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ems of parallelogram anisotropic plates (to be referred to

lates} are of importance first of all for skew-ribbed plates

and skew grillages [4. 5, 6]. There are rather few studies on the analysis of

skew anisotropic plates. Among them let us mention that by STcHAR present-
ing a method of determining influence surfaces bv means of polynomials [8];
Narouxa applied the method of {inite differences for a static load [7]; just
as MeLE [5], involving also the variation calculus.

In what follows, skew anisotropic plates under arbitrary static loads
will be analyzed by the SARKISYAN small parameter method.

2. Fundamental relationships, Differential equation of skew anisotropic plates

The problem will be analyzed in a left-hand co-ordinate svstem where
the xy-plane is coincident with the middle surface of the plate, and the z-axis
is normal to it (Fig. 1).

Relationship between stress and strain components defined in this skew

co-ordinate system is expressed by the matrix equation [6, 5]:

G = Be (1)
where @ =[ 0, B =[B;]| (Bi=By) g==[e,
o, 1=1.2,3 2
(" EF=1,2.3 Yy

These expressions are formally identical to the well-known relationships written
for an orthogonal co-ordinate system but the elements of o, € and B have dif-
ferent physical meanings [1, 6].

Differential equation of the skew anisotropic plate [53]:
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€ss,

B
and h is the plate thickne

where Dy = B,;k
w(x w) is the d1~p1acement function of the plate in direction of the
he plate

-axis
is the load acting normally to the middle surface of the

q(xs,v)
(in direction z).

Ay

can be written as:

In conformity with [5], boundary conditions
a) I{ the edge x = const. is simply supporied, then along this edge
w o= { (3)
falid o
. 32w 8% w
and M,==0. thatis D + 2D, =0 4
; " -
x* Ox O
b) If the edge x = const. is clamped, then along this edge
o
Bw B
w =10 and —— = 0. {5)
c) If the edge v = const. is simply supported by a beam of flexural
rigidity EJ (o be referred to as elastically supported), then along this edge
s 3% w 3% w 3% w
M,=10 thatis Dyp—— + Dyy—— + 2D, = { {6)
’ ox” Sy= 9x 3y
al
-y 9T W R
and Q.+ = EJ that is
Bx Ba
03 45 A3 44 3 nd
Ywo 0% w 3% w 3w - Otw
2D ~———~—(ij,—f—‘D y—— 4+ 4D, - D, =— EJ .
13 2 3B/ on W As N oA
d3x28y 8x By* By axt
(M)

GE

Definitions of specific moments M and shears ) are the same as in [6]
and [5]. The above boundary conditions were published by Lexanitsxy for

rectangular plates [3]
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3. The small parameter method

3.1 Transformation of the differential equation of skew anisotropic plates

Sarisvan developed the solution of the differential equation of form (2)
by the small parameter method for simply supported rectangular plates [9].
Below, this method will shortly be described in the skew co-ordinate system

presented in item 2. Let us apply co-ordinate transformation:
x = 2D} v=FDW ) ®)
wlz, y) = W[a(x), ()] glz.y)sing = g, (=) | |

~4 a4 o
.o ot 5 .8
R D apd =t 2 A T JeX1
on* Bu? 552 op*
54 54 % (11)
L,=41k A+ hy ——
N EARCT] Bz 8% J
respectively, where:
S in 5
p o D+ 2Dy Lo Dy
a a7 1 PO
Diy D¥; D}llé Di (12)
. . w D,, <)
k, =2k A= ey Y=
Dy Dy

T, (1, B). (13)

Substituting (13) into (9) and separating this equation according to the
powers of u an infinite series of differential equations arise:

L W] = ¢ (14)

LWl =L (t=12....), (15)
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Thereby the solution of differential equation (2) of skew anisotrepic
plates has been reduced to that of Egs (14), (15), similar in form te the differen-
tial equation of rectangular orthotropic plates. Boundary conditions for the
former (see item 3.2) are, however. more complex than those of rectangular
orthotropic plates with the same type of edges. Furthermore, the known fune-
tion in theright-hand side of the f-th differential equation from (15} — - prod-
uct’” of the solution of the (t—1)-th equation by the operator L, as a “load”™
is also more complex in form than usual for orthotropic plates.

