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1. Introduction 

During the past few years several papers haye been deyoted to the 
description of the inve5tigation results [13; 14, 15] 'which, together \\"ith a 
critical review, outlined a few potential approaches for the suggested deyelop­
ment of the generalizecl theory on turhulent sediment transpOTtation. Some 
of the more recent concepts will he considered helo,,", and their detailed physical­
analytical expansion ,,"ill he described. For the sake of completelle5s it i5 
deemed advisahle to present <1 hrief historical review of the prohlem. 

During the deyelopmellt of the familiar cl~ffllSio71 theory, YELIKHA­
~OY [:24],andlaterIs:\LuL [ll],::\"nGCHIE~ [16],HL~T [10]andotheTs, started 
essentially from a semi-empirical turhulent theory hy determining the yalue 
of 8 from the logarithmic distribution of yeloeity. The shortcomings of this 
approach were pointed out first in Hungary by BOG"(RDI [2]. 

Other authors, e.g. DOBBns [4], and ROVSE [18],introduced a simplify­
ing assumption hy considering the turbulent mixing coefficicnt to he equal 
for both phases. 

After a detailed analysis of the problem, based on the theoretical works 
of KODIOGOROY and OBLHOY it was concluded by TEYERoVSKY and JIr~SKY 
(1952) that the turbulent mixing coefficicnt could he characterized by the 
ratio of the scttling to the mean velocity. The above considcrations hayc 
led to the conclusion that the diffusion theory is applicahle with a fair approxi­
mation up to cl < 0.5 mIll. 

Subsequent experiments of YELIKHA~OV induced him to modify his 
earlier equations (1953) and to propound the advantages of the gravitational 
theory. The new approach ,,"as criticized, howeyer, hesides the a(1-,"ocates of 
the KOL:\IOGOROY theory, also hy the protagonists of the diffusion theory. 
Earlier developments of this controversy haye repeatedly heen deserihed 
[2,13]. 

The theoretical deyelopment of the problem is due to BARE"'BLATT [1], 
who introduced into the earlier sets of equations a new energy equation, 
in ,,"hich the work of suspension was already included in the sum of pulsation 
energy. Th0 idea is perf0ctly acc0ptahle, since in agreement with th0 c1assic 
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experiments of VANONI, the intensity of pulsation decreases with increasing 
concentration. This phenomenon has been investigated in detail at the labora­
tory of the Department for W'ater Resources in the years 1960 to 1962, and the 
above theorem was fully corroborated by the experimental results obtained. 
However, the solution of the set of equations proposed by BARENBLATT 
leads eventually back to the diffusion theory, the only difference being that 
the K,.\Rl'L.\N coefficient % is a function of concentration as well. 

A substantially well founded and theoretically exact suggestion has 
been developed by G. TELETOY [22], who defined the tensor of turbulent 
stresses and the interaction between the two phases by semi-empirical rela­
tionships. Aside from the results of research concerned purely with sediment 
transportation, highly interesting information has been offered by the investi­
gations of SLESKIN [20], who derived as a particular case of the seepage problem 
the differential equation of mixture transfer and developed the theorem of 
continuity for the laminar movement of both phases. The same problem has 
also been analysed by H. A. RAHl'L\.T1.'LD' [17], who considered the move­
ment of multi-phase mixtures by assuming them to be compressible. 

Considering the problem as a whole, a substantially new approach to 
the problem is followed in the work of FRANKL [7.8], who deriyed, besides 
the continuity and dynamical equations for the t\\-O phases, also the energy 
equations in an exact manner, and the early history of research on this prob­
lem is thus essentially concluded. Entirely similar conclusions have been 
arrived at by DEEl'ITER and L.'\'AN [3], in deriving the energy, movement 
and continuity equations for both phases, assuming laminar motion. 

More positive results have been achieyed by S . .\.NOYAN and ANANYAN [19] 
in the solution of the basic equations, and although limited to the case of 
highly concentrated mixtures flowing under pressure, one of the possible 
fundamental alternatives of a solution is offered. Inyestigations by the author 
connected to this stage of theoretical deye!opment. For the case of turbulent 
flow of yariable velocity and concentration in open channels the author 
succeeded in developing the generalized Reynolds equations [14], and relying 
on his experiments, in suggesting one of the possible solutions. 

For obtaining a more comprehe~siye understanding of various aspects 
of the problem, the results of DZHRBASHYAN [5] should be considered of 
great interest. By analysing the relative velocities of the two phases he offered, 
on the basis of experimental evidence, a noyel solution for the vector equations 
of HASKIND. 

In fact, disregarding the early concepts of STOKES (1856) and il'hYER 
(1871), no substantial advances have been made in this problem up to 1947 [2]. 
By assuming the validity of the linear and non,linear resistance law and intro­
ducing the variation of the relatiye yelocity according to a specific, periodic 
relationship, the mutual influence between the particles of the two phases 
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can be traced back to the phenomenon of dispersion. Still the analysis of 
turbulent diffusion, representing a closer approximation to the substance of 
thc problem, is encountered first in the works of VI-CHENG-LIU [23] only. 
who applied analytical methods relating to random phenomena together "with 
relationships describing the periodicity of turbulence. 

The equation describing the moyement of a solid particle moving alone 
is derived in an analytically exact form by HASK.E'D [9] for both the linear 
and non-linear ranges of resistance and considering at least for the time 
hcing - an infinite field of motion and uniform moyement. The theory is 
developed, howeyer, far enough to define the relationships of relative velocity 
eYen for the cases characterized by pulsation of different frequency in turbulent 
flow. The methods of operator calculus are applied for solving the fundamental 
equations, assuming that turbulent pulsations are of a periodic character and 
that the extent of turhulence can be described by harmonic functions. 

Similar equations have been introduced also by PANTSHEY [16], "who 
inyestigated the movement of raindrops in the atmosphere. A solution is 
presented on the hasis of considerations relating to probability theory of 
random phenomena concerning the distribution of pulsation velocity compo­
l1pnts of the water droplets and the air. 

