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1. Introduction

During the past few vears several papers have been devoted to the
description of the investigation results [13, 14, 15] which, together with a
critical review, outlined a few potential approaches for the suggested develop-
ment of the generalized theory on turbulent sediment transportation. Some
of the more recent coneepts will be considered below, and their detailed physical-
analytical expansion will be described. For the sake of completeness it is
deemed advisable to present s brief historical review of the problem.

During the development of the familiar diffusion theory, VELIKHA-
~xov [24], and later Isatarn [11], Nine CriEN [16], HUu~T [10] and others, started
essentially from a semi-empirical turbulent theory by determining the value
of ¢ from the logarithmic distribution of velocity. The shortcomings of this
approach were pointed out first in Hungary by BocirnI [2].

Other authors, e.g. DosBINs [4], and Rouse [18], introduced a simplify-
ing assumption by considering the turbulent mixing coefficient to be equal
for both phases.

After a detailed analysis of the problem. hased on the theoretical works
of Kowmocorov and Osunov it was concluded by TEVEROVSKY and MiNsky
(1952) that the turbulent mixing coefficient could be characterized by the
ratio of the settling to the mean velocity. The above considerations have
led to the conclusion that the diffusion theory is applicable with a fair approxi-
mation up to d < 0.5 mm.

Subsequent experiments of VELIEHANOV induced him to modify his
earlier equations (1953) and to propound the advantages of the gravitational
theory. The new approach was criticized, however, besides the advocates of
the Kormocorov theory, also by the protagonists of the diffusion theory.
Earlier developments of this controversy have repeatedly been described
[2,13].

The theoretical development of the problem is due to BaArReNBLATT [1].
who introduced into the earlier sets of equations a new energy equation,
in which the work of suspension was already included in the sum of pulsation
energy. The idea is perfectly acceptable. since in agreement with the classic
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experiments of YaNon1, the intensity of pulsation decreases with increasing
concentration. This phenomenon has been investigated in detail at the labora-
tory of the Department for Water Resources in the years 1960 to 1962, and the
above theorem was fully corroborated by the experimental results obtained.
However, the solution of the set of equations proposed by BARENBLATT
leads eventually back to the diffusion theory. the only difference being that
the KArM4N coefficient x is a funection of concentration as well.

A substantially well founded and theoretically exact suggestion has
been developed by G. TerLerov [22], who defined the temsor of turbulent
stresses and the interaction between the two phases by semi-empirical rela-
tionships. Aside from the results of research concerned purely with sediment
transportation, highly interesting information has been offered by the investi-
gations of SLESKIN [20], who derived as a particular case of the seepage problem
the differential equation of mixture transfer and developed the theorem of
continuity for the laminar movement of both phases. The same problem has
also been analysed by H. A. Rammarvrix [17], who considered the move-
ment of multi-phase mixtures by assuming them to be compressible,

Considering the problem as a whole, a substantially new approach to
the problem is followed in the work of FrRa~xkL [7.8], who derived, besides
the continuity and dynamical equations for the two phases, also the energy
equations in an exact manner, and the early history of research on this prob-
lem is thus essentially concluded. Entirely similar conclusions have been
arrived at by DEEMTER and Laax [3]. in deriving the energy. movement
and continuity equations for both phases, assuming laminar motion.

More positive results have been achieved by SaN0oYaAN and ANanyax [19]
in the solution of the basic equations, and although limited to the case of
highly concentrated mixtures flowing under pressure, one of the possible
fundamental alternatives of a solution is offered. Investigations by the author
connected to this stage of theoretical development. For the case of turbulent
flow of variable velocity and concentration in open channels the author
succeeded in developing the generalized Reynolds equations [14], and relying
on his experiments, in suggesting one of the possible solutions.

For obtaining a more comprehensive understanding of various aspects
of the problem, the results of DzurBAsHYAN [5] should be considered of
great interest. By analysing the relative velocities of the two phases he offered.
on the basis of experimental evidence, a novel solution for the vector equations
of HaskinD.

In fact, disregarding the early concepts of SToxkes (1856) and MAYER
(1871), no substantial advances have been made in this problem up to 1947 [2].
By assuming the validity of the linear and non-linear resistance law and intro-
ducing the variation of the relative velocity according to a specific, periodic
relationship, the mutual influence between the particles of the two phases
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can be traced back to the phenomenon of dispersion. Still the analysis of
turbulent diffusion, representing a closer approximation to the substance of
the problem, is encountered first in the works of Vi-CEENG-Liv [23] only.
who applied analytical methods relating to random phenomena together with
relationships describing the periodicity of turbulence.

The equation describing the movement of a solid particle moving alone
is derived in an analytically exact form by Hasxixp [9] for both the linear
and non-linear ranges of resistance and considering — at least for the time
being — an infinite field of motion and uniform movement. The theory is
developed, however, far enough to define the relationships of relative velocity
even for the cases characterized by pulsation of different frequency in turbulent
flow. The methods of operator calculus are applied for solving the fundamental
equations, assuming that turbulent pulsations are of a periodic character and
that the extent of turbulence can be described by harmonic functions.

Similar equations have been introduced also by PanrtsmEV [16], who
investigated the movement of raindrops in the atmosphere. A solution is
presented on the hasis of considerations relating to probability theory of
random phenomena concerning the distribution of pulsation velocity compo-
nents of the water droplets and the air.