Being written (14} and (15) in a skew co-ordinate system. their solution
means physically the deflection function of a plate made of a material with
two planes of symmetry including an angle ¢ — beside the xy-plane of sym-
metry of elasticity — viz. planes xz and 3z, for which the directions of identical
elasticity characteristics are obtained by skew reflection, i.e. parallelly to
axes v and x, respectively. Such a material — resulting from mathematioal
absiraction — is termed a clinogonally anisotropic one, in short a clinotropic
one.

The infinite series in (13) is rapidly converging, u being much less than

£

unity because of its physical meaning

(I».e

. Let us refer to favourable resulis of
convergency analvses by quﬂusa‘; ™ ‘mr anisotropic plat i
all edges [10].

For rectangular orthotropie plates u = 0, hence Eg. (14} yields the final
picp ;

solution. and (15) iz superfluous. Of course, the described meihsu ends itself

also for skew isotropic or orthotropic plates, provided coefficients Dy in (2)

g

are replaced by those adjacent te the corresponding term of

equation of the skew isotropic or orthotropic plate [5.61

B

3.2 Transformation of boundery and centinuity conditions

3.21 Simply supported edge «
condition (3):

T, =0 =0 (1=1 (1o}
— . . . . . . = 1. -
Transforming relationship (4} according to (8), multiplying by D37 .

and separating according to powers of u, Sarkisvan ﬂbtaizwd the following
relationships [9]:

T, 3

Boc? i

~D o~ - > (11)
W o, BV q0 )

Q
K
h
[6)]
K
[0)]
s
~
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fo

3.22 Elastically supported edge ai f§ = const. Transforming relationship
(6) according to (8). multiplying by D3y °, and separating according to powers

of i
0
(18)
= 2 Lo
where ky = vh})m {19)
Dy Dy

Tran relationship (7} according to (8). multiplving by D3, 7, and

separating aceording to powers of u:

where

3.23 Continuity conditions for coniinuous skew anisotropic plates with
intermediate simple support. Fig. 2 is a detail of a continuous skew plate. with
simple supports at x = 0. v’ = 0 and x’ = a’. Detlection function is sought
for in form of functions defined between two intermediate supports. Plate
deflections are given by functions i = w(x,v) and w’ = w'(x".y") in domains
0

ing domains i.e. at the intermediate supports a compatibility and an equilib-

-

a. and 0 = x' < a’, respectively. Along the boundaries of neighbour-

rium condition can be written each.

According to the condition of compatibility x = a i.e. x' = 0. functions
w and 1w’ have a common tangential plane. This condition applied to differen-
tial equations (14) and (13), respectively, vields the condition of continuity:

51, 1L 81, sl .
0 ,0 = S -== 0 (r=1.2,..0). 22y
B 3% S 3’

Equilibrinm condition at the same support:

M, — M, =0. (23)
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Substituting in this condition the relationship for flexural moment
M, [5] and transforming according to (8), multiplying by Di7' * and separating
according to *he powers of u yields:

~2 . ~2 T ~2 ’ o 7!

OWO;koWU_'oWOMkoWO 0

a2 I B o2 3 hpm

B op° B 8 (24)

520, k 8, 32w L Rl oy (alﬁ";_l W,_, -
TR T T Ry — =Ry —

Bu? 852 Cr 8p" . o’ 8p” 5280

4. Solution of the differential equation of clinegonally anisoirepic plates

4.1 General

Relationships (14} and (15) being similar in form to the differential
equation of rectangular orthotropic plates with principal anisotropy directions
coincident with the co-ordinate axes, the “clinotropic” plate problem in item
3 can in principle be solved by any method known from the bending theory
of orthotropic plates, only that it has to be adapted to the more complex
boundary conditions in item 3.2 and to the complex “load functions™ in the
right-hand side of Egqs (15). In what follows, application to the differential
equation {14) of the double Fourier series method developed by Kiczrowsxk:
and WiLDE for orthotropic plates [2, 11] will be presented.