In the foregoing it has been attempted to present a sketchy, yet essen­
tially complete description ofthe deyelopment that has occurred so far in the 
theory of suspended sediment transportation. Hereafter it is deemed adyisable, 
and at the same time feasible, to summarize the theoretical foundations of 
the problem and to develop therefrom the solutions ayailable at different 
boundary conditions. Subsequently the potential trends of future research 
can be outlined. 

2. Theoretical foundations of the problem 

To begin with, the concepts introduced will be defined and the rule;; 
of the necessary averaging operations will he described [7, 8]. 

The fluid and the sediment particles will he regarded as incompressible. 
The densities of water and sediment particles will he denoted hy g and g;, 
respectiyely. In the conventional system of Xl' X:!' X3 co-ordinates the velocity 

components of the fluid and solid phases he lll' ll:!, U3 and UCl'llc".!, lIC3' respec­
tiyely. The inertia forces related to unit mass will he accordingly Xi and Xci 
(i 1, 2, 3). The tensor of transient stresses (which will he considered 
continuous) arising within the interior of the fluid, as well as of the solid 
particles will he Pili (i, k = 1,2,3). 

A discontinuity function c will furthermore he introduced, which equals 
in the interior of solid particles unity, while assumes zero value in the fluid. 



In the course of suhsequf'nt ayeraging operations this function will define 
the eoncentration c. 

The rules of averaging will hereafter he reviewed. For this purpose a 
four-dimensional cylinder Z (x, l) is ascribed around each point of the four­

dimensional space (Xl' X~, X3' t) i.e., 

3 
~ ( - )') .---- 1":2_: ..,;;;.; Xi - Xf - . .t -ll < .::It, (1) 

i=l 

wherein rand .dt are fixed quantItIes. 
The usual averaging form is 

Rx,l) 
JJH f clx1 dX2 dx;) dt 
Z(X,t) 

UJJ clx1 Clx2 clX3 elt 
z(X,t) 

(2) 

Ayeraging according to the spaces occupied by the fluid and the particl('~ 
will he performed subsequently according to the folIo'wing relationships: 

f(C- c) 
1 - e 

f'* 
Je 

fe 
-
e 

(3) 

The eontinllit" equation obtained fur the condition of incompressil)lt' 
solid particles IS 

