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Intreduction

If the landnar flow is uniform and velocity vectors are parallel to the
x-axis, then velocity distribution in the plane (y,z) can be described by a
simplified form of the Navier—Stokes equation:

(1)

with z# being the dvnamic viscosity and p the dynamic pressure. If the pipe
or open channel is a prismatic one and vy is equal to the full velocity v then
one obtains:

gS 3- v ,
R E— A VA ]l (2)
3 6:‘ -
. . .1 dp . A
where g is the gravity constant. S = -—— —— the hydraulic gradient. » the
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kinematic viscosity, o the specific weight of the fluid and 4 = 72 the Laplace
g b K

operator.

However simple Eq. (2) may appear. its exact solution by integration

is known only fer a few cases, as circular, elliptical or equilateral-triangular
pipes. Solutions. where the integral consists of the sum of an infinite series
have been developed for rectangular pipes and for those having an isesceles-
triangular eross section.

The only wayv to be resorted to in cases of cross sections other than the
above ones can be found in the application of various numerical methods.

All numerical methods. whether to be classified as relaxation methods
or a direct one that will be described presentiyv, are based upon the same prin-
ciple of substituting the Poisson-type partial differential equation of (2) by
as many linear equations as there are points with a veloeity value to be
determined. This set of linear algebraic equations may then be solved either
by “manual relaxation”™. by relaxation or matrix inversion performed on a
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digital computer, or, by using an electric analogue of the hvdraulic system
to be outlined below.

Again, the considerations underlying the establishment of a set of
equations above mentioned will vary according to the geometry of the points
representing the linear equations.

The geometric patterns to cover the velocity field can be the follow-
ing ones:

1. Square 2. Rectangular

a) complete a) complete

b} truncated b} truncated
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3. Equilateral-triangular 6. Rhombic
4. Hexagonal 7. Irregular triangular
5. Polar 8. Combined.

Examples of these patterns, also pointing out some of the most favour-

able fields of their application are shown in Figs 1 and 2.

Difference equations

In the following, the difference equations obtained in each investigated
point by expanding Eq. (2) into a Taylor series in the vicinity of the point.

will he discussed.

ok
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If the cross section to be examined is covered by a rectangular mesh
(Fig. 3). with elements measuring 4y by 4z then the difference equation.
by neglecting higher-order terms of the Taylor series, will be:
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If the mesh is a square one then obviously 4y = 4z = a and hence
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Egs (3) and (4) hold only if the network is a complete one. that is, the solid
boundary does not intersect any of the mesh lines in points other than the
nodes. Otherwise, instead of the regular star shown in Fig. 3 one may have

one or more irunceied stars slong the boundary (Fig. 4) satisfyving the equation
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One can prove that Eqs (3) and (4) are but special cases of Eq. (5).
If the mesh used is a thombic one with side lengths I inclined at an

angle z. then the Navier—Stokes equation will be:

1 g v ¢
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(0)

with Y and Z being the oblique co-ordinates parallel to the mesh lines. A dif-

ference equation for z == 60° can he written as:
ference ¢ t fi 60
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with notations in Fig. 3.

If the cross section to be investigated is either a circle, a circular sector,

annulus or an annular segment then it may be appropriate to apply polar

co-ordinates by using the equation
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For notations see Fig. 6.
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In some cases, the use of an equilateral-triangular mesh may seem justi-
fied. An approximate solution of this case is the equation

-
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when considering only six points around the investigated one. If
the Tavlor expansion is continued up to the 4th derivatives and six more

points are considered, a more accurate result can be obtained from the equation

however.