4.2 The Wilde solution of orthoiropic plates

WILDE expanded all terms of the differential equation of orthotropic
plates into Fourier series, then, on the basis of equality between the mn-th
Fourier coefficients, determined the coefficient

.

— e 25
— >l (25)

i=1
of the solution of form

“g____ij “ﬁ” o D D 9

wlx, f) = > S wp,sina,asing, j (26)
re=l m=1
The applied notations svere:
ma nit

I 8 _ 9=
S T T Py = o ("‘)

a, N b,
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where ¢, and b, are the edge lengths of the skew plate in the co-ordinate system

x, B, hence, {rom (8):
a; = aDj** by = bDH. (28)

Terms of the coefficients wp, according to (26) are:

1
ungI)r’ = mn (29)
va
wi= -t Ll S 0y e e gy fsing g -
ay b, g, 5 527 5x°
. el tw L, O g |
-+ B } —— (2. 0} — (— 1) ——— (2. b)) | sin z,, % dox} (30)
o) L Bp° 5p° j
wtn — Ly i”‘[w(o,ﬁ) (- D) wela, )] sin 8, 8d 3 +
a by A ? '
Jren
— 4, s [0, 0) - (— 1)* (o, by) ] sin 2, 2d :f_} (31}
G,/
_ 4 i - i
i = e v B [ae(0.0) (- 1)ael0.8,)
ay bl .
(1) (g 0) (= 1) (e b)) (32)

where g, is the mn-th coefficient of the double Fourier sine series of the load
9oz, B)s

. e ad L DTLL2 D2 o
—er = Uy T 2R%y lan - Fn

N (33)
S =y = 2k, 5?1 —1 = PR+ 2kxg, p, J

Boundary value functions in (30) and (31) can be written as simple
Fourier series:

SLOp = S (b= S Cysing,f }
Bo? “- o -
82w : 32w 1 (34)
— (2, 0) = — 2 B, sin o, « —— (. by) = — > D,, sin 2, 1‘
op* m op- m
w(0.5) = S E, sing,. wlay. p) = NG sinf, p ]
n n

ey P
m m

w(2. 0)=2> ‘Fm sin o, o w(x, by) = DK, sin o, x ‘
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which, substituted into (30) and (31) vield:

will) — Sae] - Letp, -y Dm]} (36)
L = [E,— (- 1)76,]— 2%

e " —_—_ F;F e (= 1Y Irm l. 37
a4y bl "jnzzz [ 2 - : 9 [ 1 ( ) 'S ] ( )

inalvsis of orthotropic plates lends itself particularly
cases where boundary cenditions are given in forms (34) and (33).

Thus. the Wilde =
for

4.3 Satisfaction of arbitrary boundary conditions

The previous analysis in that form satisfies boundary conditions in the
form of infinite series only. Therefore expressions (25), (26). (32), (36) and (37)
will be transformed so that each mn-th term can in itself satisfy boundarv
conditions, consequently constants 4, By, etc.. belonging to conditions i1

1

item 3.2, can also be determined (see item 3).

Replacing (26) into (25), the part of the double infinite series containing
! (a1 (v (11 (111 v X . R
n‘,.,,lf. Wing = Winp that is w0t @Y, 0™ are transformed in turn as follosws.
. PENSD
Transformation of 1’

u.(II) - ;E(,II) . z’?\'ii)

(38)
where

(39
=EAL . o
g{( b 2 -
(40
This latter can also be written as
a, x % ., % % . 5
) = L0 T N4 sinf, p— | — ——| N, sing. 5+
3 2 ,, 6 6a, | =7
EE T
a 6b,
J ,U . .
- ( bio ~ D, sinz, % (41
oh | = :
14 m
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the m-th coefficient of the Fourier sine series of functions