cl 

elt J
rJf e(xl: X2' x 2- t) c1i\ dX2 dx;; 

~~~. 
JJ C(Xl ;\"2 X3 t) L'C!,(·\'I' x 2: X3' t) elF (-1) 

F(: :,-'.,,,:)=0 

wherein L'en components of ydoeity L'o in tIlt' direction of the out,qu'd 
nornlal, 

elF elementary part of the surface F(xl: X 2: x 3) 

arbitrarily, 
o defined 

F(Xl' x~, x 3) .< 0 - the internal area of the aboye surface. 

Introdueing under the integral sign the substitutions 

Xi - ~i: t -. l + T (5) 

where ;i, T are constants, while Xi, l yariahle yalues, from Eq. (-1) we haye 
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cl 

ell lIC C(X1 -+ ;1" .. , t -'-T) clX1 dX2 dX3 = 
.JJ 

= - JJ' C(X1 
F(x,.x"x,)=O 

T) dF 

,\'here dF is an elementary part of the surface F(x1, x 2' x3 ) = o. 

9 

(6) 
, J 

Eq. (3) is integrated ,dth respect to the four-dimensional cylind!:T 
Z (x, 1), i.e., taking into consideration that 

(7) 

In this case, owing to the constancy of the limits of integration defined 
by the relatiull8hip (7), the sequence of integration ,rith respect to d;!, d!:~, 

cl;3' and differentiation with respect to t may he reyersed. Logically, the St'­

quence of integration with respect to clF (or elX l , c1x 2, elx;J and cl;l' d; 2' cl;:; can 
also he changed. 

Diyic1ing the yolullle of the <;ylinder by the expression 

we obtain 

d 

dt JJJ JJ 
F(x, ... )=O 

when'in allowance has already heen made to the fact that 

(8) 

It should be mentioned here furthermore that all yalues of f are con­
tinuous and can be differentiated with respect to time and thc co-ordinates alike. 

The components along the co-ordinates are 

I 
arad-: f = 
e x. 4. '1 ., 

-- :. :rr' .It 
3 

JJJ f(x1 + ;1' ... , t 
';:";f ' n:! 
T:<.JI 

wherein elF is the Yector element of the surface 
nOlmal. Furthermore 

T) cl; ch, (9) 

r'2 along the ont,\-ard 
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aJ 
a1 

')1 3/ f]~ [f(XI+~l' ... ,l+Jt) - f(Xl+~l,···,l- dt)] d$lM~d$3· 
3· 7CT .dt ::"ii'<r' (10) 

The differentiation with respect to i on the left-hand side of Eq. (5) 
can be transferred obviously under the integral sign, and, in accordance with 
the Gauss~Ostrogradsky theorem 

SJ e(x1,···, t) vi;,· (Xl' ... , l) dF = JSJ divx(ev~) dX1 dx~ dXa. (11) 
P(x" .. . )=0 P(X" ... ) < 0 

Consequently, for an arbitrary volume 

and thus 

and analogously 

ae 
a1 

a(l -

a1 

o 

(12) 

(13) 

It should be remembered that the yalues Vc and v* denote yeloeities 
related to the centers of gravity of solid and fluid phases contained in the 
sphere 

3 

.2E (X; x;r < r~ 
k=l 

and averaged for the time interval 

1 - .Jt < t < 1 Jt. 

The equations of motion may hereafter be written. In accordance with the 
III 0 mentum theorenl 

d 

dt 
P(x

" 
... ) < 0 

= - jJ '!c n'c; (Xl' ... , t) L'c,,(X1, ... , t) dF 

P(x" ... )=o 

- JJ~' p. d<P-'-Ifl ' 

<P(x, .... )=u 

(14) 
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where <P(x l , X 2' x3' t) < 0 is the area occupied by the solid phase within the 
space F(xl' X 2' xa) = 0, whereas d<P is its elementary part. The vector pin is 
the component along the outward normal of the tensor Pili of the surface 

<P(Xl' X 2' X3' t) = O. Quite obviously, 

SS pill d<P = JJf ~ :~::; dXl dxz dX3 = J]~ C :~~c dXl dX2 dx3 , (15) 

<P(X",.,)=O <P(X1, ... ) < 0 F(x" ... ) <0 

Suhstituting Eq. (5) and with the relationships expressed by Eq. (15), 

:i J]n Qc C(Xl ~l' ... , l T)VciC~l el' , .. f + T) dXl dxZ dX3 = 

F(x" .•. ) <: 0 

= - ]~ [QCC(Xl +~1' ... , t+T)] [Vci(Xl-'-~l' ... , t,T)Vcn(Xl +~l' , .. ,l+T) dF]­

F(x" ... )=O 

(16) 

J]' Qc C(Xl +~l' ... ) XCJXl +~l' ... ) dXl dxZ dx:l · 

F(x" ... ) < 0 

Integrating with respect to the cylinder Z (x, t) and dividing bv its 
volume: 

:l jJJ Qc CVci dX1 dX2 dX3 JJ Qc CVciVcn dF -

F(x" ... ) < 0 F(x1, .. ·)=o (17) 
~~" ) . ," 

JJJ ~ C 8puc dXl dxz dXJ -+- JJJ Qc cXci dX1 dxz dX3' 
k=l 8x" 

F(x" ... )<o F(Xl,"') , 0 

Let us now write 

(18) 

Introducing the relationships given by Eq. (18) into Eq. (17) and apply­
ing repeatedly the theorem of Gauss-Ostrogradsky we have 
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and accordingly 

0[(1 - 15)1'1' 
'} --'--'- ~ '} "" 

at t=l 
6[(1 - c) ut un 
~----~ ---

('1 -),z, °Pii. . ~ ,0PiI; . (1 -) -F* - -c '--_-- /.C -_-~O -C./I .. ·, 
;"(::i ox!: . r::l 0.171; . - 1 

The tensors 

lIef !; 9c C«f v;.;J"; 

nil: = 9(1 - c) (vi L'~)* 

denote the secondary stresses caused hy turbulent flow: thus e.g. 
nil: is analogous to the osmotic pressure developing in solutions. 

The vector expressed hy 

(19) 

(20) 

(21) 

the tensor 

represents pssentially a generalized Archimecliall force caused by the averaged 
microscopic stresses pn: acting on the solid particlps contained in the yolumc 
considerPft The vector 

(22) 

is the ayerage fluid resistance to the movement of solid particles. 
In the demonstration of the energy eqllation the follo,,-illg simplifying 

assumptions will be introduced: 

Vi L'ie; Xi = const. 
and 

0, 

In the interior of the fluid and solid phases the Eqs. (12), (13), further 
(19) and (20) may be assumed to be satisfied. 

The energy equation relating to average movement can he developed 
directly from the foregoing equations, i.e., 



-

wherein 
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3 3 

"" D';: l ,~- " / C ~ le - 8Xli 
...,;;. 

8 XI: i=1 k=1 k=l 

~ _8_ v":') l {J (1 - e) 1V.*~ 'I' = ..;;;., 8- It..... _.) 
k=l Xli . 

3 
1(,*2 == -::>' ,v:j::2 

-=i I 

k=l 

- Ri eXi]; 

13 

(23) 

(25) 

(26) 

It should he noted at this point that the sign of Ri has heen reversed 
relative to that in the equations of movement, in order to ohtain Ri > 0 in 
the case when this force acts in the direction of the positive Xi axis. 

The equation of pulsation energy will he derived from Eqs. (12) and (13), 
rearranged in the form: 

9 (1 - c) f 8v! 
8t 

- ::5: (1 - c) 8Pil: 9(1 - c)X!. 
;:::1 8Xk 

After averagmg and rewriting in differential form these yield 

( 
8 

0-
~C 8t 

