal matrix ¥ is the direct product of modal m

i is

e x
a diagonal matrix with polynomials of matrices 4; as elements.

3.4 Solution of a matrix equation with a direci polynomial coefficient

Let us consider the equation

where N is a direct polynomial according to (3.13), x and y are vectors of n
order.
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Also vectors ¥ and y can be obtained as direct polynomials:

ne i, ny 2
N o o
=303 S I e
vp=1 ve=1 s, =1 =1
(3.23)
e n, o, 0 {
-y o i ul -l \ e
D D D L e,
vp=1 vem=1 vy =1 f=1

are vectors of n, order;

th unit vector of n; order:

where
Ay =la;, ,s;] g
an arbitrary element of A is

ReSY
and an arbitrary element of B = €+ <A is:
4
brorlr: rg ® $o5182 . .. 5o — Crosy @1rpm Qaras, Qprpsy ™= Crygg _f Giris (323}
i=1

ur
£33

ubscripts ate telated by:

o i—1 ( \
7o— 1 — \ ( n,'.:,_ll (Tf - 1
k=0

iy

i=0

ETR—

(3.26)

=0 { k=6 j

where n_, = 1 by definition.
Introducing a similar subscript convention for vectors x and y

Xy == Xygigin L, o

where
i1

y—1= Z (ﬂnk_l
=0

k=0

{”"%' (3.28)
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Replacing expressions for N, x and vy into (3.22) we obtain

o I mg m, m, 4 l
P s ! ' N PN s
{E i El NS NG TT AL
§ f==1 ] l}iQ:O =011, =0 =1 l
o no n,om o l
il 5 N —
!En“ ]7 l’z X [ S‘ ; X’l’ N Vo e e” =
f==x] po==1 pom= ] pyme] f==] J
e n, m o
. N O Y e L B
= NN Sy e, (3.29)
rp=1 ro=1 toy=1 =1

Let us examine first matrix produet:

[ E,. - Il U,-] [E,m - [JU
. 1 ,

i=1 i

In view of identity (3.7), it is obvious that:

g

/ C . _ e 7 .
;\5& L’ til] =E,E, « [[{UUYHY=]] E, =E

T
b=l
e
,

(3.30)

According to this relationship the matrix equation has the solution:

ot
I

or, in detail

o o ¢
b3 N W x 7 e =
P - . W2 .. g 14 :
s 1 sl wp=1 ==
m, m,
- IT® S ‘V%? a N
- ﬁ‘:‘iu '_zé—;;' s < e 27
=0 3y 0
a 2
te 1 17, 1y a 3
R S B S NS ]
‘ﬁ: < J U ] NS Ny o [T ey (3.31)
i=1 po=1 =1 oy 1 y=1 }
;i

[eS]

Let us examine the product of the four factors. Let us consider first the
product of factors @ and 3 of n order, denoted by

o
a-

i
N
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Putting factor @ under the sign of summation, and taking relationship (3.7)
into account. we may write:

g= ... N Ny v U, (3.33)

A term £ 2 of the above summation. belonging to fixed v, v, . . . » values:
o
D=y L0 T ulnh (3.36)
=1
A vector block of €9 " iz as follows
38 ~ 2 Ti¥a . 1 LA—1 o~
gr ) s = Errir}. rg = e H "]‘l'.ll.:‘; . (3-3 /)
: f=1
Af‘ter
¥R H u‘i;;%z)‘; (\338>
=1 ‘

Considering vectors g and y of dimension n as tensors G and ¥ of p — 1
order in a Cartesian system, matrices U7 ' as tensors of second order U:',
and their direct product as tensors of order 2p, relationship (3.38) can also
be interpreted so that tensor G = [g,] is the transformation of tensor ¥ = [v,]
with respect to tensors U or, by other words, the contraction of 4 tensors
with tensors UTY, with respect to the second subscript. With tensorial notation:

(—1)

&ry = Yo Wir, (3.39)
or
G =Y xU-! (3.40)

where < is the symbol of contraction.
Returning to Eq. (3.31), let us consider factor 3

ms m, o —1
1= S S Cu o 1T A5 (3.41)

=0 pa=0 i=1
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In this expression all factors of the direct product are diagonal matrices,
thus, the whole term in brackets will be a hyperdiagonal matrix, with blocks

of order n:

mg M my 4
= Y N S Gb 49
Yoips. . o S ... ) Cy”_,:_‘% ] A (3.42)
ug=0 Hy=0 11, =0 i=0

Since the inverse of a hyperdiagonal matrix is also a hyperdiagonal one and
blocks of the inverse are the inverses of its blocks:

i ( mg Ty m; ] —1
Yoise. .. Be = 2 e Z 2 Cul,uz Y I /7{5, (3'4'3)
4g=0 2= 1, =0 =1

From this expression it is obvious that this procedure is enly valid if of the
polynomials with matrix coefficients Cup.... o, eigenvalues of matrices A;
are regular. The product of hyperdiagonal matrix I'~! by vector g can be illust-
rated schematically as:

L e 4
Apparently:
mg m, m —1
—lg N 5w 0 4.4
éﬁs =Yy Ez= ‘;} T D e s tg gz:8: B2 (8"1‘?/‘
up="9 =0 2y=

o oq- . PO L. .