(a, % 2t ud 1 a, o %
e - and -
5 -
3 2 O, | 6 ba,
. 2 2(--1)m
being -~~~ and ————=—.  respectively.
iy %,y a; %y
Transformati oo D),
ranstormation of w :
(LD o D i (4.2
where
- )1 7
B = 2w %;}._ o 7 1
@, D %4
f’):: ,""’3 (43)
. “E. - NN fan . .
FOIINE SN N i LoDm6.  Fy $in %, % sin 3, 0
= f I s
noom ) Xy,
(44)
This latter can also be written as:
% . %
it — (1 = WE,sinpy,J— — -
\ ay i n a,
1 _;)
e [1 ’ S F sina, 4+ "\“ K. .sinz, x (45)
by,
- . . . . . - i 7' :
the m-th coefficients of the Fourier sine series of functions {1 — — and
! a, |
5 a 2 1y
— being =~ and —————~_ respectively.
a @y %oy 2,
1 1 5m b 1 m
o . v
Similarly, for Y
IV — TV L UV (46)
where
o 8Lx ~+ 2 . .
w(l\) — \ ) m: n M’?ﬂ [1(‘(0,0) ( 1)" l(‘(O,bI) -
n om  ay0; %y .'-’r: mn
—~{— DMwla, 0) = (~ )™ "w(a, bl)] ssin o, o sin p, 3 (47
10y P 3 %21 3
==0V) (1 | um'*, w0(0.0) = (1 — 7 (0. ,) —
= L\ a; | b, a; | b,
ol ol
o 3 o3
] i t .
Lo - "‘l w(a, . 0) + ~w(a, by)i. (48)
@ 1) a, 0y
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Let us mention here that a transformation similar to (42) has alse been
applied by Kaczrowskr [2].
Now, the suitable form to satisfy boundary conditions is obtained by

substituting (26) then (29), (39), (41), (43), (45). (47) and (48) into (25).

4.4 Consideration of an arbitrary load

It is obvious from (29) that to solve differential equations (14) and (15),
coefficients of the double Fourier sine series of the load function ¢, (x, 7) are
needed. When solving, however, the #-th equation in (15), the right-hand
side is obtained first as a double Fourier cosine series, it being the product of
W,_; of sine series form by operator L,.

The double Fourier cosine series can be transformed in a double sine
one in the manner to be described bhelow.

Tswo respective forms of function p(x. §) defined in the ranges 6z =~ a,,

B

2.

)
\\

R .
plz, B) = > b cosu,zeos g =
¢ p ’
}‘

AN . " Y a2 o p
T dmr: SID O, AN Oy o (19\}
n i
If coefficients by, are known:
m
for even
7
\
) -
o Pl 1353
d == W W P Q{ =0
mn T 0 s uZm PR e} 70) ol 9 ’ m (D J
7’ (p* — m*) (¢* — n?
4 F 5 g r) for odd
n

Pi: 2,46 ...

hus, in this expression terms are iden

p and m or both g and n are even or odd.

. Applications

1

5.1 Skew anisotropic plates simply supporied along all edges

Sarkisvan developed the small parameter method for the analysis of
rectangular anisotropic plates simply supported along all edges [9]. As first




(8]
Q
w
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application of the method presented in items 3 and 4, determination of the
deflection function of skew anisotropic plates simply supported along all
edges subject to an arbitrary static load will be presented.

