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Determination of the optimum lift of pumping stations feeding conduit
systems is based upon economic technical dimensioning methods such as the
marginal pregramming, the method by sections, and the linear programming.
In this paper, the technique of application and the possibilities offered by
a new method, that of dynamic programming [2. 3]. in the practical economic
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dimensioning of branching pipe networks and in determining the optimum
lift of pumping stations is presented.

To find the optimum lift of the pumping station for the conduit system
shown in Fig. 1. the variation of the optimum capital investment for the
construction of the network in dependence of the lift of the pumping station
and of the pressure loss in the conduits is to be determined.

In designing the network, all the pipe diameters should be accounted
for conveying the discharges of each section within certain limits of velocity
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(for example, in Hungary. 0.5 to 2.5 m/sec in sprinkler irrigation). This sets
limits also from the point of view of the head loss in the conduit system.

At the tapping points, a service pressure depending on the function of
the network should he produced. The head loss permitted in the network up
to the tapping points is the difference in pressure between that existing in
the delivery conduit branched off the pumping station and that to be main-
tained in service.

Applying the minimum diameter permissible in all of the sections of
the network, the head loss in the conduits and as a result, the required lift
of the pumping station will be the maximum (Hpyay), and the construction
cost of the conduit system the minimum (B.;,), and vice versa,

If the lift of the pumping station is of some Intermediate value, the
network may be composed of conduits of very different diameters. Never-
theless, for every ease a combination of diameters, optimum for construction
costs, can be found. The co-ordinate values H— B, so obtained are located
on a polyvgon, termed the polvgon of minimum cost, which will be verified
in the following.

1. Construction of the polygon of minimum cest of a network

Let us establish the polygon of minimum cost of the conduit system
in Fig. 1 by dynamie programming starting from the point corresponding to
the maximum pumping lift.

Reduce the lift of the pumping station by a value 1k, and increase
accordingly the conduit diameters stepwise to obtain the optimum cost of
construction of the conduit system, all along the polygon of minimum cost.

As a matter of course, the conduit diameters are to be changed so that
the required service pressure is realized at every critical tapping point. Higher
pressures than required are admitted if no pipes of smaller but just sufficient
diameter are available.

Definitions and symbols:

section: conduit between tapping point and branch point, between two tapping peints or
branch points:
branch: conduit without laterals;
critical route: conduit between the pumping station and tapping points;
policy: possibility to change pipe diameter so that the head loss uniformly changes along
each of the critical routes (safe in lack of pipes of smaller diameter):
optimum policy: policy resulting in optimum cost:
subpolicy: policy along one conduit section or branch:
optimum subpolicy: subpolicy resulting in optimum cost:
ir = mark of the policy:
o; == change in construction cost of the conduit system for unit change in the lift of the
pumping station, l.e., absolute value of the slope of the polygon of minimum cost
in the case of the i policy;
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= mark of branches or sections where the i’ policy implies to change the pipe diameter:
o, == change in_the investment costs per unit head loss upon replacing the n'" diameter by
the n - 1°* one in section k or in one section of the k™ branch:
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where

From the foregoing it follows:

Evidently, starting from the alternative with the least diameters, the con-
dition of policies and subpolicies to be optima is to minimize the increase in
capital investment per unit head loss (or lift of the pumping station). i.e.,
the coefficients «; and oy,

For ome conduit seciion as many subpolicies may exist, as many con-
duit diameters can be substituted for the given diameter. If a smaller dia-
meter is to bhe replaced by a larger one. then the condition of the optimum
subpolicy is:

% == minimuimn.

Within a branch, for every conduit section there is an optimum sub-
policy i.e. a minimum diameter. Thus, for the given branch, the optimum
subpolicy consists in changing the diameter along that section where there
is a minimum increase in capital investment per unit head loss reduction
upon increasing the diameter.

The conduit svstem shown in Fig. 1 is built in a nearly plain area.

=]

It has four critical routes which consist of the following sections and branches:

Critical route 1: la -+ 11
Critical route 2: la -~ 12
Critical route 3: la -~ 15 4 13
Critical route 4: la - 15 - 14

The conduit diameters should be altered so as to provide a uniform
change of head loss on each of the four critical routes. Accordingly, three
main policies i.e. diameter changes along the following sections and branches
may be selected:

Policy 1: 1la

Policy 2: 15+ 11 - 12
Poliey 3: 11 -+~ 12 -~ 13 -+ 14
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These three policies consist of subpolicies, because the branches are
composed of sections. Now. an essential theorem of dynamic programming
is that an optimum policy must consist of optimum subpolicies (evident in
our case).

For the network as a whole, the optimum poliey is where
o; = minimum.
This policy may be found by censidering the previous policies in the

aceurrence of optimum subpelicies.
The respeetive «; factors of the three policies are:
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Each of the policies is made up of as many optimum subpolicies, as
there are sections where the adoption of the policy involves diameter changes.
(In the above relationships the =z, factor of
be substituted.)

Consequently, the optimum policy is that with the least =z, factor.

the optimum subpolicies should

At the same time this is the absclute value of the slope of the polygon of
minimum cost.

According to the principle of the lowest ascent, this slope can be followed
to the next break point corresponding to the adoption of the larger diameter
all along a sectizn pertaining to a subpolicy of the optimum poliey.

Now. the optimum subpoliey to be adopted. hence the optimum policy
for the conduit system, should be found as shown in the foregoing, by follow-
ing the corresponding slope.

By this means, the polygon of minimum cost of the conduit system can be
stepwise produced to lead to the point with the co-ordinates Hye Buas.

