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1. Introduction 

of parallelogram be referred to 
as skew anisotropic plate;:) are of importance first of all for skew-rihlJed plates 

and skew grill ages [4, 5, 6]. There are rathn ft'w studies on the analysis of 
skew anisotropic plates. Among them let us mention that by Sl'CHAR present­
ing a method of determining influence surfaces by means of polynomials [3]: 
:'{AROuKA applied the method of finite difference;: for a statie load [7]: just 
as MELE [5], involving also the yariation calculus. 

In what foilo'ws, skew anisotropic plates under arbitrary static loads 
will he analvzed by the SARKISYA:,\ small parameter method. 

2. Fundamental l'elationships. Differential equation of skew anisotropi.c plates 

The problem 'will he analyzed in a left-hand co-ordinate system where 
the xy-plane is eoincident with the middle surface of the plate, and thc z-axis 
is normal to it (Fig. 1). 

Relationship between stress and strain components defined in this ske'w 
eo-ordinate svstem IS expressed hy the matrix equation [6, 5]: 

cr = BE 
where B = [Bit:] (BiI: BI;i) 

i = 1,2,3 
k = 1,2,3 

(1) 

These expressions are formally identical to the well-known relationships written 
for an orthogonal co-ordinate system hut the elements of cr, E and B haye dif­
ferent physical meanings [1, 6]. 

Differential equation of the ske,,; anisotropic plate [5]: 

(2) 

6* 
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h3 

where Dik B iI, -- and h is the plate thickness, 
12 

and 

w(x,y) is the displacement function of the plate in direction of the 
z-axis 

q(x,y) is the load acting normally to the middle surface of the plate 

(in direction z). 

ilZ I! 
JJ 
x' 

Fig. 1 Fig. 2 

In conformity 'with [5J, boundary conditions can be written as: 
a) If the edge x = const. is simply supported, then along this edge 

H' = (I (3) 

b) If the edge x = const. is damped, then along this 

au' 
= 0 and ----

ox 
o. 

(4) 

(5) 

c) If the edge y const. is simply supported a beam of fiexural 
rigidity El (to be referred to as elastically su.pported), then along this edge 

= 0 that is -L (6) 

and that is 

(7) 

Definitions of specific moments 111 and shears Q are the same as in [6] 
and [5]. The above boundary conditions 'were published by LEKHNITSKY for 

rectangular plates [3]. 
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3. The small parameter method 

3.1 Transformation of the differential equation of skew anisotropic plates 

SARKISYAN developed the solution of the differential equation of fOTm (2) 
by the small parameter method for simply supported rectangular plates [9]. 
Belo'w, this method will shortly be described in the ske,,- co-ordinate system 
pr,~se'nted III item 2. Let us apply co-ordinate transformation: 

where 

x = xDh1 

= W[x(x), p(y)] 

differential 

.Y = P DW 1 
q(x,y) sin q; = go (x, p) f' (8) 

t:ranSf01"ln(~d to (8) for the co-

(9) 

(10) 

and are "products" of the function rV(x, p) ,,;itll operators: 

L)= 
64 

'2k 
64 84 

1 
-

87:4 8:x2 8(32 8p' 

= 4 (kl 84 -'- k 8
4 

-) 

I 8x3 0/3 2 ox op3 , 

(ll) 

'where: 

Dlf2 . 
k - 33 I 
1- Dl/4 Dli4 

11 22 , 

a' = - D Z3 J' 
, Dl!2Dli2 

22 33 

(12) 

,ll 

Thereafter let us write function W(x, p) as power series of parameter p. 

'" 
W(7.,p) = Wo (7.,p) -+- >-',atw~ (x,p). (13) 

t=l 

Substituting (13) into (9) and separating this equation according to the.. 
powers of,Lt an infinite series of differential equations arise: 

L} [w~] = qo 

LI [W;] = L2 [J1!;-1] (t = 1,2, ..... ). 

(14.) 

(15) 
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Thereby the solution of differcntial equation (2) of skew anisotropic 

plates has been reduced to that of Eqs (14), (15), similar in form to the differen­
tial equation of rectangular orthotropic plates. Boundary conditions for the 
former (see item 3.2) are, however, more complex than those of rectangular 

orthotropic plates with the same type of cdges. Furthermore, the known func­

tion in the right-hand side of the t-th differential equation from (15) - <~ prod­
uct" of the solution of the (t-l)-th cquation by the operator L~ as a ~load~' 

is also morc complex in form than usual for orthotropic plate:;. 