The solution satisfying differential equation (14) and boundary condi-
tions (16) and (17):

= s o O vy . - -1
LPU (et .‘)\) = .2 A-} Wo,mrz SIn A X Sin fgn 13 { 1‘&}
n om
where
W Imnr
TTo,mn
erl

i1 pgis the pg-th Fourier coefficient of the solution of the (i—1)-th differen-

tial equation;
coefficients d;_, ,, are obtained from b;_; ,, according to (50).
Boundary conditions for the i-th equation are, according to (16) and (17):

- . GRS 272k, - e
For =10, W =0 and —‘—); = b ~ N > mn W—«l,w:r: €os 1[377. f ‘1\73}
3o a, by, 7w
~D ; < o
, ; 221, 2722k . )
For a=ga,, ¥, =0 and ~ome e LS S(—1)"mnW_, qneosp, p
‘ 8oc2 b, == :
(54)
. foRd % 272k, .
For f=0.W,=0 and So= - 2N SmaW,_y ppcosz,x (55)
' 8p° a b, % 5 '
3° W, 272k, n
For S=0b,. W.=0 and = 2N S (- 1'maW,_| . cos 2,2
i 3p? a b, T W '
(56)
Terms according to (26) of the coefficients of function W, of the form (25)
are:
diy,m 5=
il - S (57)

mn
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The other terms are obtained by replacing boundary conditions (53)
through (56) into Egqs (29) through (31). Integration vields:

2 7.
an _~Lm:r k,

wt.mn -

= SpgWic e[ (-~ 1)‘3"”][%—*% -

3
Amnad by 7 P

I AY-E Ay 2 I
+15= }“— MR pgl
q —n —]mrz (11 biﬁa” ‘?’ o
T —(--1)yrm™ 1 — (1) -
1 —(— 1)4-:1][m { , N (-1) l (58)
p—m p—m

Accordingly, constants 4

A, and C, in (36) will be written separately,

since thev will be needed in item 5.2.

2k, . ) . 1 -
Ay = — ) fgpng—l,m ~
a by T L
. 2 71'1 . . . 1 i
a b, T 5 - { g q-—n A

The problem is solved by substituting Eqs (51) and (37) through (59)
into (26). (25) and (13), and transforming into the xv co-ordinate system accord-

ing to Eqs (8).

5.2 " Bridge-like” skew anisotropic plate

A usual problem for bridge structures is that of a skew anisotropic
vlate with two opposite edges simply supported and the other two edges
elastically supported. Let us consider now a plate simply supported on edges

x=0 and v = a — or 2 = 0 and z = «, after transformation according to

{8) — and supported elasticallv alongedges y =0 and v=10b i.c. 3=0, g=10b,.

Solution of the i-th differential equation in {15) will be sought for in
forms (25) and (26). Coefficients W5, will be written according to (29), (36),
(37) and (32). Conditions for edges z = 0 and » = @, equal (53) and (54},
respectively, while those for edges 7 = 0 and g = b; can be written according
te (18) and (20), respectively. Determination of function H, as solution of
differential equation (14) will not be treated here separately, only referred to as
a special case when analyzing W,

Also here, W:-(YI,,)Z” will be determined according to (57), but 7§, has to be
computed with the Fourier coefficients g, of the effective load in the numerator.

For the determination of functions I and ¥, boundarv conditions
imply terms in (37) to be:

En = Gn =0 (6‘2)
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and

4,‘{1\[ _ ) I\'
w o,m)n - Wg,m% = 0. (63)

Similarly as for the plate simply supported along all edges, when deter-
mining ', 4, = €, = 0, while for W, the 4, and (,, values are obtained
from (60} and (61), respectively.

Find now coefficients B,,, Dn, Fn. K, in (36) and (37) by means of
erms W'D and W transformed according to item 4.3.

o

According to boundarv condition (18) written for edge § = 0. B and
- .
F,, ave related by the expression:

Br?s = k?, ".rzn 'Fn (64“}
where g = 0 for W
O .
g = - N SW_, - (65
&0 = R T !
Ty T

Condition (18) written for edge 7 = b, relates D,, and K, as follows:

272k, I TS
D:r? — ____:..g;71 kS :xrln K m (6(3 ;
a; b
where g, = 0 for WV«;
, 4 : -, - g 2 7
Go= = X (- 1)W, ,, LT rfor m. (67)
T Ty T p P q

According to boundary conditions (20) written for edges g = 0, and

]