In the foregoing it has been attempted to present a sketchy, yet essen-
tially complete description of the development that has occurred so far in the
theory of suspended sediment transportation. Hereafter it is deemed advisable,
and at the same time feasible, to summarize the theoretical foundations of
the problem and to develop therefrom the solutions available at different
boundary conditions. Subsequently the potential trends of future research
can be outlined.

2. Theoretical foundations of the problem

To begin with, the concepts introduced will be defined and the rules
of the necessary averaging operations will be described [7, 8].

The fluid and the sediment particles will be regarded as incompressible.
The densities of water and sediment particles will be denoted by ¢ and Q:,
respectively. In the conventional system of %, x,, x5 co-ordinates the velocity
components of the fluid and solid phases be u,, u., u; and uy, Ucs, Ug, Tespee-
tively, The inertia forces related to unit mass will be accordingly X; and X
(i=1.2,3). The tensor of transient stresses (which will be considered
continuous) arising within the interior of the fluid, as well as of the solid
particles will be p; (i, k= 1.2, 3).

A discontinuity function ¢ will furthermore be introduced, which equals
in the interior of solid particles unity, while assumes zero value in the fluid.
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In the course of subsequent averaging operations this function will define
the concentration c.

The rules of averaging will hereafter be reviewed. For this purpose a
four-dimensional cylinder Z (x, {) is ascribed around each point of the four-

dimensional space (%, %.. %, £) i.e.,

(x Pttt <, ()

wherein r and /¢ are fixed quantities.
The usual averaging form is

UH fdx, dx, dx, de
& f 2 . 2
el = WW day dx, doy di (2)
Z(x, 7,

Averaging according to the spaces occupied by the fluid and the particles
will be performed subsequently according to the following relationships:

=1 3)

The continuity equation obtained for the condition of incompressible

solid particles is

d A o ‘
FAl UH (%, Xg, g, 1) Ay div, dy = — H e(x a2y 1) v (ny, gy x5, 1) AF (4)
dar JIL o
Fxgx,x)<0 Fo0,x,,0) =0
wherein vy, — components of veloeity v, in the direction of the outward
normal,
dF — elementary part of the surface F(x; x,, ;) = 0 defined
arbitrarily,
F(xy, x,, x3) <7 0 — the internal area of the above surface.

' ing > e integral sig s
Introducing under the integral sign the substitutions
e T i i A i (5)

where &;, 7 are constants, while X;, / variable values, from Eq. (4) we have
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coLET) dE da, dr, =

(6)

oD (E S, D) dF

where dF is an elementary part of the surface F(x,. x,. x;) = 0.
Eq. (3) is integrated with respect to the four-dimensional cylinder
Z (x. 1), i.e., taking into consideration that

Hrey
ot 22
S
rory

+ &<t << e (9)

=3 i

In this case, owing to the constancy of the limits of integration defined

by the relationship (7). the sequence of integration with respect to d&,, d&

S ooe

d%;. and differentiation with respect to t may be reversed. Logically. the se-

Sas
quence of integration with respect to d F (or d%,. d¥.,. dx,) and d§,, d&,, df; can

also be changed.
Dividing the volume of the eylinder by the expression

i 2
3
we obtaln
d coe R B _ -~ v o A o N
= H] c(xy, .. ) dy da, dy, = — H clxp ek (x. . ) dAF (8)
CRE) F(R)=0

wherein allowance has already been made to the fact that
EEC:‘I = Elut
It should be mentioned here furthermore that all values of f are con-

tinuous and can be differentiated with respect to time and the co-ordinates alike.
The components along the co-ordinates are

Ry

1

— 2arit

grads f = [ =&, ..t 1) dédr, (9

wherein dF isthe vector element of the surface Y2 = r? along the outward
noimal. Furthermore
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af 1

ot

—M [F(Fy &g oy B AE) — f(Fy o | — 4] A, dE, A&,

4
R P
3 2ar At G52 (10)

The differentiation with respect to ¢ on the left-hand side of Eq. (5)
can be transferred obviously under the integral sign, and, in accordance with
the Gauss-Ostrogradsky theorem

f§ e@n .. ..Hvk -G, ..., 0)dF = ({{ divg(cv¥) dx, dz, dx;. (11)

F(%,,...)=0 F(%0) < 0

Consequently, for an arbitrary volume

e

= 3 S
[ o z—a-(ﬁffi] dx, dx, dx, = 0
i k=1 axk .

F(x, <0
and thus
= 3 =3
RCC s L R (12)
t ;::1 ax,

and analogously ‘
=9 , Jold—9ud] _,

(13)

at- k=1 ax’i.