48vy ~ (v +. .. U oS o
A8y - 9 = 2/ e (10)
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The explanation of subseripts used in Egs (9) and (10) is given in Fig.

o e
A quick but less accurate method lies in the application of a hexagonal
mesh with only three points considered around the investigated one (Fig. 8).

frs difference equation is

A gS 110
By = o Uy e Uy Vg o BTy mE o e (11
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Fig. 7 Fig. 8

The mest flexible netwoerk of points is the one consisting of riangles
of arbitrary size but containing no obtuse angles. Thizs network, however,
requires a different approach than the previous ones and it will thus be dis-
cussed only after the deseription of the main subject of this paper. the electric
analogue of laminar-flow veloeitv distribution.
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The electric simulation of a laminar-flow velocity field

It is a commonplace fact that two-dimensional potential flow in the
{v. z) plane satisfies the Laplace differential equation

8 g SR

v‘_‘ G = e LA (]2)
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It is also known that when applying a square mesh on such a potential
field, the following relationship will hold for the nodes:

o
=

This difference equation shows a conspicuous similarity to Egq. (4). the only
difference heing in the fact that the uaderlyving Laplace equation is a homo-
geneous one. whilst the Navier —Stokes equation of (2) is non-homogeneous.

Likewise it is known that the basic equation of two-dimensional potential
theory in electrodvnamies

= 0 (14)

can be modelled by aid of a resistor network shown in Fig. 9 where

Uy = Uy - uy - w, o g

LR (15)
R

or. in other terms:
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i.e. the algebraic sum of currents tlowing in or off a node must be zero.

But Eqs (15) and (16) are analogous to (13) and therefore the arrange-
ment shown in Fig. 9 is frequently used to determine pointwise values of
flow potential by measuring voltages u in the analogous network adjusted
to prevailing boundary cenditions.

Now, it is but an obvious siep (o exiend this type of analogy to laminar
flow as well. and hence, to replace the counstant term gS/r of the Navier—-
Stokes equation through a constant current iz introduced {rom without in
each node of the analogue network. If this condition. together with boundary
conditions of laminar flow, is satisfied then the electric network of Fig. 10
will represent an analogue to the velocity field of uniform laminar flow.

Thus. for each node of the “square” electric network. the following
equation will hold:
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Wy = Wy = Uy = u, — duy

Lip—0 (17)
R
for. by introducing the conductance ¢ == 1/R.
clu, = uy =+ uy - wy o dug) - ig =10 (17a)

By comparing Eqs (17) and (4) it can he seen that the linear relationship

between voltage u; and velocity ¢, of the i-th node can only be maintained if

v a-

a conditien to be satisfied easily in case of a square mesh consisting of equal
side lengths a and resistors R. respectively, but meaningless in any other
case, Therefore it is required to find a prineciple of general validity, applicable
to the design of analogues of arbitrary geometrical pattern. by aid of which
the resistors connecting two adjacent nodes can be dimensioned. This goal
has already heen achieved by Tasyy —Tscarassny who derived the relationship

¢; = keote, (18)

for triangles of a network not containing obtuse angles. with ¢; being the
conductance of a triangle side, k a proportionality factor being constant all
over an electrically isotropic continwum (by varying k it becomes possible to
simulate stratified currents or other variations of viscosity). and «; the angle
opposite to the side in question (Fig. 11). Obtuse angles should be aveided
because of their negative cotangent.
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From Eq. (18) also it follows that conductances depend only upon the
shape but not upon the size of the triangles.

Now, as said before. sides (except the solid boundary), are generally
common with two adjacent mesh units (triangles or quadrangles) involved.
Thus, the resistance value of the resistor R connecting two nodes is obtained
as the reciprocal value of the sum of conductances (¢’ - ¢”) pertaining to the
adjacent two mesh units.

(%}

Opposite to the diagonal of a square or a rectangle. there are two right
angles resulting in zero conductance or infinite resistance. thus it is pur-
poseless to subdivide quadrangles into triangles. However. such subdivision
carried out theoretically may prove helpful in answering other problems.
Thus for instance. this way it can be proved that for a rectangular mesh with
a ratio of side lengths .1y/ 1z = a/b. the corresponding ratio of resistors
should be

R _ (ﬁ) (19)

Influence area

So far. the way of calculating resistor elements of an arbitrary network
has been discussed but still the question of currenis to be introduced in each
node in order to simulate the hydraulic term gS/» remained open.