= b, — involving (64) and (66) — to determine F,; and K, a series of linear

[N

i

equation systems with two unknows are ohtained. in the following form:

erp B+ e Ky = ey 1

(68)
! d
e F En T 6K I&m = €ap j
where
971, 4 P
eir| __ (k+ 2k 1= 2k %3, V»—]mn — In
- -l ! b i 22 -
ér 1 n Pr&mn
9.6 2
! 21’(;7 - ]‘ } bJ. il k : L e
i o DT I T By T
bl n l')n-’Jy T %m 3 bl
9. 2 24 o o3
— 2ky o, < Jon Pno o mPm o< P —
= - < 92 2 o1
bl i Jmn bl “n o —j\ — 'n%m
ko
- gm 1. 4
T+ kg, (69}
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Relationships for e,z and e;x are obtained from (69) by multiplying

b
terms containing > bv (—1)" replacing term — — x % k,in clamped brackets
S e p = - mitg P
n
- bl 4 caa 4
by +—27, k,, and omitting last term (k, % 5).
J 6 3 =) 4 m
dymn P 2
— (] 9.2 2 o f—1,mntn . ~ \
e = (k + 2k} 1_,,,2 — - _‘Z‘[:i,, — (- 1)™ Cn].
n dmn al Xmoon
1 27 o2 4
1 — ﬁ‘—lmn Xl oA da ’7‘2 XL N 1y o’ Amn °_ lgn .
A 2 o [cm o (" ) cm] 32 4 o
Amin ! a, oy n nHmn

a3 9
i—1,mn n ‘, < P
+ >[4,

- 2
s a3 5
*k A - B
ATk N g — (= 1) g]if_z_,.ff_n, _
pe = Lo Em P
a; 03 n s
27 2
2 k. 397 k2 B
- i‘\é"q - &) - TR N, g _
o L « . » 7
@ b a by = r? — m?
i 8k 16k, By r
: “1 2 g . -
B e P e (10
= 7 = 2 — m?

o o g
X - , Em , &m |\ om
ing > by (—1)", replacing [Sm = in the second term by | — -
n § 3 6 6
g i
o - L0 S e o tw +) 1 I S . Yo o -l &1 logt Fory
3 s COSILICIENLE g, 1 (e 148t DUl 0ne term by g,, and &, i 1he 1281 erm
by K.

Since the last terms of ¢, and e,; include all the ¥ and K, respectively,
the solution this term will be zeroed, the computation
repeated with the obtained F and K values, and iterated to the desired
aceuracy.

In course of the determination of coefficients F,, and K, for ¥, in
the coefficients of the equation system (68) d;_; ... = qn, and 4, =C, =

&mn = & = 0, furthermore, last two terms of e;, and e,, are zeroed.

Thereby, coefficients 4., B, Cro Do Eny Friy Gy K have been deter-
mined. Substituting them into (36) and (37), and making use of (57), (63), (23)
and (26}, the solution is available in the form of Eq. (13).
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Summary

Application of the small parameter method for the analysis of skew anisctropic plates
under arbitrary loads has been treated. Solution of the differential equation of the skew
anisotropic plate is reduced to that of equation series similar in form to the differential equation
of orthotropie plates, only that here the boundary conditions are more complex. Arising
partial problems — differential equation of clinogonally anisotropic (clinotropic) plates —
have been solved by means of double Fourier series.

Application of this method has been demonsirated on skew anisotropic plates either
simply supported along all edges or simply supported along two opposite edges and supported
elastically along the other two ones. Thiz method lends itself to satisfy other boundary or
continuity conditions. e. g. for continuous plates, provided edges are parallel to the skew co-
ordinate axes.

This method can be applied on a digital computer, since it cont g
operations. As a ronsequence of the nature of both the power series of small para
of the double Fourier series, accuracy can be inereased by the use of longer rur
rather than by greater storage capac
f than for deflections and farther from the edges.

r. Convergence of the upplied infinite series is slower
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