It should be remembered that the values v, and v* denote velocities
related to the centers of gravity of solid and fluid phases contained in the
sphere

(3, — %2 < 1
E

i

and averaged for the time interval

P — At <t <+ At

The equations of motion mayv hereafter be written. In accordance with the
momentum theorem

d e
—_ JJJ oee(xy, L) v dagdayday =
dt
F(x,...) < 0
= — J oe ety (2 o) venlags ., dEF — (14)
F(x;,’..‘)=0

_ U PindD + JJJ 0, X i(xps ., 1) dxy dixy day

By ) =0 Flope) <0
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where @(x,, x,, 25, 1) < 0 is the area occupied by the solid phase within the
space F(x, x,, x;) = 0, whereas d® is its elementary part. The vector p;, is
the component along the outward normal of the tensor p; of the surface
D(x,, x4: %3, £) = 0. Quite obviously,

JI pind® = J] p”‘ dx, dw, dxy = 1ﬂ c P dx, dx, dx;. (15)
i1 Oy . dx;,

(s

D(xy,... B(xy,...) < 0 F(xy,...) <0

Substituting Eq. (5) and with the relationships expressed by Eq. (15),

4 JJ] occ(xy, + &4y v b+ T) vy + &, i+ 7) diy A, day =

di

Fx;,..)< 0

- [Qcc(:{;l’Tgl’ 'tTt)] [”ci(:él““j‘é&ls . TT)LCH(’H -+ 517 L4 )dF]
F(xl,...)=0

ﬂ C(xlﬁ"&l’ b 2 R

F(lx D)< k=1 X

—IL- Jﬂ ¢ C(xl-ll_' . ) Xcl('xl ! 51 . .) dEl d},:_, d:{i}'
F(x,...) < 0

Integrating with respect to the cylinder Z (¥, {) and dividing by its

volume:
d o o . o
—(E J U 0, €Uy dxl dxg dxs = = H 0,CV Ve dF —
F(@o) <0 F(%y.)=0 (17)
Py 3 é——— “a
J > 2P P”‘ " dx, dF, dF, - JJJ 00 X A7, A%, dF;.
=
F(Xyye) < F(Xyyee)2 0

Let us now write

vy &, i) =, L) iR LB ST,
Pi® &, . i) = pudEy - L E) PR s E LT, (18)
e, =+, i)y =C(x, LD+ (xy, Lt &, LT

Introducing the relationships given by Eq. (18) into Eq. (17) and apply-
ing repeatedly the theorem of Gauss-Ostrogradsky we have
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(19)
- 9 EXCI ‘
& Blel — e
= GER
(20)
= o(l — o) X3
The tensors
I = oo (v vg)™s (213
Hz':": — (’(1 - E) (L’; LU' o

denote the secondary stresses caused by turbulent flow: thus e.g. the tensor
I is analogous to the osmotic pressure developing in solutions,
The vector expressed by

E \‘): 8])1-:,;
fz1 9xy

represents essentially a generalized Archimedian force caused by the averaged
microscopic stresses py. acting on the solid particles contained in the volume
considered, The vector

3

, , —
< . 9P

R = > ¢ Lk 22)

TS O -

is the average fluid resistance to the movement of solid particles.
In the demonstration of the energy equation the following simplifying
assumptions will be introduced:

X, = const.

Y
and

= Xf=X;; Xi=X_=0.

“Xic

In the interior of the fluid and solid phases the Eqs. (12), (13). further
(19) and (20) may be assumed to be satisfied.

The energy equation relating to average movement can be developed
directly from the foregoing equations, i.e., '
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wherein
Wi = Il (25)
i=1
3
2D N 2 <
w* = NoF (26)
=

It should be noted at this point that the sign of R; has been reversed
relative to that in the equations of movement, in order to obtain R; >0 in
the case when this force acts in the direction of the positive x; axis.

The equation of pulsation energy will be derived from Egs. (12) and (13),
rearranged in the form:

oy 5. Qv . 0 -
9.€ -+ 2 Uy : 2 ¢ Pii T 9¢ C'Xi >
ot =1 OBxy i=1 Oxy
B, 3 ov; 3 opi -
o(l-—c)( e Sy “l=— (1 —0) ’\Pzz + o1 —o)X;.
| ot k=1 Bxy, k=1 oxk

L - -
ot = 0x 2 2 k=1 Bx; (97)
3 aK 3 3p 3 3
ic - Y pl’k 1 -l .: - -l .
3% 5 X P SR d, 08 S X
=1 ax, k=1 ka i=1 I=1
where
3
RPN S A
(W)= 2 (vid)?
f==1
and

3 S
A= — 3 oo}, D (28)
o=t



14 I. V. NAGY

denote the work performed by the forces resulting from the irregular move-
ment of the solid particles, while

J2

w
Kic = 0. cvie—5 . (29)

r

is the “‘conductivity of turbulent energy”, in other words the average value
of pulsation energy due to pulsation velocities.
Subtracting Eq. (23) from Eq. (27) we have

Qc(-?_——i—é‘ ?’vkc)[ (wg )*]

| (30)

3 48 2 3 .
S P
2 7= | oxy, Bx; = Ox;
and for the fluid phase
3 O\ %
o5+ =m0 -9l
4 k=1 OX] 2
(30%)
3 3 = 3 .
=5 S [+ a3
2 i k=1 ax,,. ax, fe=1 8x,
wherein
L T
Ad=— 3 (1 -0 K (28")
= Oxy

is the average value of work performed by forces due to the irregular move-
ment of fluid particles, while

Py

Ki=0(1—0)v}

(29)

denotes the “conductivity of turbulent energy™ in the fluid phase.
For obtaining the thermal equations for the two phases consider the equa-
tions of total energy, expressed in integral form, without averaging. Thus

d —H 1202
- 2:¢
dt J {2
G

~ 3 v s
p— JJ (_\- UI Pzn 1 Qn} d@ ! J[J QC X dxl dxr, dx3
i=1 - i=1

dx, dx, dxy = —

)
w?
occvn[ N + e} dF —

(31)

[\/“ "’t:b.
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4 J‘:]‘g(l——c){ua L )dxldx,dx3 J J ol — o) (‘;’ +eJ dF —

dt 2 2
G F (31
. 3
JJ 5‘0, Pint+ qn]d () JJQ(I —c) - v X;dxy duy dg
= s i=1
¥ G

where

e is the internal (thermal) energy of unit mass;

g; is the vector of molecular heat conductivity;

@ is the part area of surface G occupied by the solid particles, and
p is the part area of surface G occupied by the fluid particles.