. Are vectors of dlmenszon HAS and Vs, 18 & mMmairx Di OTdCI Ay
1
1

notation, I' and I'™" are tensors of order p + 2:

relationship (3.44) is by tensorial notation:

D=T"135G (3.45)

where (& is symbol of the so-called logical multiplication defined as:

no

_ —1

éSOﬁlﬁﬁ <e-Ba T E Ysurehits .. Bp Brofabe . . - fo
=, 2

Fo==

(3.46)
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ussed operation of multiplying by a quasi-
{3.22). By tensorial notation:

< YOk (3.47)

Nothing but the previously discu
modal matrix is left to solve

—

Eq.
=U Tz (U~

3.5 Special cases

3.51 Solution of the Poisson differeniial equation by the meihod of finite
differences. Both for biharmonieal and Poisson equations the method of finite
differences leads to a matrix equation with a direct polynomial coefficient of

scalar coefficient, e.g. to the Poisson equation of the form:

i 1 X
bol gy = (3.48)

’j%’ a ’»_11 © Eff Wo==

jac]

where: g,, = —%

WU (T3 (U B (3.49)
Innﬁrfn(}st (‘Ontractiﬁn:
m n
— N S Ti{—1) 7Ri—1] =y
Erir: ™ i E‘r'«r)f @Lr;,):P_.;z (330)

considering vectors p and g as matrices G = [g ] and [P, ]. taking
into consideration that since B is a symmetrical matrix, its spectral form is

B— UL U*
G = UrnPUr

Now I'"! is a diagonal matrix:

r=( LN/ .
%oo 2 gy }'nj/ \ ";'mi - /:vnj 4 (

= Qyg Ami T

this again can be considered as a two-dimensional matri
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and now the logical multiplication will consist in multiplying elements with
appropriate subscripts by each other:

D=T1&(U,PU,. (3.52)
Contracting again yields:
W =T, [T e (U, PUY T, (3.53)

result analogous to the matrix equation method developed by Sz [2] for
the difference method for the solution of partial differential equations of even
order.

This justifies the statement that this method can be considered a general-
ization of the matrix equation method.

3.52. The finite element method, the disc problem. Analysis of rectangular
dises with rigidly clamped edges by the finite element method leads to matrix
equation (3.1}, where the structure of matrix K is found in (3.3) and (3.4).
Matrix K differs but slightly from matrix g; defined by (3.11). therefore now
only the hypermatrix equation

Bw=f (3.54)

will be discussed. Iteration can be applied to take into account the deviation
and the deviation excess due to accidental variations of the boundary condi-
tions, to be reconsidered in item 3.6.

Remind that K is a hvpermatrix of m - n block rows and block columns,
with a structure expressed by the relationship:

e
pw i
(61}
21

N

a, , Iz a block of second order, while relationships B, and B

., are simple con-

tinuous matrices of m and n order, respectivelv.

Yectors W o=

contain displacement and external force components of disc nodes. subscripts
indicating rows, columns of the point and the direction x or v in this order.
Thus, vectors w and { can be considered three-dimensional matrices (blocks)
(of the type m - n - 2). Now, the procedure is the same as in item 3.51, to
vield:

w=U, {F_l @ (U, F Ur:)} U.. (3‘36}

1
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When interpreting Eq. (3.56), remind that:

— matrix multiplication of a three-dimensional block from left and

right is defined by respective expressions

. . —1
*is defined as: Vi =

—1 . . . L. R . . .
where v/ is a two-dimensional matrix. If all matrices 2, are diagonal matri-
i A1 . . . T
ces, then also 77 will be a diagonal matrix.
— the logical multiplication D =171 G:

a) if v~ is a matrix

dipe = ENAN-NS (3.60)
=1

b) if v~lis a diagonal matrix, then also I'~' ean be considered a three-
dimensional block, and the logical multiplication can be interpreted as the
product of elements of both blocks with the same subscripts.