Being written (14) and (15) in a skcw co-ordinate system, their solution 
means physically the deflection function of a platc made of a material ·with 

two planes of symmetry including an angle (F beside the -x"y-p1ane of sym­
metry of elasticity - viz. planes xz and yz, for which the directions of identical 

elasticity characteristics are obtained by skew reflection, i.e. paraUeUy to 

axes y and x, respectively. Such a material - resulting from mathematio<11 
ahstr~,ction - is termed a clinogonaUy anisotropic one, in short a clinotropic 

one. 
The infinite 5eries in (13) i5 rapidly converging, .u being much less than 

unity lwcau:"e of its physical meaning. L('t us refer to fuyourahie res'-I1ts 0E 

COll\ergency analyses by SARKISYAi\ 101' anisotropic plates 

all edges [10]. 
F or rectangular orthotropic plates !J 0, hencc Eq. the final 

solution, and (15) is 5uperfluous. Of eourse, the described method lends itself 
also for skew isotropic or 0rthotropic plates. provided coefficients in (2) 
arc replaced by tho'3l' adjacent to the corresponding term of the d.ifferential 

equation of the skew isotropic or plate [5, 

" .) J._ Trmlsformation of boundary and 

3.::1 Simply 
condition (3): 

conditions 

c{)n~t. rn 

= 0 ff"" = 0 (I = L 2 .... ). 

T ransformillg relationship (4) according to (H), multiplying 

and separating according to po"wcrs of 11, Sarkisyan obtained tbe to'llo,v1.ng 

relationships [9]: 

o 

'2k 1 _._--'--"-

8x 8[3 
(t = 1,2 .... ) 

I 
I
· (17) 

J 
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3.22 Elasticall)' supported edge at ,5 = con st. Transforming relationship 
(6) according to (8). multiplying by F;;} 2, and separating according to po,,-ers 

of ,11: 

o 

accCi,ni:ll1£[ to relatioll;ship 
scparating Qcconling to pr)\\"tcri' of .u: 

(k 
e3 n:;J 1. S·l 
--- - rt,1 

where 
El 

D,!m; 

(18) 

(19) 

=0 

(:2 ()) 

(t 1.:2 .... ) 

(:21 ) 

3.23 Continuity conditions for continuous skei(" anisotropic plates l("ith 
intermediate simple support. Fig. :2 is a detail of a continuou:3 skew plate. with 
simple supports at x = 0, ,,,J 0 and x' = a'. D(,f1('ction function is sought 
for in form of functions defined between two intermediate supports. Plate 
deflections are giyen by functions 1(" = 1("(X,.") and 1("' = 1{"'(X',y') in domains 
o x a. and 0 x' a', respectiyely. Along the bnunc!aries of neighbour­
ing domaiils i.e. at the intermecliate supports a compatibility and an equilib­
rium, condition can b<e written each. 

According to the condition of compatibility x = a i.e. x' = 0, functic!'.:3 
1(" and 1("' haye a common tangential plane. This condition applied to differen­
tial equations (1-1) and (15), respecti,-ely, yields the condition of continuity: 

8:x 
8W~ = 0 
ox' 

8 

8/::' 
= 0 (t = 1.:2 .... ). 

Equilibrium condition at the same support: 

J1.~ = O. (:23 ) 



198 GY. SZIL4GYI 

Substituting in this condition the relationship for flexural moment 
J"\;[x [5] and transforming according to (8), multiplying by DJ.} 2 and separating 
according to +he powers of .u yields: 

~. Jfi' 02 
~-Lk k 0 

8:x2 ' 3 AfI' ox"':! 
3 

~f3'" o - o -
(24.) 

.-"'\"W~ 82Jf; 82 W~; k 82 W; ::r t I k ------- = 2kl 8:x2 ..., 3 8{3'2 8:x:':! 3 8p''!. 

4., Solution of the differential equation of clinogonaHy anisotropic plates 

4.1 General 

Relationships (14) and (15) being similar in form to the differential 
equation of rectangular orthotropic plates with principal anisotropy directions 
coincident 'with the co-ordinate axes, the "clinotropic" platc problem in item 
3 can in principle b., soh'ed by any method kno'wn from the bending theory 
of orthotropic plates. only that it has to be adapted to the more complex 
boundary conditions in item 3.2 and to the complex "load functions" in the 
right-hand side of Eqs (15). In "what followE, application to the differential 
equation (14) of the double Fourier series method developed hy KACZKOWSKI 

and WILDE for orthotropie plates [2, 11] will he presented. 