where 

and 

3 

"" (v ~2)' ": ..;;;;,,; le c 
i=l 

(27) 

(28) 
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denote the work performed by the forces resulting from the irregular move­
ment of the solid particles, while 

--w'2 
K ie = (2e CVlc ; (29) 

is the "conductivity of turbulent energy", in other words the average value 
of pulsation energy due to pulsation velocities. 

Subtracting Eq. (23) from Eq. (27) we have 

1 3 (8. * 8· * ) _ '5-' ~ -'- vke n;. • __ _ I _ .He 
2 ;,k=1 8xH 8x; ; 

and for the fluid phase 

wherein 

( 
8 , 3 8 ) [ - (w'Z) '" 1 

(2 -. T ~--=-v~ (1- c)-.- = 
8t k=1 8x" 2 

= __ Y ~+~II'k-A- ", __ i 
1 3 (8 * 8 *) 3 8K ') ____ t ..,;;;._ 

- ;,"=1 8x" 8Xi. i=1 8x; 

3 ---, 

4 '" ( -)' 8Pi - = -..,;;;. 1 - C V; 8-' 
;,"=1 x" 

(30') 

(28') 

is the average value of work performed by forces due to the irregular move­
ment of fluid particles, while 

K· t 
W'2 

o(l-c) v~-
.... l 2 (29') 

denotes the "conducth-ity of turbulent energy" in the fluid phase. 
For obtaining the thermal equations for the two phases consider the equa­

tions of total energy, expressed in integral form, without averaging. Thus 

(31) 
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:t"JJJQ(1 - c) (1;2 + e) dX1 dX2 dX3 = - JJQ(1 - c) Vn( 1;2 + e} dF-
G F (31') 

where 

- JJ(~Vi Pin+qn)d 7p + JIJ Q(I- c) . 
G 

3 

:E Vi Xi dX1 dX2 dX3 
i=l 

e is the internal (thermal) energy of unit mass; 
qi is the vector of molecular heat conductivity; 
f[J is the part area of surface G occupied by the solid particles, and 
!p is the part area of surface G occupied by the fluid particles. 

Having performed the averaging operations, the result can he written 
in a form entirely similar to the foregoing: 

(
a 

0-
~C at (32) 

(32'\ 

The thermal energy is seen to increase because of turbulent and laminar 
heat conduction, while the energy of the fluid phase is increased also by the 
averaged work of micro-deformations. This term is not involved in the equa­
tion of the solid phase, the deformations thereof having been neglected. 

No solution of the system of equations described above is possible unless 
the values 

and the term 

1 3 (aVi aVk) --:E --+-- Pik 
2 i,k=l "aXk aXi 

are known. Owing primarily to imperfections of instrumentation and measur­
ing technique, the above quantities can only be determined - at the present 
level of knowledge - with certain approximation. Some of the possibilities 
will be dealt with subsequently. 
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3. Possillilities for sohing the system of equations 
in the case of ste ady flo'w 

The system of equations introduced in the foregoing is suitable - as 
pointed out in seyeral papers by FRA'-'IKL for describing in principle any 
type of fIo'w, pro...-ided the resistance forces Ri due to the presence of solid 
particles can he determined. In the case of steady flow one possibility there­
of is offered, when - according to the familiar basic equation of diffusion 
theory 

'I de ( elt' ...L xv -- = J 
. dy 

IV fall yelocity of particles: 
y ...-ertical direction: 

mixing length: 

(33) 

v' a...-erage module of the yertical pulsational yelocity component: 
and 

ex - an empirical coefficient. 
The resistance to the movement of individual particles IS, III the case 

of lllOvement at a yelocit...- le: 

D(u:) = (Qc - Q)gV (34) 
where 

V is the average volume of a particle. 
On the other hand, according to the semi-empirical theory of turbulence, 

dt, 
y = (Jov' 1-

~ dy 

v is the ayerage yelocity in the direction of tra...-el and 
(J is an empirical coefficient. 

(35) 

According to VAXONI [25], the ...-alues of x and (J lie close enough to 
each other to he taken identical. 

It is further generally accepted that 

and 

further, that 
1 = r.y, 

(Ju' = l~ 
dy 

(36) 



where 

h water depth; and 
% the K::lrman velocity coefficient ("-' 0.4). 

Since 

( dVJ~ l' Y " 
T = Q l cl)", = Q (l3r'f = To 1 - h, : 

clv 

cly 

1 

1

- T I 'v 1 _li 1--~-
'Q h . ' 

the mixing coefficicnt becomes 

c = lJv' 1 = [2 clv = % 11 ~ y 1/1 - ~: . 

17 

(3 i) 

Replacing in Eq. (19) the notations and simplificatiolls Y = x~ ; Il lC r. 111 

(for fine particles): P11 = P2.2 = P:3:) = P ; Pi" = 0 for i .' h (i.e. neglecting the 
dIect of micro-stresses resulting from friction); and assuming that 

-~lC g sin i ~ gi ; -"Y:!c == - g cos I ;~~ g ; -'Y:1C == 0, ,\-e hayc 

cl)" 
(38) 

Accepting further that the presence of sediment particles is of no 
influence on pressure distribution (for low concentratiolls), it can be written: 

ancl thus 

clD yyc 

cl)" 
R 

dp 
- === - Qg ~ 
ch 

(39) 

If the meall square of the vertical pulsation velocity components cloes not 
depencl appreciably on y (except for layers in the vicinity of the hottom), 
then according to lVIIl'i'SKY it may he assumed that 

ldit.:a Pulytechni(,<l Civil 1\ 1-:: 
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In this case 

0.02 _-=Q:c:.C_V-'.:~.:.:la:.:.:x_ ~ ~ = _ 0.02 V~lax Qc din c 

(0 -o)u , ... C _ b c dy gh Qc - Q d(y/h) 

Qc v;;'ax wh - 0.02----- ---- = (40) 
gh xv'l o - 0 

~c ~ 

wh 
= - 0.0 2 --=-=--~ --::,-===-;;:::=====;::;:-

%V 11 r: i 0 F I - y/h .,/ 0, '- I 
o - 0 ~c ~ 

Concerning the physical phenomenon the following picture IS thm 
obtained: owing to the yalue 

this term appears to be negligible in practice (at least in the case of low COll­

centrations); the Frolule number is in general 

so that neither this influence is considered significant. It is to be inferred 
therefrolll that - disregarding the surface and hottom layers - the dirpct 
weight of the particles is counterbalancpcl only by the resistance acting on them 
and not by the gradient of turhulent strpsses (consequently the latter lllay 
be neglected). 

The prerequisite for the yalidity of these statements is, naturally, that 
the specific weight (yelocity) of the sediment particles equals the specific 