Having performed the averaging operations, the result can be written
in a form entirely similar to the foregoing:

S 3‘w 3 x 5 9 3‘\“8
P - [GEEP Rt I TC
ot fim1 Oxy fm1 Oy f=1 Ox
S . 80,
9(—. + 3-8 v:;f][<1~c)e*]— > 80
ot k=1 Oxy fi=1 Ox 5
(32)
3 3 y
3] 1 ov G
DS - 9 I~ iy
=95 —5 = 5% T & ]P“

The thermal energy is seen to increase because of turbulent and laminar
heat conduction, while the energy of the fluid phase is increased also by the
averaged work of micro-deformations. This term is not involved in the equa-
tion of the solid phase, the deformations thereof having been neglected.

No solution of the system of equations described above is possible unless
the values

1Ac7 Hzlw sz chsKnA 4 cho Qz

and the term

are known. Owing primarily to imperfections of instrumentation and measur-
ing technique, the above quantities can only be determined — at the present
level of knowledge — with certain approximation. Some of the possibilities
will be dealt with subsequently.



16 1. V. NAGY

3. Possibilities for solving the system of equations
in the case of steady flow

The system of equations introduced in the foregoing is suitable — as
pointed out in several papers by FRANKL — for describing in principle any
type of flow, provided the resistance forces R; due to the presence of solid
particles can be determined. In the case of steady flow one possibility there-

of is offered, when — according to the familiar basic equation of diffusion
theory —
cw + o'l Ef_ =10 (33)
dy

where

w — fall velocity of particles;

¥ — vertical direction:

! — mixing length: ,

v" — average module of the vertical pulsational velocity component:

and
2 — an empirical coefficient.

The resistance to the movement of individual particles is, in the case
“of movement at a velocity w:

D(w) = (2. — 0) gV (34)
where .
V is the average volume of a particle,
On the other hand. according to the semi-empirical theory of turbulence,

T = fov’ ZE— - (35)
dy

where

v is the average velocity in the direction of travel and

§ is an empirical coefficient.

According to VaxNonI [25], the values of x and § lie close enough to
each other to be taken identical.

It is further generally accepted that

and

further, that
o =1 (36)
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where
h — water depth; and
% — the Karméan velocity coefficient (~ 0.4).
Sinee

T = Q[lﬁ uzg(ﬁt')zzfo (1”_._)__)

dy, h|
LN (A
dy v o I
the mixing coefficient becomes
‘e:ﬂ-v'l:lﬂ%zzvgyl/—l——%. (37)
Replacing in Eq. (19) the notations and simplifications y = x, ; uy, < u;

(for fine particles); pyy = py, = py; = p ; pir = 0 for i = k (i.e. neglecting the
cffect of micro-stresses resulting from friction); and assuming that

Ni=g siniar g ; Xye= — g ¢os i m~ — g ;: X;, = 0, we have
do., dp | .
_.._.\_\_L'_—.-_._C__E_——- },_-g(,cg::(), (38)
dy dy

Accepting further that the presence of sediment particles is of no
influence on pressure distribution (for low concentrations), it can be written:

gi)" =—0g.
dy
and thus
_%&-I_R:_GI_[_Q&M_ERT:O_ (39)
dy dy ’ ‘

If the mean square of the vertical pulsation velocity components does not
depend appreciably on y (except for layers in the vicinity of the bottom).
then according to MiNsKY it may be assumed that

(v)* = avfiax = 0.02 vhax -

»dica Polytechnica Civil 13/1—2
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In this case

OOZ_QEU‘IT&_L(_E_ —— 0.02 v%mx 0 dinc _
(0. — 9) g ¢ d_} gh 0. — 0 d(}/h)
= — 0-02 % v%nax 10]2 — (40)

’
o0.—0o gh av'l

0, wh

= —0.02 S —
oc—0 zylTyoll —ylh

Concerning the physical phenomenon the following picture is thus
obtained: owing to the value

this term appears to be negligible in praectice (at least in the case of low con-
centrations); the Froude number is in general

17
1/
i
H

q

so that neither this influence is considered significant. It is to be inferred
therefrom that — disregarding the surface and bottom layers — the direct
weight of the particles is counterbalanced only by the resistance acting on them
and not by the gradient of turbulent stresses (consequently the latter may
be neglected).

The prerequisite for the validity of these statements is, naturally, that
the specific weight (velocity) of the sediment particles equals the specific
weight (velocity) of water. In this case. owing to the diffusion of the sediment
particles, a closely uniform distribution may take place along the depth,
and then the average value of the resistance R; may actually become zero,
and the sediment particles move relative to the fluid particles at the velocity
of turbulent diffusion, i.e.