-1.2 The Wilde solution of orthotropic plates 

\\'ILDE expanded all terms of the differential equation of orthotropic 
plates into F ourier series, then, on the ha:::is of equality hetween the mn-th 
Fourier coefficients, determined the coefficient 

(25) 

of the solution of form 

1O(:x, /3) = (26) 

The applied notation::: were: 

nz:r 
D 
jJ ., (27 ) 
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where a1 and b1 are the edge lengths of the ske'w plate in the co-ordinate system 
'X, /3, hence, from (8): 

(28) 

Terms of the coefficients !Cmn according to (26) are: 

,(I) _ 1 
1{nm - --- qmn (29) 

lr -- (::t.. b,) sin x .. , x dx, 0
2 

l{' J I 0/32 .. .,. J (30) 

1 
1)"' ")] -' I) :-:-lll fJd (J -L 

- .:1,. f'" [w(x, 0) 
o. 

(31 ) 

(32) 

where qmn is the mn-th coefficient of the double F ourier sine series of the load 

qo(ex, (3), 

Jrnn = x;, + 2b;, f3~ + (J~ 
.Jx = x?" - 2brn (3~ .cl .. "3 . 'lk 2 ;? }. 

Pn -:- - XmlJ" 

(33) 

Boundary value functions in (30) and (31) can be written as simple 
F ourier series: 

~CnSinr3n(31 
T1 

- ::5' Dn, sin xm x J == . 
m 

(34) 

w(O, (3) = ~ En sin f3r: f3 w(a1,f3) = 2,' Gr: sin (3n f3 
T1 n (35), 

w(x, 0) = ;;;E F,,, sin Xm x w(X, bd 2,' Km sin xm x 
m m 
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which, suhstituted 

,(Ill _ -.l 1 
1[17111 ---

a 1 b1 -lmTl 

u'(r),ii l = 
-.l 1 

(! 1 b1 .I"'n 

Cl'. SZIL.,{GYI 

into (30) and (31) yield: 

{_~:::'...bl [A. 
.) !; 

(- 1)171 en] ..c... 

{--lci~l.. [En - ( It'Gn ] -

'l 

'J 

[Bm 

[ F:" 

(-·1)" Dm ]} (36) 

(~, I)" Km]} . (37) 

Th us. the \\'ilde analysis of orthotropic plates lends itself particularly 
for cases ,\'here boundary conditions arc giyen in forms (34) and (35). 

4.3 Satisfaction of arbitrary boundarv conditions 

The preyious analysis in that form satisfies boundary conditions in the 

form of infinite series only. Therefore expressions (25), (2.6), (32), (36) and (37) 
will be transformed so that each Inn-th term can in itself satisfy boundary 

conditions, consequently constants All' Bm etc., ])clonging to conditions in 
item 3.2. can also be determined (sec item 5). 

Beplacillg (26) into (:25). thc part of the double infinite Eeries containing 
i) ,(Ill) -<IV), '., .rIll .II!!) JlV) -, -f' ,cl ' ., .. f' " 

, ltmn ' 1{ mn lhat 1~ /{ ,/{ ,l[ aLe tran" orllH In tUll" ,1:-- ollo\\". 
Transformation of l(.rIII 

wherc 

" 

1)" D,:: 
----"-~-

A. 1)r7l 

This latter can a1:3o ]w written a:3: 

C,(!I) _I a[ x It . - -.' ., 
.) 

,., 

/!!!.!) 
, 3 

l . ,-.' .----'c.:'J ~ln ;{.n, X '::'111 

"> 

P 

2,' Bm sin x". x 
m 

c.; sin 

(38) 

(39) 

( ·10) 
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the moth (,Of·fficient of thc Fourier sine serics of flE1ctions 

') 

::l3_ .. 1 and r a 16::l 

6a 1 ) 

bf'ing· and 
2 

rcspectiydy. 
(ll x~~! 

Tran:,formation of 1{.(llll 

where 

:, 

11 
m [. 

1 )'E ., 
Cl! ::lr:. 

Thi~ tatter can also he writtpIl Hi'; 

the moth coefficients of the Fourier sine series of functiolls (I 
x 

x ') 

-- heing ' ..... - and -- -_:,_ .. _'-., 
a 1 L a1 ::l m III J.rn 

Similarly. for 1{J I; 

:=oo(IV) _ 1 [(1 :1 ) 11 _ ;'3) Ir(O.O) (1 ~~J u'(O,b]) -w -

2 \ b1 b1 

::l (1 .' I , /) . 

lr(a] b])]. .... - lr(a]. 0) -;-
(11 hI I a 1 b1 

201 

(42 

( -14) 

(4.') ) 

and 

(46) 

(48) 
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Let us mention here that a transformation similar to (42) has also been 
applied by KACZKOWSKI [2]. 

l\"o'w, the suitable form to satisfy boundary conditions is obtained hy 
substituting (26) then (29), (39), (41), (43), (45), (47) and (48) into (25). 