weight (velocity) of water. In this case, owing to the diffusion of the sediment 
particles, a closely uniform distrihution may take place along the depth, 
and then the ayerage yalue of the resistance Ri may actually become zero, 
and the sediment particles moyp relatiye to the fluid particles at the yelocity 
of turbulent diffusion, i.e. 

8 In c 
l,~id = - E---. 

8xi 
(41) 

Consequently, if the yalues D; (v)~ are components of the resistance to 
movement of the particles moving in an imlllobile fluid at velocity v, then the 
average resistance of thp particles contained in unit volume is 

C 
Ri=-Di(vc-v 

v 
(42) 
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wherein 

Ve the average velocity of particles; 
v the average velocity of fluid particles; 
Vd the average velocity of turbulent diffusion; and 
C(V the number of particles contained in unit volume. 

Assuming further the validitv of Stokes' law: 

10 

(42') 

finallv. the equation describing the movement of suspended particles can 
be 'written for the case of steadv movement: 

l
' St', a __ I_C 

_ C 

St 
(43 ) 

c 

Since the equation 

(44) 

i" abo available, the system of equations is closed (the only unkown quantitif'5 
being !lie and c). 

As will be perceived, for the special case of steady movement the results 
of the diffusion theory have heen obtained. In fact, from Eq. (43) 

( dp ') c Clfj,IZ+_, =c(a.-fj)IZ=R, =-D(-t'd) 
_l c' 1 _l - V Y T7 (Y. ' 

( 45) 

or 

D( t'd) (46) 

which leads, as indicated bv Eq. (34), to the equality 

(47) 

corresponding to Eq. (33). 
Data obtained by extensive experimental checks conducted at the lab01'a­

tory of the Department for TF'ater -'lIanagement lead, however, to the conclusion 
that the assumption concerning the identity between sediment and fluid 
particle velocities is, unfortunately, not satisfied in the majority of cases 
of practical interest. For this reason the above solution suggested by FRANKL 
is considered acceptable for the approximately laminar flow conditions in 
settling basins only. The point of theoretical significance is, consequently, 

2* 
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that the term JIxyc (the transverse gradient of turbulent shearing stresses) 
invoh-ed in the condition 

dp,., dJI xyc 
- C --' '- - ---'--

cly d)' 
cggi = 0 (48) 

defines essentially the lag of solid particles, and this is not eliminated unless 
Rx = 0, i.e., 'when (in an extreme case) there is no physical difference hetween 
the two phases, consequently a single pha5e (,\'ater) is only prt'sent. 

4. Solution of the system of equations for the case of 
quasi-steady flo'w 

Consider the potential solutions of the dynamical relationships expl'essed 
by Eqs. (19) and (20) for the case of quasi-steady, plane and uniforlll flow. 
For this case it is assumed, in agreement with SA:.\'OYA:.\' and A"A"YA:.\' [19] 
that 

the preSSlll'e distrilmtion is hydrostatic; 
the distribution of solid particles is statistically steady, the COll­

centration prevailing in a particular elementary volume of space during a 
particular elementary inten'al of time remains unchanged both in time and 
along the coordinate axis in the direction of flo,e 

- concentration is a function of depth: 
the distribution of pulsational velocity components does not differ 

appreciably from that in clear water. 
'With these in mind, the fundamental expressions of Eqs. (19) and (20) 

assume tht' fOrIll 

d [ -(' ') "]' .- R 0 
I 

'le c reI ·VC:.! ',' -r- g'Jc le - 1 == -
( x., 

- dp R ( c-- -g'lcc - 2 = J 
dx., 

(49 ) 

(50) 

~[g(I-c)(r~L'~)*] g(I c)gi~R1 0 (51) 
clx2 

d [g(I- c)(v?r'] - (1 - c) (lip -g(I - c) g-LR2=0. (52) 
(b:., (x., 

In the case under consideration tht' Xl aXIS points into the directioll of 
flow and coincides with the bottom: thl' x 2 axis is perpendicular to ;1."1: i 
is the hottom slope and, as previously, c is the average yalue of concentration 
at a particular point (elcI1wl1tary yolume) of space. 
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One possibility for the solution is then according to SA.NONYA.:X and 
ANA:XYAN to introduce on the basis of experiments by l\IINSKY, the following 
conditions: 

( '0')" ') (1 k-) uz- 0 =XUmax -'1 C 

( '0) '" 0' (1 k-) .Uc2 . === ZUinax - ~2 C 

( , ') ,. U
1 

U z '00 = 

(53) 

(54) 

(55) 

The coefficients ki' k~, k;j may then he regarded as parametric functions of 
the mean particle diameter d alone and their magnitudes are determined 
experimentally. 

Eqs. (49) through (52) are preferably rewritten into dimensionless form 
using the following notations: 

Xl = xh; x~ = yh; (U~I ud* = (u~ F~)* ghi; (u?)* = u? u~nax' 

Thus 

gQc i (~y [e(ll~ v~)*] - gQc ie + Rx = 0 (56) 

'l.UTnax d [-(1 ---0 - c 
h ~c dy . 

(57) 

gQi tv [(1-e)(1-k3c)(1-y)] g(l-e)Qi-Rx 0 (58) 

XU~l1ax d [(1 ---o-
h ~ d)' . 

e)(l - kl c)] - Rv = o. (59) 

The system of equations (56) through (59) is thus completely closed, 
since the number of unknowns (Rx, Ry, (u~ v:.), c) equals that of the equations. 

For determining the yalue of c combine the terms of Eqs. (57) and (59): 

XUTnax (f( _____ ~: kl ) Q)} _ c = 0 

gh Qc - Q 
(60) 

which hecomes, after the introduction of simplifying notations: 

de (B-- 4) -- c-" -c 
cly 

o. (60') 

The integration of Eq. (60') yields 

B( -c - , .f l c co) - bTt - = y - Yo , (61) 
Co 
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where Co is the concentration at depth )'0' the so-called bottom concentration. 
Accordingly, the resistance coefficients may be expressed from Eqs. (58) 

and (59), as 

(1- )")(1 - k3 2cka) ] 

A Bc 
(62) 

Y..'211~,ax (1 : kl~ 2 kl cl c 
h A - be 

(63) 

or, the resultant resistance dut"' to tht"' presence of tht"' solid particles IS 

R (64) 

Considering the above solution it may be concluded that realistic results 
are to he expected primarily in the range of high concentrations, i.e., in the 
case of slurry flo·w. In fact, the coefficients kt, J,~ and k;J depend in this case 