_8lnec
g—.
Bx;

(41)

Vig ==

Consequently, if the values D; (r) are components of the resistance to
movement of the particles moving in an immobile fluid at velocity v, then the
average resistance of the particles contained in unit volume is

Ry= D, (v — v — ), (42)
v
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wherein

v. the average velocity of particles;

v the average velocity of fluid particles;

vs the average velocity of turbulent diffusion; and
C/V the number of particles contained in unit volume.

Assuming further the validity of Stokes® law:

c 9 ¢
R = — 7 O ur(vye — v; — vig) = —— (Ve — v — Vi) 1, (42")

- T

finally, the equation describing the movement of suspended particles can
be written for the case of steady movement:

ov; ] ] 1 ‘ .
oL = 2 4 TR+ 0 X (43)
ot ox; c
Since the equation
5 i a_(ﬁl_‘)_ = 0 (44)
5t ,L?:/—fl 8.1'1 .

is also available, the system of equations is closed (the only unkown quantities
being u;. and c).

As will be perceived, for the special case of steady movement the results
of the diffusion theory have been obtained. In fact, from Eq. (43)

¢ {Q‘.g——; _dp | = c{o,—90)g=R, == —C_ D(— vy) (45)
l dy ’ ¥V
or

D(—vy) = (0. —0) gV (46)
which leads, as indicated by Eq. (34). to the equality

W= — 1, 47)
corresponding to Eq. (33).

Data obtained by extensive experimental checks conducted at the labora-
tory of the Department for Water Management lead, however, to the conclusion
that the assumption concerning the identity between sediment and fluid
particle velocities is, unfortunately, not satisfied in the majority of cases
of practical interest. For this reason the above solution suggested by Frankr
is considered acceptable for the approximately laminar flow conditions in
settling basins only. The point of theoretical significance is, consequently,

9%
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involved in the condition

e dp,,  dlly, . dalI

+ R, +cpgire — —F5 - R+ cogi =0 (48)
dy dy ‘

“ v

defines essentially the lag of solid particles, and this is not eliminated unless
Ry =0, i.e., when (in an extreme case) there is no physical difference between
the two phases, consequently a single phase (water) is only present.

4. Solution of the system of equations for the case of
quasi-steady flow

Consider the potential solutions of the dynamical relationships expressed
bv Egs. (19) and (20) for the case of quasi-steady, plane and uniform flow.
For this case it is assumed. in agreement with SANOYAN and ANaNvyax [19]
that

— the pressure distribution is hydrostatic:

— the distribution of solid particles is statistically steady, the con-
centration prevailing in a particular elementary volume of space during a
particular elementary interval of time remains unchanged both in time and
along the coordinate axis in the direction of flow:

— concentration is a function of depth:

— the distribution of pulsational velocity components does not differ
appreciably from that in clear water.

With these in mind, the fundamental expressions of Eqs. (19) and (20)
assume the form

- [oce(vive)*] + gocic — Ry =0 (49)
dx,
4 [oce(v3)*] — P go.c— Ry, =10 (50)
dx, ) da,
1 L .
— = [o(1 — )(v] 14)*] + o1 — ) gi = R, = 0 (51)
dx,
d e - dp L -
— —[o(l —¢)(vs*)*] — (1 —¥¢) —o(1 —¢)g+R,=0. (52)
dx, - dx,

In the case under consideration the x, axis points into the direction of
flow and coincides with the bottom: the x, axis is perpendicular to x; :1
is the bottom slope and, as previously, 7 is the average value of concentration
at a particular point (elementary volume) of space.
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One possibility for the solution is then according to SANONYAN and
ANANYAN to introduce on the basis of experiments by MinNsky, the following
conditions:

(us?)* = ouda{l — k, €) (53)
(ufl:?.i)i = V-u%nax(l — k:’. E) (54)
() = — gifh — (1 — k). (55)

The coefficients k,, k,. k, may then be regarded as parametric functions of
the mean particle diameter d alone and their magnitudes are determined
experimentally.

Eqs. (49) through (52) are preferably rewritten into dimensionless form
using the following notations:

a = xhi xy = yhi (wy uie)® = (uev))* ghis (u?)* = ul uba..
Thus
. d - T | ol
g9, L-—1—- [e(uevr)*] — go.ic + R, =0 (56)
d
LU ax d = = ==
e o 450 ke + gle.— 0)e - Ry — 0. (57)
- h dy ’

—g0; -f— [(1 —8)(1 — ks&)(1 — y)]— (1 — &) oi — Ry=0  (58)
34

E@ig_d_ [(1—2)(1—kc)]—R,=0. (39)
h dy '

The system of equations (36) through (59) is thus completely closed,
since the number of unknowns (R, Ry, (u/ v{), ¢) equals that of the equations.
For determining the value of ¢ combine the terms of Eqgs. (57) and (59):

— XUZax (Qc“‘(l%‘kl)g)!-—ﬁz‘—o (60)

gh Q. — 9

de -C—i-"_'y-u?nax Qck‘l—‘k’l‘
dy

which becomes, after the introduction of simplifying notations:

de

dy

(Be— 4) —c=0. (60")