The computation may also be started from this point. Then, the principle
of the steepest slope is valid, and the optimum policies are defined by the
condition

%; = maximum, Le. ;= maximum.
The problem is a rather cumbersome one for manual calculation, therefore

computer programs have been developed, already applied to plot the polygon
of minimum cost for hundreds of conduit systems.
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2. Determination of the optimum lift of a pumping station

For determining the optimum lift of a pumping station, the construe-
tion cost of the conduit system and the cost of pumping are to be confronted.
This is advisably done by the common method of comparison of technically
equivalent project alternatives. stating that the economically most favourable
project is where the cost of water delivery

K = o T'U == minimum.
Herein:

B = construction cost of the conduit system:
' = local refund standard himit;

€ == annual cost of pumping, expressed as:
U=C -0 H
where
(} == quantity of water lifted by the pumping station:

<
H = lift of the pumping station:
C, = vearly average cost of lifting unit volume of water to unit height.

The delivery cost of water can also be expressed as:

K = fi(H) + fu(H)
where
JolHy =T -C Q@ - H= C-H
fiH) = B.

This latter function is the polygon of minimum cost of the conduit
system. It is to he determined in the way described above. by means of
dynamic programming, using a computer,

According to the above it is clear that the function B = fi(H) is a
polygon made up of straight runs even for guite complex networks.

The function fy(H) is linear, thus the sum function also consists of

straight runs:
K = fi(H) — f{(H).

Consequently, the optimum permissible head loss has to be equal to a
co-ordinate of a break point of the polygon B = f(H) of minimum cost.
In special cases where the lowest run of the polygon of minimum cost is hori-
zontal, an arbitrary H value at one of or between the two break points is
the optimum.
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This may oceur at certain values of the C factor. Be H,, and Hy ., co-
ordinates of two adjacent break points of the polygon of minimum cost and
Bn, B, ., the respective construction costs, then the special case mentioned
above occurs if:

Bn - CHw - B:: ~1 “_ CHn+1

Hence. the critical value of the C factor:

The stepwise diagram in Fig. 2 shows the variation of the optimum H
as a function of C, for a given conduit system.

In the case of a given project, it is rather difficult to determine € (owing
to the implications involved in the estimation of the vearly average number
. It s
more feasible to determine the range of possible € values and their effect on
H optima. In our opinion, from among pumps of different lifts available.
that one will be the most economical where H is as near to the upper limit

of the service hours, of the effectiveness of the pumping stations ete

of the optimum range as possible, it involving the lowest immediate construe-
tion costs.




OPTIMUM LIFT OF PUMPING STATIONS 244

If the optimum lift of the pumping station is to be determined for a
single C value. then the polygon of minimum cost can be established by
adding the C value to the optimum policy z;, directly resulting in the curve
of total cost (B -~ CH) and the computation ends at the optimum value of H.

3. Other uses of dynamic programming f{or branching networks

The dynamiec programming may be applied to several interesting analvses
to be deseribed below.

Is the given combination of conduii diameters the oplimum?

The outlined features of the polygon of minimum cost imply the state-
ment related to its break points:

%y

where z; and x, are factors corresponding to the optimum policy in the
direction of smaller and higher head losses, respectively.

Thus, starting from the corner, a steeper ascent may be applied along
the polygon in the direction of lower, than of higher head losses,

Setting out of the combination of pipe diameters considered. the values

%; = minimum and ;= maximum

representing the optimum policy should be determined. If these values satisfy
the outlined condition. then the given combination of pipe diameters is the
optimum.

Finding the optimum starting from an arbiirary combinaiion
of conduir diameters

The arbitrary combination of pipe diameters is not understood in a
quite general way but assuming that the head loss permitted by the lift of
pumping and the required pressure along the critical routes have been con-
sidered in design.

The optimum belonging to a given pumping litft will be found either in
direction of the lower or the higher head losses with an

ascent

minimum or
slope 2; = maximum,

respectively.
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The first step will be to determine the limiting values of the x factor.
It these satisfv the condition

%
then the solution selected is the optimum.
Otherwise the set of the feasible solutions will be followed to the first

-

corner according to the factor z; = min.

ing

B of pip

S

«

Construction co

Here the factor :,Z, == maximum should be determined and this policy
followed to the next corner. If' the pertaining head is lower than H. then
the factor 'y—l == maximum should be rccalculated and the process continued.
The corner above H will be left according to the condition :/-_ = minimum.

This alternation should be repeated until

giving the optimum solution.

The method is illustrated in Fig. 3.

The set of coupled B — H values corresponding to possible combina-
tions of diameters in the conduit system is represented by a conjugate set
of diagrams bordered below by the polygon of minimum cost.

Fig. 3 is related to a simple conduit network, in more intricate cases
it is difficult to produce such a diagram, owing to the great number of alter-
natives. Each of the straight runs between the diagram corners represents
a policy.
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Summary

Dynamie programming lends itself to an economical design of pipe networks and
determination of the optimum lift of pumping stations, permitting

— to establish the polygon of minimum cost:

— to decide whether a given combination of pipe diameters is the optimum or not:

— to find the optimum solution starting from an arbitrary combination of pipe dia-
meters,

The author directed the development of programs in linear, sectional and dynamic
tems for various computer types to economically design conduit networks and to determine
the optimum lift of pumping stations. In recent years, these have been applied to design
sprinkler irrigation systems over about 20,000 hectares of area. In some cases, savings over
20 per cent of the construction costs of the conduit network have been achieved by selecting
the optimum solution from a number of routing alternatives.

Investigations confirmed dynamic programming to be a highly efficient method for
establishing the polvgon of minimum cost, hence. for determining the optimum lift of the
pumping station.
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