on the average particle diameter alone, although obviously, these 'will vary 
with concentration and grain-size distrihution and prohahly with the intensity 
of turhulence, etc. Furthermore, i.t is hardly to he expected that the relation­
ships expressed by Eqs. (53) through (5.5) could he represented in a mort"' 
generalized case as linear functions of the said coefficients. This situation is 
unimaginahle, unless in the case of high slurry concentrations the distrihution 
along the vertical is nearly uniform, the intensity of turhulence is practically 
zeroed, and the behaviour of the so-called gravity medium is governed funda­
mentally hy the weight (-';o]ume, diamf'tt"'r) of the entrained material. 

5. Solution of the system of equatiol15 for (Iuasi-steady flo'w 
and random concentration 

Owing to the shortcomings of the presented partial solutiom of the 
generalized fundamental equation, it 'was decided to seek a substantially 
diffcrent approach. The extent to which the variation of pulsational velocity 
components - controlling substantially the entire process of suspension 
can he described in terms of concentration, is oIn-iously critical for the success 
of the approach. 

In turbulent flow the mixing processes are highly involved and trans­
form the mechanical energy into other (mainly thermal) forms of energy. 
In steady flo-w of clear 'I-ateI', mechanical losses of energy are induced hy 
(external) friction on the houndaries, as well as by internal friction. 

In cases where solid particles are also contained in the flowing medium, 
its component parts (second phase) participate themselyes in the process of 
turbulent mixing. As a result of friction of sediment particles on the boundary 
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surfaces, friction (and possibly impact) of sediment particles among themseh-es 
and on the fluid particles additional losses of mechanical energy oCCUI'. Further­
more, because of the difference in specific weight (non-uniform distribution) 
and the difference between the yelocities of solid and fluid particles, minute 
turbulent wakes develop behind the solids. The energy of these wakes is con­
yerted directly into thermal energy, presenting special cases of energy dissi­
pation. 

At the same time it is evident that a uniform turbulent field of motion 
occurs in turbulent, sediment-laden flo-w, in which the mean velocities of the 
solid and fluid media may be equal at particular points. As indicated by 
experimental eyidence available so far, the condition 

-,- 0 -,-, 0 
Vx c' > ; Vx Vy < 

is in general satisfied, the physical interpretation is that fluid particles moving 
at a lower yelocity are more frequently encountered by the solid particles 
than such moying at a higher yelocity. This is the reason for the statistical 
(and not primarily hydrodynamical) lag of solids, which applies to groups 
of particles (and not primarily to individual particles). 

One of the possible solutions resulting from the above considerations 
will be outlined subsequently. 

5.1 Choice of the fundamental equations 

The solution will be based on the mathematically exact fundamental 
equations (19) and (20) without neglections. The influence enhanced by the 
presence of the solid phase will be expres5ed in a manner similar to the 
c:mditions in Eqs. (53) through (55), -with the difference, however, of applying 
concentration influence functions, giYell, for the time being, in a general 
form <P (c). Thus 

( '9)" ",n (-) U C2 ' = XU rnax ~2 c 

It 15 assumed further that 

Xl = xh : x~ = .rh 
and 

dp 
---= -gl)-

dX2 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 
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The fundamental equations (19) and (20) assume thus, with allowance 
for Eqs. (65) through (70) the following form 

Let 

gQc i dd {e(l - Y) <P1(c)} gQc ic + RI = 0 
y 

.) 

~Umax 

h 

Adding Eqs. (72) and (74), as well as Eqs. (71) and (73) yields 

'l.U~,ax { d [- rr, (-)] I d [( - rfi (-)]} ( - 0 -h-' Qc dy e 'P2 e Q i dy 1 - c) 'PJ e - g Qc - Q) e = 

Qc 
,0.., ==-

'] 

from Eq. (75) it is: 

e\ q> (C)] = g(Qc Q) h . 
! 1 .) 

Xllmax 

\Vith the notations 

T-(- ue <P.,(c)' + (1 - c) <PI (c) 
l./ c) = ' --=-"'-'--

e 

Eqs. (75') and (76) assume the form 

d)' XU~,ax 1 ~ [eU(e)] 
de (ft - 1) gh c de 

dy V'(e) - (ft- 1) 
-de = (1 - y) 

V(e) 

(71) 

(72) 

(74) 

(75 ) 

(75') 

(77 ) 

(79) 

(80) 
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Thus, III the foregoing equation three functions, namely 

y(c) , U(C) and V(C) 

are inYoh-ed, so that two equations are insufficient for their determination. 
The approach adopted will consist of determining one of them from measure­
ment data. The function to he determined by measurement he the fUllction 
U(c). 

In this case the function on the right-hand side of Eq. (79) may he 
regarded as known and denoted hy y(e). In this manner J(e) and V(e) can be 
tletermined from Eq. (79) and Eq. (80), respectinly. 

Consequently, by introducing on the basis of Eq. (79) 

into Eq. (80), this becomes 

Y (c) 

dy =Y(C) 
de 

(1 _ y) V'(c) - (p - 1) 
V(e) 

The function.r is then obtained as the solution of Eq. (79): 

dy 

de 

whence upon integration 

Cu 1) gh e 
d [cU(c)] , 
de 

c 

y -)"0 = 7.UFnax [U(C) - F(e.) +J' U~L de]. 
({-l-I)gh e 

'., 

Consider now Eq. (81). Upon rearrangement of terms 

Tn ._) Y (c) V-(-) 1 . (e = e =,Lt - . 
1-y 

Introducing the notation 

dy 

Y(c) _ de 
W(C) = -:;----1-y- -y 

(81) 

(8~) 

(81') 

(83) 
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th'~ solution of Eq. (81') is obtained as 

_ _ - / W(c)dc _ _ ~ c~ W(c)dc C [ C 

J' (c) = e " H co) + (,u - 1) \ e 
Co 

(84) 

5.2 Expanding the system of equations 

On the basis of experimental evidence it has heen concluded that con­
centration had almost the same effect on the variation of the coefficients 
either (U~2)* or (u~D*. Identical trends were ohserved also in the variation of 