The integration of Eq. (60) vields

Bt —¢) —Aln—— =y —y,, (61)

€y
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where ¢, is the concentration at depth ¥, the so-called bottom concentration.
Accordingly, the resistance coefficients may be expressed from Eqs. (58)
and (59), as

R, — — ogic [(1 A s ] (62)
R, — ogt (1+Fy) (o —}9) _ oUhey (14k — Zfslﬁ)b' 7 (63)
’ o - (L+kj)o h A — be ’
or, the resultant resistance due to the presence of the solid particles is
R=|R:—+ R:. (64)

Considering the above solution it may be concluded that realistic results
are to be expected primarily in the range of high concentrations, i.e., in the
case of slurry flow. In fact, the coefficients k,, k, and k, depend in this case
on the average particle diameter alone, although obviously, these will vary
with concentration and grain-size distribution and probably with the intensity
of turbulence, etec. Furthermore, it is hardly te be expected that the relation-
ships expressed by Egs. (53) through (55) could be represented in a more
generalized case as linear functions of the said coefficients. This situation is
unimaginable, unless in the case of high slurry concentrations the distribution
along the vertical is nearly uniform, the intensity of turbulence is practically
zeroed, and the behaviour of the so-called gravity medium is governed funda-
mentally by the weight (volume, diameter) of the entrained material.

5. Solution of the system of equations for quasi-steady flow
and random concentration

Owing to the shortcomings of the presented partial solutions of the
generalized fundamental equation, it was decided to seek a substantially
different approach. The extent to which the variation of pulsational velocity
components — controlling substantially the entire process of suspension —
can be described in terms of concentration, is obviously critical for the success
of the approach.

In turbulent flow the mixing processes are highly involved and trans-
form the mechanical energy into other (mainly thermal) forms of energy.
In steady flow of clear water, mechanical losses of energy are induced by
(external) friction on the boundaries, as well as by internal friction.

In cases where solid particles are also contained in the flowing medium,
its component parts (second phase) participate themselves in the process of
turbulent mixing. As a result of friction of sediment particles on the boundary
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surifaces, friction (and possibly impact) of sediment particles among themselves
and on the fluid particles additional losses of mechanical energy occur. Further-
more, because of the difference in specific weight (non-uniform distribution)
and the difference between the velocities of solid and fluid particles, minute
turbulent wakes develop behind the solids. The energyv of these wakes is con-
verted directly into thermal energy. presenting special cases of energy dissi-
pation.

At the same time it is evident that a uniform turbulent field of motion
occurs in turbulent, sediment-laden flow, in which the mean velocities of the
solid and fluid media may be equal at particular points. As indicated by
experimental evidence available so far, the condition

ve e >0 vy <0

is in general satisfied, the physical interpretation is that fluid particles moving
at a lower velocity are more frequently encountered by the solid particles
than such moving at a higher velocity. This is the reason for the statistical
(and not primarily hydrodynamical) lag of solids. which applies to groups
of particles (and not primarily to individual particles).

One of the possible solutions resulting from the above considerations
will be outlined subsequently.

5.1 Choice of the fundamental equations

The solution will be based on the mathematically exact fundamental
equations (19) and (20) without neglections. The influence enhanced by the
presence of the solid phase will be expressed in a manner similar to the
conditions in Eqs. (53) through (55), with the difference, however, of applying
concentration influence functions, given, for the time being, in a general
forme @ (¢). Thus

(U5 = 2y Po(E) (65)

(u3)* = 13 0 Po?) | (66)
() up)* = — gi(h - x3) D) (67)
(1l ula)* = — gilh — x) D,(c) (68)

It is assumed further that

X ==xh; =«

= vh (69)

and

= —go. ' (70)
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The fundamental equations (19) and (20) assume thus, with allowance

for Eqs. (65) through (70) the following form

g0 i fel1 — ) D@} — g, 12 4+ By =0
dy
Almax ) (1_ [C@q(C)] -+ g(o, — Q) c -+ R_)_ =0
h ¥

"')‘—*[(1 —o)(1 —y) Dy(e)] — g(1 —c) oi — R, =0

dy

e, 310 50,6~ Ry = 0.
h dy

Adding Eqs. (72) and (74). as well as Eqs. (71) and (73) yields

h
4
dy

Let

from Eq. (73) it is:

d 0 c@(c)-{-l;(l_.c/([) (C)J g(?c‘Q}h
d) 9Cu.xz'na\
With the notations
uc D,(¢) - (1 —¢) D,(c)

Ue) = -

c

V() = ke [04(0) + 11+ (1 =) [B4(6) +1].

Eqs. (75) and (76) assume the form

dy | oathe 1 d
de (u—Dgh ¢ dc
d V(e — (u—1
gy @zl
de V(c)

{cU(c)]

L”—{ _[c@(c)]o————[(1~c @) —glo. —0)e =0

11 =3 [2:6D4(E) + 2 (1 — ) Py(e)]} — [coc + (1 — )] = 0.
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Thus, in the foregoing equation three functions, namely
y(e), Ule) and ¥F(e)

are involved, so that two equations are insufficient for their determination.
The approach adopted will consist of determining one of them from measure-
ment data. The function to be determined by measurement be the function
U(c).