In case of a rectangular network. one has the Navier— Stokes equation

o —— 2 P S T P N
Up Tl Sl Uy Uy Sl & (20a)

a* b= i
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and the analogous electric equation

L, B . . D4
Uy =+ Uy~ 2U, Uy == U, ~ 20, . -
R Bt B U (20h)

R, R,

; expressing the

If one introduces the velocity-to-voltage ratio 5 = vy
“model scale” between veloeity v; in a point and the voltage u; in the cor-
responding node, then. after performing wvarious transformations and re-

arrangements on Eqs (20}, one arrives to

(21)

But in accordance with Eq. (19). there is a relationship between the

resistances and the corresponding geometrical lengths:

o
o

T
=l

5

with & appropriately called the analogue factor:

Fu
O = e famp. om. see. |

-Rz‘

But from Eq. (21) it becomes apparent that. apart from certain con-
stants, ig is proportional to the area ab of the mesh unit. Tf all these units
are of the same size, as it is the case with rectangular. square or equilateral-
triangular networks. then the same currents iy should be introduced into
each mode.

On the other hand. if the network is an trregular or mixed one, then
each node has a particular influence aree and currents iz to be introduced
must be linearly proportional to their particular influence area.

The boundary of influence areas can be drawn easilv by connecting
alternately the mid-points of mesh sides and the centres of gravity of the mesh
field elements (rectangles. triangles. ete.).

Nades lving along the solid boundary have influence areas of their own,

with ig = 0.
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An application of the above principles will be shown by means of the
following example:

The velocity distribution of laminar flow in a trapezoidal open channel
will be investigated. Due to symmetry it will saffice to consider one half of
the cross section only.

At first. the network to be applied should be a square one with mesh
side lengths @ == 1. Fig. 12 shows the resistor values representing the sides,
and also the currents flowing through these resistors. Electric potentials
measured in each node are indicated as well as currvents i introduced into
the nodes.

The compound network of Fig. 13 has been deliberately designed so as
to utilize nodes that also exist in the square mesh, Thus. results can be com-
pared or checked. The agreement between the two results is apparently a
close one. The experiment has been carried out in the inverse way, that is.
currents ig to each node have been adjusted so as to obtain the same voltages
as with the square network. and on Fig. 13, these actual currents iz have
been indicated together with those calculated f{rom the influence arveas.
Besides, voltages have been chosen in both cases to be also the percentages
of the maximum veloecity appearing at the intersection of water surface and

profile centre line.

The discharge flowing through a square a> a can be obtained in the

first approximation as

based upon velocity values obtained in the four corners. It can be proved
that by repeated subdividing this square into smaller and smaller ones, the
above term will tend towards

N P
. @ . . . . atgd -
lim AQ = (v, = v, -+ vy == v,) = (25)

a4 12y

Az for the trapezoidal profile, calculation resulted in ¢ = X Q; = 20.172 vy,
which amounts to a mean velocity v == 0.5 v;5ay for the 40 area units of Fig. 12.

This value agrees with that one well known of a circular profile.

o
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If there is a point P, in the vicinity of a solid boundary. with a kanown
velocity vy, then, by assuming isotach lines to be parallel to the boundary
in this environment. (by omitting the details) one can prove that wall shear
stress at point P will be
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ldv | Aw, A g .
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This result has been obtained by repeated halving of the distance ng between
P, and P, as demonstrated in Fig. 14. Fig. 15 shows wall shear stress distribu-
tion of the trapezoidal profile.

Apparatus

The simple electric analogue can be built up on a panel by wiring the
resistors of previously calculated values. The adjustment of the node currents
ig can be a manual one. resembling to manual relaxation but much quicker
than the numerical method. using variable resistors checked by an ammeter.
But, in co-operation with the Department of Theoretical Electricity, the
author succeeded in developing an automatic transistorized current stabilizer.
If connecting to each node a stabilized one adjusted previously to the caleul-
ated value of ig. immediate results can be chtained through measuring node

voltages.
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Summary

The exact analytical solution of the Navier-Stokes equation is only known for a few
profiles of a regular geometrical shape. The author has developed an electric analogue by aid
of which the velocity distribution of laminar flow for anv arbitrary profile can easily be de-
termined. The homogeneous part of the differential equation is simulated by a network of
resistors being much the same as the one used for modelling potential flow, whilst the in-
homogeneous term gS/yis simulated by currents introduced into the nodes of the network.
Beyoud the general theory and its conclusions, some practical applications are also described.
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