the terms (u;, u:~)* and (U~l' u~J* so that the simplifying assumptions 

and 

appeared permissihle. At the same time it was found from measurement 
data that 

Ijj(e) = e -kc. (85) 

Consequently 

U(e) ( 

1 . 
P-l+ T ) (86) 

V(e) = ru -1 -'- ~ ) c[P(e)+I]. (87 ) 

Thus from Eq. (82) 

y = yu-:-

Introducing the exponential integral function 

the expression for the function y (c) becomes 

y = )"0+ (88) 
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The function V (c) is obtained from Eq. (84) hy introducing Eq. (83). 

dy 
c--J Wee) dc = J dc dc [In(l y)I In 1 - yC;;) 

1- Yo 

it follows that 
c 

V(e) l-·Y~/c 1 {( , T -(-

1- y(c) " 0) . 0) 
1) J [( - y(e))] dC} , 

CO' 

where the expression for y (c) should he introduced from Eq. (82). Dnder the 
condition in Eq. (85) and with regard to Eq. (88) the following expression 
is ohtained; 

V(C) = 1 _ly(e) {(1 yo) V (co) + [(1 )()) -'-x:7zax e- kc,] (ft - 1 )(c - co)} + 

gh '{e-kc- r kco -(P-l)( ,it k 1-ljC[-EJ-kC)+E i (-kCo)]}, 

(84") 

5.3 Determination of the relationships 

Let us return now to the expression of the function y (c). Eq. (88) 'was 
obtained by assuming that cJ>1 (c) = cJ>~ (c). Furthermore, in Eqs. (65) and (66) 
it has heen accepted that u;;'ax (the square of the maximum velocity in the 
direction of travel observed at a particular point) is not directly related to 
concentration. In lack of more accurate measurements assume temporarily that 

or 

and 
u(e) 

q -L. 
- <) ~ 

llo 

., u­o 
:.)­pc 

~( , 
n- c) = Fr. 
gh 

With these in mind the following result is obtained: 

-"----"-"- = r 1 -'- q 1 1 
aFr l ,u - 1 ,u 

+ (k - q -1)' [- Ei ( -key] 
,u-l 

1} (-Ei(-keO)]} , 

(89) 
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whence, with the substitution q = 0, obyiously Eq. (88) is obtained. 
Determine no'w the mean concentration along a vertical. 
In a general form this becomes 

1 

ep: = __ 1 __ f e dy 
1 ~-. Yu 

Slllce from Eqs. (75') and (79) 

.) 

XUinax ( C dy = d [c U C)] 
(/I - l)gh 

thus 

1 
efl: = ,--~ .. 

1-Yo 

and 

Fr __ ~x __ ~."" {e e-kc", _ e e-kc"....L 1 (e-kcm _ e-kC,,)}. m 11· 

1 )~ .u 1 

(90) 

(91) 

Concentration at the surface (cm) is obtained at y = 1 from Eq. (88), i.e. 

y - 1 + xFr {e-kcm - e-kc"....L ('_k_' - -I)' [-E-(-ke ) ...,. () , I m 
"a -1 

For facility of computation the following notations will be introduced: 

F(z) = e-: 
f
'_k_. -~ 1) [-Ei( -z)] 
Jl-l . 

G(z) = ('---~-- zJ e-: . 
. ,u -1 

(93) 

Eqs. (88), (91) and (92) can then he rewritten into the following form: 
for the concentration at any point along a vertical: 

y- .r(J = xFr [F(z) - F(zo)] , (88') 

- for the concentration at the surface: 

1 - Yo = xFr [F(z",) F(zo)] , (92') 
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- for the mean concentration III the vertical: 

(91') 
=l: 

In view of the fact that the aboH" equations are transcendental ones, 
double point-row diagrams have heen prepared for ease of computation. 
Computation is impossible unless the concentration at the bottom, the distribu­
tion of velocities and the water depth are known. 

In the solution presented ahoye the main inconsistencies of preyious 
theories could thus he resolved. In fact, hy introducing and determining the 
concentration influence functions, we succeeded in describing the influence 
exerted hy the presence of the solid phase on the pulsation yelocity character­
istics, deci::;iye for the suspension process. The resulting computation formulae 
are at the same time easy to handle and yield practical relationships. 

Neyertheless, for a number of additional practical prohlems (e.g. settling 
tanks, slow and high-rate filters, colmatation, etc.) it appeared ach'isahle to 
continue the study of the resisting forces Ri ('I-hich were replaced in the fore­
going study, i.e., under the definitely turhulent conditions preyailing in open 
watercourses, hy the concentration influence functions), since the problems 
mentioned ahoye inyolve mostly flo'w condition:" in the laminar or transition 
ranges. 

6. Determination of the re:"istil1g forces 

The core of the problem is e:,sentialh- that the ,'eeto!" 

R-I 
",' , 
./ C r::l 

(the force re:;isting the movement of the fluid) in\olnd in the exact dynamical 
equation (19), represents, together with the generalized Archimedian force 

Ai C '" /i-.d 8xl: 
(95) 

(resulting from microscopic stresses pi!:l the interaction of the two phases. 
Since the effect of micro-stresses due to friction is practically insignif­

icant indeed, it is sufficient to consider the term Ri alone. 
For the sake of completeness it should be remembered that the above 

t'xpression results from the assumption that the stress tensors Pili: pin, a::; well 
as their derivatives with respect to the co-ordinates are continuous functions 
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of the coordinates within and along the boundaries of the areas F (:i\, ... ) < 0 
and <I> (Xl' ... ) < O. In fact, applying them to the resulting force the Gauss­
Ostrogradinsky theorem yields 

JJ Pi d<I> = J'~jJ" l' OP.i!; dX1 clx2 dXa = J'IJ" 
k=1 ox!; _ 

<1>(x, .... )=O <1>(x, .... )<O F(x, .... )<O 

3 '" 
" uPik 1· 1·' d . ..,;;;;.; --(X1 CX2 X3 · 

k=1 OX" 
(96) 

In agreement with Eq. (16), after the ayeraging operations according 
to Eqs. (2) and (3) it follows for the solid phase 

(97) 

~ JJJ 
3 

.2 c' dx! dx., dx, 
!;=1 OX" -" 

F(x, .... )<O 

and for the fluid phase 

J'J' -", OPfl· J"'j' - 3., opnc ') (1-cj~~dx1dx2dX3= I (1-c),2--.-dx1 dx2 c1:\;3-
. k=1 ox!: .. k=1 ox!: 

F(x" ... )<o F(x" ... )<O (98) 

It was seen in the foregoing that, for approaching the second terms 
sought for on the right-hand sides of the aboye equations FRA:\,KL applied 
Eq. (42), SA~OYA:\, and A~AXYA:\, ohtained Eqs. (62) and (63), resp., whereas, 
according to the solution suggested by the author in 1962, III conformity 
with Eqs. (73), 74) and (8.5), it is: 