In this case the function on the right-hand side of Eq. (79) may be
regarded as known and denoted by Y{(c). In this manner y(¢) and ¥(¢) can be
determined from Eq. (79) and Eq. (80), respectively.

Consequently, by introducing on the basis of Eq. (79)

dy =Y (c)
de
into Eq. (80), this becomes
. e V) — (e —1)
Y{)=(1—y ‘ : . 81
€@ ==y ) (81)
The function y is then obtained as the solution of Eq. (79):
by e 14 pey
de (w~—1)gh ¢ dec
whence upon integration
zu> . e o :: 7
y o= e v + [ ). (82)
(v —1)gh c
Consider now Eq. (81). Upon rearrangement of terms
V'(6) = Y(e V(@) =u—1. (81")
1 —y
Introducing the notation
_ Y
i Y(¢) de ;
/ = =
WO = - = (3
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the solution of Eq. (81") is obtained as

[
- § W(@dc

c § W(r)dc :'
Pe=e® ) -1l del. (84)

5.2 Expanding the system of equations

On the basis of experimental evidence it has been concluded that con-
centration had almost the same effect on the variation of the coefficients
either (u2)* or (uj)*. Identical trends were observed also in the variation of
the terms {(u7, us)* and (u/;. ul,)* so that the simplifying assumptions

Dy(e) 22 D,(c) = D(c)
and

,(8) 22 0,(c) = ¥'(0)

appeared permissible. At the same time it was found from measurement
data that

D(c) = e ~ke. (85)
Consequently
Ule) = (u 1 e (86)
C /
. { 1) - _ _
P = fu—1+ T—J S[F(E)-1]. (87)
C /
Thus from Eq. (82)
2 r , . . C —kZ -
v :)‘u“;— _xu-__max Le_kz — €_k2° + (1 — k - )J ¢ — del.
gh u— 1/ c
c

Introducing the exponential integral funection

o
;T oe—u

, du =— E;(—u)
u

u
the expression for the function y (¢) becomes

k

p—1

2
AlUmax | _x: kT
v :)0__:_ e—ke o kcu_:~

~1 [—E(—k3)+ E—kz)]l.  (88)
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The function ¥ (c) is obtained from Eq. (84) by introducing Eq. (83).
Since

dy

¢ € =

J1 W(c) de = Jﬂ de dc.—

In(l — x)] =In 1= .

L=

1—

€y Co

it follows that

c

. 1

WQZ‘“"T%L—WVMU(Wﬂb‘[“‘@ﬂm}
1—¥{c)

where the expression for y (¢) should be introduced from Eq. (82). Under the

condition in Eq. (85) and with regard to Eq. (88) the following expression

is obtained;

—— 1 —y - .;xuma\ o=k 1 —3
V@L-T——7{a oV (@) - ﬂl ) 5§— ]w 1) J]E

EPEPMHEFMW~

(84")

1

Ll u—1

5.3 Determination of the relationships

Let us return now to the expression of the function y (¢). Eq. (88) was
obtained by assuming that @, (¢) = @, (c). Furthermore, in Eqgs. (65) and (66)
it has been accepted that T (the square of the maximum velocity in the
direction of travel observed at a particular point) is not directly related to
concentration. In lack of more accurate measurements assume temporarily that

(1) = 2u(?) D).

or
) u(c) == uj -+ fic
and
2 2(
] n-c ;
=—: (©) = Fr.
ui gh

With these in mind the following result is obtained:

Y= - 1 1 —| k7
CA—C A I ___._I_ cleFe -
«Fr [ 1 u—1 I 1 ‘l
E—gq " _ 1 1 .
-4 — 1= E(~kc)] — 1+ —_—— 89
[#—1 M ol H 4#~1 kJ 9
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whence, with the substitution ¢ = 0, obviously Eq. (88) is obtained.
Determine now the mean concentration along a vertical.
In a general form this hecomes

1
Crp == ————— cdy
7 1 Yo J )
Ya

since from Egs. (75°) and (79)

- PATE. .
¢ dy = _Trmax dfc U(C 90
T (u—Dgh e o) , -
thus
Cm
1 lllgnax " =T
e = . ma d{eU(c
T 1oy, (u—Dgk J el
<
and
- 5 B ) 1 - =
Gy = Fro——mo . Cim e—kew C e—ke 4 (e_hCm — e—kc,,) . (91)
1 ~}.0 ‘LL — 1

Concentration at the surface (¢,) is obtained at y = 1 from Eq. (88), i.e.

k

u—1

%—-1+xFr%"“mﬁe‘“~L( ——Q[ﬂEx—kqu-+Ex~woﬁ=ﬂ49m

For facility of computation the following notations will be introduced:

s=ke;: zy=keys zp, = ke 3= kc/lc

mazrw{ k ~qbﬂkﬂﬂ 03

Eqgs. (88), (91) and (92) can then be rewritten into the following form:
— for the concentration at any point along a vertical:

y — ¥, = 2 Fr[F(z) — F(z)], (88

-

— for the concentration at the surface:

1 — yo=oFr[F(z) — F(z)], (92')
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— for the mean concentration in the vertical:

1 = E 6 — G2, (01

In view of the faet that the above equations are transcendental ones,
double point-row diagrams have been prepared for ease of computation.
Computation is impossible unless the concentration at the bottom, the distribu-
tion of velocities and the water depth are known.