3.6 Solution of the hypermatrix equaiion by iteraiion

As it was seen in 3.1 and 3.2 in case of rectangular domain and rigidly
clamped edge, the stiffness matrix of the finite element method is a matrix
K close to the direct polynomial K. If boundary conditions or eventually the
shape of domain vary, the stiffness matrix will differ by more from the direct
polvnomial K. Therefore the equation system of the finite element method
lends itself to iteration. Let us see now the convergence condition of the iter-
ation

Kx=y {3.61)
where K differs from the known (quasi) spectrol-decomposed matrix N only
by a matrix F, so that:

K—N-F. (3.62)
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Substituting and solving for x:
x = N"1(Fx +¥), (3.63)
»xpression readily iterated in form:
%o = NHFx, + 3) (3.64)
Obviously, since two subsequent iterations are related by the constant matrix
H=NIF (3.65)

convergence of the iteration has as condition:

N (3.66)

with ¥ porm of matrix F.

Since the proposed method has the advantage of not to establish the
large-size coefficient matrix but only some factors of the direct polynomial,
and considering that blocks of the coefficient matrix are combinations of the
blocks of the elementarv stiffness matrix. two rather rigorous criteria have
been proved for the convergence, which we can, however. easily handle in
our case.

Provided blocks of matrices N and F are known, a sufficient condition
of the convergence is the inequality

to be valid for each block of identical subscripi.
Provided hypermatrices ¥ and F are direct polynomials of the same strue-

ture, i.e. they only differ by the coefficients a;, and a,. a s

of the convergence is the inequality

to be valid for each pair of coefficient blocks (where a,, and 2], are coefficients
of direct polynomials I and ¥, respectively).

4. Conclusions

Last but not least, one may wonder why to apply spectral decomposi-
tion, a complex and tedious procedure, and besides iteration, instead of directly
solving the matrix equation?
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Stiffness matrices for the finite elements were seen in item 3 to be rather
large-size ones. Among their elements and blocks, however, there is an obvious
majority of zero blocks and zero elements, a percentage further growing with
increasing sizes {and refined divisions). As a conclusion, storage of the entire
matrix, and conventional solution of the equation system, is almost impossible
but at least very lengthy a procedure even for the most up-to-date computers.
Let us consider a disc problem of 20 by 20 divisions. The coefficient matrix

measures 2 - 20 - 20 = 800, iis elements amounting to 640 000. A single solu-
. . 1 . . 723 - -
tion of the equation system by Gaussian algorithm requires ~ ? = 17 - 107

pela‘ziejc of m lltiplica"da and division, without mentioning the external

(I

<
storage, needed hecause of the matrix size, much increasing the running time.

Qurrezzt i fh@é requirin
mean in our case to store 800 - 20} + 2 = 35 200 elements, and according
to BErEnyI [8], there will be 167 000 operations for the first, and 67 000 for
any subsequent solution.

to store but the upper non-zero band still

e

The method proposed here has two advantages:
1. Reducticn of oceupled storage capacity, storage involving:

bes
4

— matrices U;: occupied storage place: STn?
=1

[4
— diagonal matrices £; Zn,
=
— vectors d and p: 2s [ n
— coefficient matrices a; (0?‘ Cp, [,)
For the presented case this amounts to 800 — 40 - 1600 - 16 = 2456.
A few vector places are still needed for iteration, o not more than 5000 words
are needed, available even in the main store of a small computer of MINSK—22

or GIER type.

2. Reduced running time. One step of iteration requiring in fact 4s
multiplications between m by n matrices: this means in our case 8 + 208 ~
~- 64 000 simple operations. For arapid convergence, the process is equivalent
or but slightly slower than the band matrix system.

One may ask why the time for the spectral decomposition is not account-
ed with the running time? It is because there exist simple trigonometric
formulae for the spectral decomposition of the uniformly continuant matrix
B, appropriate to establish both modal and spectrum elements in some seconds
(or fractions thereof). And here another significant advantage appears: modal
matrix U of matrix B needs not be stored in full, since in knowledge of the
first vector, the others can be obtained by simply changing the sign and the
element.

If, however. the spectral decomposition of the factors of the direct
polynomial is not available in closed form, the economy of the method needs

6§ Periodica Polytechnica Civil 142,
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a previous analysis. Anvhow, the method seems to be economical in cases
where similar structures are to be designed for different loads. since then the

work of spectral decomposition emerges only once.

Summary

After a short presentation of the finite element method, its use for dises and bending
plates will be described. The stiffness matrix can often be written as a direct polynomial or
in a rather similar form. So-called quasi-spectral decomposition of the direct polynomial is
suggested for the matrix equation. correcting the deviation from the direct polynomial by
iteration. The method is advantageous in that it suffices to produce and store a mere of $—5
vectors rather than to produce the entire stiffness matrix so that it lends itself to the use of
a computer of medium size.
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