R, = ~[(1 - y) 1[1(2)] - 1 
- d)' . 

(99) 

d _-
[(1 - c) e- kc ] xyFr. 

d)' 
(100) 

It should be noted that several investigations have been performed in 
recent years to determine the numerical value of coefficient k. E.g. the coeffi­
cient k was found by DSHRBASYAN [5] to depend primarily on particle size 
(settling yeIo city). 
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On the hasis of the foregoing relationships the magnitude of the resistance 
factors can he computed and consequently the effect of the solid phase on the 
pulsational velocity components expressed. 

Summary 
.; 

The development history of suspended sediment tran:-portation is reviewed. Pnrely 
empirical theories and semi-empirical approaches have been neglected. since the determi nistic 
model on which their development relied upon, was necessarily poorly founded. The pr esellt 
study relied on the theoretical basic equations of classical mechanics and hydrodyna mic,. 
as well as on the so-called microscopic systems of eqnations developed in theoretical ph ysic:-. 
to derive the theory of turbulent sediment movement. Based on research results of the author. 
and on those pubiished in the literature, the resulting equations are solved by different 
approaches. 

It is concluded that the microscopic system of equations suggested by Frankl may be 
regarded at present as the most suitable foundation for the development of the theory of turbu­
lent sediment movement. In the development of the theory presented in Chapter 5 and in the 
determination of the resisting forces shown in Chapter 6, empirical relationships were neces­
sarily introduced in order to make the results suitable for practical applications. It follow:-. 
that the theory of turbulent sediment movement would be difficult to develop further using 
the classical approach followed so far. The uncertainties im'olved in the determination of pa­
rameters call for a radical revision of earlier methods of measurement and for the statistkal 
analvsis of data scries intended for nse. 

. The deyelopment of the classical deterministic approach seems to haye attained it, 
practical limits and further efforts :-hould instead be directed towards the development of 
stochastic-mathematical models, using recent results of probability theory and mathematical 
statistics. The next step should be to develop suitable computer programs. 

:\" evertheless. the study presented above is still useful for soh'ing problems practically 
not fully understood snch as diffuse or turbulent movement of substances with specific weights 
other than that of water. Such problems are encountered in different systems of settling tank. 
"arious flow-through basins used in water and sewage treatment, etc. Knowledge of achieve­
ments in the theory of turbulent sediment moyement maY furthermore be useful in the studv 
of hydraulic conditions. oxidation basins. various sh;fts. etc. with predominantly tu~­
hulent flo,,·. 

References 

1. BARE2'<BLATT, G. 1.: 0 dvizhenii vzychennih chastiz v turbulent nom potoke. Prikl. AI at. 
i. AIech. Tom XVII. 1953. 

2. BOG.-iRDI, J.: Theory of Sediment Alotion. Budapest, 1952. (In Hung.) 
3. DEDITER. J. J.-LAAN, E. T.: Alomentum and Energy Balances for Dispersed Two-pha,;e 

Flow. Appl. Sc. Res. :\"0 2. _l. 10. 1961. 
.1. DOBBI:'iS. ",V. E.: Effect of Turbulence on Sedimentation. Proc. _lSCE vol. 69. N° 2. 19,13. 
:). DZHRBASYAN. E. T.: Vlianie tviordih chastiz na turbulentllie karakteristiki zhidkosti i ih 

transport potokom maloi mutnost i. Cand. Thesis. Erevan. 1962. 
6. EGIAZAROV. 1. V.: Xauka 0 dvizhenii nanosov. A.X.S.S.S.R. 1960. 
7. FRA:'iKL. F.!.: K teorii dvizhenia vzveshennih nanosov. Dokl. A.)I.S.S.S.R. 1953. T. 

XCII. :,\0. 2. 
8. FRANKL, F. 1.: Opit poluempiricheskoi teorii dyizhenia vzveshennih l13nOSOV v nierav­

nomernom potoke. Dokl. A.X.S.S.S.R. 1955. T. 102. )I". 6. 
9. HASKI2'<D, ]\1. D.: Chastizi v turbulentnom potoke. Isv. A.:\".S.S.S.R. :\"". 11. 1956. 

10. HVNT, 1. X.: The Turbulent Transport of Suspended Sediment in Open Channels. Proc. 
of the Roval Soc. Mat. and Phvs. Sc. :,\0. 1158. Vol 224. 1951. 

11. IS)lAIL, H. A(: Turbulent Transfer ::\iechanism and Suspended Sediment in Closed Channels. 
Proc. ASCE vol. 77. XO 56. 1951. 

1') IAGLO)l. A. ]\1.: Ob uchote inerzii meteorologicheskih priboroy pri ismereniah v turbulent­
noi atmosfere. Tr. Geofis. In-ta. )10 24. 1954. 



32 

13. Y. XAGY. I.: Experiments on the }Io...-ement of Suspended Sediment. VII. Con...-egno 
Italiano di Idraulica Palermo. 1961. 

1·t. Y. )tAGY, I.: The Use of Reynolds Equations for Sediment }lotion, Y. K. 196:!. B 
1;). V. XAGY, I.: The Theory of Suspended Sediment Transportation. YIII. Con...-egno Italiano 

di Idraulica Pisa, 1963. 
16. X1XG CHIE],;: The Present Status of Research on 5ednnent Transport. Proc. ASCE. 1954. 

Dec. 
17. RAH}IATCLE'i, H. A.: Osnovi gidrodinamiki vsaimopronikainshchih dvizhenii szhimaemih 

sred. P:J"Dr. T. 20. 1956. 
18. Rocs, H.: }Iodern Conceptions of the }Iechanics of Fluid Turbulence. Tram. ,\SCE. vo!. 

102. 1937. . 
19. SA2"OYA2", Y. G.-AXAXYAl" ,L K.: I\:, voprosu 0 dvizhenii nanosov v turbulentnom potoke. 

A.:X.S.S.s.R. SOy. po probl. yodn. hos. }Ioscow, 1960. 
:!O. SLESK1K, N. A.: 0 differencialnih uraynieniah filtrazii. D.A.)t.s.S.S.R. T. 71. :'\: 5. 1951. 
21. TCHEl"-CILAK }foc: }Iean Value and Correlation Problems Connccted with the }Iotioll 

of Small Particles Snspended in a Turbnlent Fluid. Hague. 1947. 
:!2. TELETov, S. G.: Yoprosi gidrodinamiki dyuhfasnih smesei. Uravnienia gidrodinamiki 

i energii. Vest. }Iosk. Lniy. )to 2. 1953. 
:!3. Y1-CHE2"G-LIU: Turbulent Dispersion of Dynamic Particles. Journ. of }Iet. Am. }Iet. Soc. 

'1'01. 13. N°. 4. 1956. AU2:. 

:2·L YEL1KHAXOV, }I. A.: Dinamika rmhdh potokoy. }Ioscow. 1962. 
:2::;. YAX02"I, V.: Transportation of Suspended Sediment by 'Vater. Proc. ASCE. 19-1-1. Vo!. iO. 

Prof. Dr. Imre Y. ~AGY, }I{iegyetf'lll rkp. 3. Budapest XI., Hungary. 