4.4 Consideration of an arbitrary load 

It is obvious from (29) that to solve differential equation;; (14) and (15), 
coefficients of the double Fourier ;;ine series of the load function q,,(x, fJ) are 
needed. When solving, however, the t-th equation in (15), the right-hand 
side is ohtained first as a douhle Fourier cosine series, it being the product of 
W-t _ 1 of sine series form hy operator L2 • 

The double Fourier cosine serics can he transformed in a douhle sine 
one in the manner to be descrihed helow. 

Two respective forms of function p(x, fJ) defined in the ranges I) 

and 0 (3 ~.~ bl are 

p 

n m 

If coefficients bpq are kIlov;n: 

in 
for ey{-'n 

n 

;} = 1,3,5 

for odd 
m 
n 

(50) 

Thus, in this expression terms are identically zero 'where either both 
p and m or both q and n aTe even or odd. 

5. Applications 

5.1 Skelf anisotropic plates simply supported along all edges 

Sarkisyan developed the small parameter method for the <malysis of 
rectangular anisotropic plates simply supported along all edges [9]. As first 
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application of the method presented in items 3 and 4, determination of the 
deflection function of skew anisotropic plates simply supported along all 
edges subject to an arbitrary static load will be presented. 

The solution satisfying differential equation (14-) and boundary condi­
tIOns (16) and (17): 

~V;j (x. /1) sin Xm x sin i'ln I) 
n m 

where 

.LU,-,,,,-,,,nHU side of t-th differential equation in (15) transformed accord-

where 

b:-l. pq cos xl' x cos 
q p 

(52) 
fl m 

PC! -

is the pq-th Fourier coefficient of the solution of the (t-l)-th differen­
tial equation; 

coefficients elt-l,mn are obtained from bl _ 1 pq according to (50). 
Boundary conditions for the t-th equation are, according to (16) and (17): 

For x 0, TV = 0 and mn U~-l,m;: cos f311 f3 (53) 

For x and ( l)m TT7 ~ D D 
,- mnWt-l.mnco"tJ"fY 

(54) 

For fJ 0, Tr~ = ° and >' >' mn W;-l m" cos Xm X 
~.-=::::zi I·' 

(55) 
" m 

For ,) bl , W; = 0 and 
GiP 

(56) 

Terms according to (26) of the coefficients of function Wt of the form (25) 
are: 

J mn 

(57) 
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The other terms are obtained hy replacing boundary conditions (53) 
through (56) iuto Eqs (29) through (31). Integration yields: 

.(1 - (--I)q-nJ[ 1 
(-_ l)p-m 

I 
1 -- ( l)p-m I 

I 
p":"'m p m 

(58) 

W'(l!!) 
t,mn 

W'(IV) 
t.rnn O. (59) 

Accordingh". constants --in and Cn in (36) will be written separately, 
since they \\"ill be needed in item 5.2. 

1) pq [ I 
q Tl 

( 60) 

l 
(61 ) 

J' q Tl 
pqW-1,P(! ( 1)P 1

1

1
------'---

q-lZ 

The prohlem IS soh'ed hy substituting Eqs (SI) and (57) through (59) 
into (26), (25) and (13), and transforming into the xy co-ordinate system aceord­

mg to Eqs (8). 

5.2 •. Bridge·like" skelf anisotropic plate 

A usual problem for hridge structures is that of a skew anisotropic 
plate with t,,"O opposite edges simply supported and the other t\\"() edges 
elastically supported. Let us consider now a plate simply supported 011 edges 
x 0 and x = a - or ex 0 and x (11 after transformation according to 

(8) - and supported elastically along edges ," 0 and = h i.e. ,1 0, (5 hI' 
Solution of the t-th differential equation in (IS) 'will he s{)lIght for in 

form5 (2S) and (26). Coefficients TV/,~;zn will he 'written according to (29). (36), 
(37) and (32). Conditions for edges x 0 and x = at equal (.33) and (54), 
respectively, while those for edges /j 0 and /j = hI can be 'written according 
to (18) and (20), respectively. Determination of fUllction W",) as solution of 
differential equation (14) 'will not he treated here separately, only referred to as 

a special case 'when analyzing W"t. 
Also here, Wg?ZIl will be determined according to (57), hut W~l),zn has to he 

computed with the Fourier coefficients qmll of the effective load in the numerator. 
For the determination of functions W"t and Woo, houndary conditions 

imply terms in (37) to he: 

En = Gn = 0 (62) 
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and 

0. (63) 

Similarly as for the plate simply supported along all edges, when deter­
mining }T'o, An = en = 0, while for W'''h the An and en yalues are obtained 
from (60) and (61). respt'ctiyely. 