In the solution presented above the main inconsistencies of previous
theories could thus be resolved. In fact, by introducing and determining the
concentration influence functions. we succeeded in describing the influence
exerted by the presence of the solid phase on the pulsation velocity character-
istics, decisive for the suspension process. The resulting computation formulae
are at the same time easy to handle and vield practical relationships.

Nevertheless, for a number of additional practical problems (e.g. settling
tanks, slow and high-rate filters, colmatation, etc.) it appeared advisable to
continue the study of the resisting forces R; (which were replaced in the fore-
going study, i.e., under the definitely turbulent conditions prevailing in open
watercourses, by the concentration influence functions), since the problems
mentioned above involve mostly flow conditions in the laminar or transition
ranges.

6. Determination of the resisting forces
The core of the problem is essentially that the vector
; 3~ -, Op;n B
Ry = > ¢ 2Pk (94)
(the force resisting the movement of the fluid) invelved in the exact dynamical
equation (19), represents, together with the generalized Archimedian force

85, .
A, =0 N P (95)

k=1 0%

(resulting from microscopic stresses py) the interaction of the two phases,
Since the effect of micro-stresses due to friction is practically insignif-
icant indeed, it is sufficient to consider the term R; alone.
For the sake of completeness it should be remembered that the above
expression results from the assumption that the stress tensors pu., pin, as well
as their derivatives with respect to the co-ordinates are continuous functions
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of the coordinates within and along the boundaries of the areas F (%, ...) < 0
and @ (%, ...) < 0. In fact, applying them to the resulting force the Gauss-
Ostrogradinsky theorem vields

3

U p; 4@ = JJJ = SPik dxy dxy dxy = JU é Spix. dx; dx, dxg. (96)

k=1 Oxy X =1 Ox
DXy, ) =0 D(xy,...) <0 F(xl,“.)<0

In agreement with Eq. (16), after the averaging operations according

to Egs. (2) and (3) it follows for the solid phase

cop 3 . e 3 B3
J JJ > P dx, dx, dxy = JJJ c > P dxy dx, dx,
K== K=l

=1 Oxy GRS

[

Flxtgy.)<0 Flxy,..)<0 (97)

o

, 8 TR
) - ap;:.
+ UJ > P dx, dx, do,
N Ko e SXL_ -

(==l

and for the fluid phase

JU (1—7% ~ PP dx, dx, dx; = J ‘ j 1-¢> \ 8pu dxy dox, digy —
) = B, J i=1 Oxy
F(xy,..)<9 F(xy,.. )\0 (98)

O'C;

HJ 3—‘  Opuc —= dx; dx, du,
<o’

It was seen in the foregoing that. for approaching the second terms
sought for on the right-hand sides of the above equations FrANKL applied
Eq. (42), Savovax and ANaNYAN obtained Eqgs. (62) and (63). resp., whereas,
according to the solution suggested by the author in 1962, in conformity
with Eqgs. (73). 74) and (85), it is:

R, = -dd; (1—x¥()]—1 (99)
R, = — -dc-l‘— [(1 —¢)e ke]ayFr. (100)

It should be noted that several investigations have been performed in
recent years to determine the numerical value of coefficient k. E.g. the coeffi-
cient & was found by DsErBAsYAN [5] to depend primarily on particle size
(settling velocity).
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On the basis of the foregoing relationships the magnitude of the resistance
factors can be computed and consequently the effect of the solid phase on the
pulsational velocity components expressed.

Summary

The development history of suspended sediment transportation is reviewed. Purely
empirical theories and semi-empirical approaches have beén neglected. since the determi nistic
model on which their development relied upon, was necessarily poorly founded. The present
study relied on the theoretical bhasiec equations of classical mechanics and hydrodyna mics.
as well as on the so-called microscopic systems of equations developed in theoretical ph vysies,
to derive the theory of turbulent sediment movement. Based on research results of the author.
and on those published in the literature, the resulting equations are solved by different
approaches.

It is concluded that the microscopic system of equations suggested by Frenkl may be
regarded at present as the most suitable foundation for the development of the theory of turbu-
lent sediment movement. In the development of the theory presented in Chapter 5 and in the
determination of the resisting forces shown in Chapter 6. empirical relationships were neces-
sarily introduced in order to make the results suitable for practical applications. It follows,
that the theory of turbulent sediment movement would be difficult to develop further using
the classical approach followed so far. The uncertainties involved in the determination of pa-
rameters call for a radical revision of earlier methods of measurement and for the statistical
analysis of data series intended for use.

The development of the classical deterministic approach seems to have attained its
practical limits and further efforts should instead be directed towards the development of
stochastic-mathematical models, using recent results of probability theory and mathematical
statistics. The next step should be to develop suitable computer programs.

Nevertheless, the study presented above is still useful for solving problems practically
not fully understood such as diffuse or turbulent movement of substances with specific weights
other than that of water. Such problems are encountered in different systems of settling tank,
various flow-through basins used in water and sewage treatment, ete. Knowledge of achieve-
ments in the theory of turbulent sediment movement may furthermore be useful in the study
of hydraulic conditions, oxidation basins, wvarious shafts, etc. with predominantly tur-
bulent flow.
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