Find no'w coefficients Bn" Dm , Fm, Km in (36) and (3i) by means or 
TF,·(lI) 1 TF,.·(iII) f 1 I' , j ." terms w', anc WI trans onnec accorc lUg to IteIll .,,:>. 

According to boundary condition (18) written for edge /) 0, Bm and 
Fm are related hy the expression: 

where gm = ° for TV» 

fl cm 
·1 

grl; 

-"-'~'--""-' for TT; l
J 
. 

q2 

(64) 

Condition (18) written for edge /3 and 1":'1:1 ,l5 follows: 

Dm 

where gin 

---=··g;n 
G! bl 

2' ( 1)'1 
p 

- .. c'-_-"_.. for W; lJ . 

q-
(67) 

According to boundary conditions (20) written for edges /3 = 0, and 
/3 === b1 - involving (64) and (66) - to deternline .Fm and K17B a series of linear 
equation systems with two unknows are obtained, in the following form: 

elF F,n 
C2 F F,n 

CIl{ 1{m = ClO 

C"21\ Km e"2fl 

~ ---'--':' .... --
n /3 n X;n 

(68) 

(69} 
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Relationships for e2 F and elK are obtained from (69) by multiplying 

~ n b1 ~ . 
terms containing..;;;;; by (-1) " replacing term = -:z;" k3111 clamped brackets 

3 n 

by 

2 2' [An - ( ... l)m Cn]· 
n 

n 

2 
-:-----'~.:.:...:.~-- - --3- 2' [An -. 

a 1 Xm n 

-( 

r 
(70) 

Relationship for eZl! is obtained from (J 0) by multiplying terms contain-

ing 
n . /) gm ! g;;z.,. 1 ( gm 

(-1)', replaCIng -- - --.J m tile ::;econd term ---. " vI 3 6 6 

:: coefficien15 Er in the last but one term a' 
en and Fr in the last term 

Since the last terms of e10 and ezo include all the F and respectively, 
in the first section of the solution this term "will be zeroed, the computation 
repeated with the obtained F and K values, and iterated to the desired 
accuracy-. 

In course of the determination of coefficients and Km for in 

the coefficients of the equation system (68) dt_l,mn = qmll' and An en = 

== gTn g~l == 0, furthermore, last t'ViO terms of e10 and e20 are zeroed. 
Thereby, coefficients An, Bm, Cn, Dm, En, Fm, Gll , Km have been deter­

mined. Substituting them into (36) and (37), and making use of (57), (63), (25) 
and (26), the solution is available in the form of Eq. (13). 
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Summary 

Application of the small parameter method for the analysis of skew anisotropic plates 
under arbitrary loads has been treated. Solution of the differential equation of the skew 
anisotropic plate is reduced to that of equation series similar in form to the differential equation 
of orthotropic plates, only that here the boundary conditions are more complex. Arising 
partial problems - differential equation of clinogonally anisotropic (clinotropic) plates 
have been soh'ed bv mean" of don!"Jr, 17 (nricr series. 

Application of this II1r:thod has bccn demonstrated on skew anisotropic plates either 
simply supported along all edges or simply supported along two opposite edges and snpported 
elasticallv along the other two oncs. This method lends itself to satisfv other boundary or 
continuity cond'itions. e. g. for continuous plates. provided edges are pa~allcl to the ske,,: co­
ordina te axc,'. 

This methOll can be applied 0:1 a digital computer. sincc it contQins seyeral rcpetiti,'e 
operations . .,:\5 a consequence of the nature of hoth the pov;er series of 5111a11 parameters and 
of the double Fourier ,cries. accuracy can he incr;~asecl bv the use of longer rum:;n!r time, 
rather than hy greatt"T capacity. COllyergcl1cc of the applied infinite series is'- slo,.,,·(>r 
for stre~sr" and 71(>2.: thp than for deflf'f'; ion;: n7Hl fart her froln the ~fl~es. 
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