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1. Introduction 

In genei:al, prestressed concrete beams may be designed with reduced 
cross-sectional dimensions as compared to those of normal reinforced beams. 
The requirements for prestressed beams are often more rigorous, e.g. the 
requirement to avoid cracks or excessive crack ·width. Therefore, in spite of a 
relatively high rigidity of prestressed structures, it is often necessary to 
analyse post-cracking behaviour and deformations, while for ordinary rein­
forced concrete beams generally a limit analysis of load capacity is sufficient. 
Namely, restrictions on deformation usually require no detailed analysis and 
~lllcracked performance is seldom a requirement. 

There are several regulations for this analysis. Some of them apply 
cross-seetional deformation to characterize ultimate moment, while in others 
the computation method is based on equilibrium conditions for known streES 
distribution, giyen for some limit condition. 

Several methods haye been deyeloped for determining cracking and 
ultimate moment. There is no general method, howeyer, for the stress-strain 
condition due to an arbitrary external moment in a cracked prestressed beam. 
Elastic analysis of a cracked beam has been made by K.~Rl\L~" [4]. Analysis 
based on assumptions hy Dl\IITRIEV and KALATUROV has been elaborated hy 
ROZENBLUl\IAS [6]. 

The methods based on the cross-sectional deformation accept the 
Bemoulli-Navier hypothesis, fundamental also for the ultimate moment 
computation in the Hungarian Specification for Highway Bridges and for 
different Soyiet computation methods, e.g. that by ZHDANOV [9]. Dl\IITRIEV 
and KALATUROV [2] assume a giyen stress distribution, while the position of 
the neutral axis and other parameters are determined from the equilihrium 
conditions. 

* Presented at the Scientific Session of the Technical lJniversity, Budapest, October 
31 to ~ovember ;;, 1967. 
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Symbols 
Cross-sectional characteristics 
b [ cm] width of cross-section 
h 

[cm]]} rp [ ] 
Cl. [ ] 

see Fig. 1. 

% [ ] 

]) 
%1 [ ] 
%~ [ ] 
" [ ] 1'1 
.:> [ ] I)~ 

see Fig. 6. 

}Iaterial characteristics 
ct [] 
Cc [] 

at [kp/cm2] 

ac [kpjcm2] 

E [kp/cm2 ] 

as [kp/cm2] 

B [kpiclll~] 

R [kp/C1l12] 1 
S [kp;cm2] J 
Characteristics 

cp [] 
e [cm] 

e 
{j T[] 

ultimate concrete strain; 
ultimate concrete compression: 
ultimate concrete tensile stress: 
ultimate concrete compressive stress: 
initial modulus of elasticit, of concrete: 
theoretical compressive s'tress at c = = for a stre:3s-:3train curve 
described by a second-order fractional function: 
strain at maximum tensile stress for a stress-strain diagram described 
by a second -order fractional function: 
parameter of the rational function with second degree denominator describ­
ing the stress-strain curve: 
co~nstants depending on the parameters of the stress-strain curve (see 
Table 2). 

of prestressing 
strain due to effective prestress: 
excentricity of prestressing force with respect to the reference axis: 

relative distance of tendon centroid from the reference axis. 

JIomellt of external loads 

.lIe [kp cm] reference axis hending moment due to external loads in the section con­
sidered. 

I ariables of the deformation diagram 
concrete strain in a fibre: i' [ ] 

c t,,! [ ] 

~st [ ] 
[ ] 

., [ ] . 
, c [ ] 

I) [ ] 

concrete strain at the steel centroid level: 
steel strain: 
relative depth of compressed concrete: 
relatiye distance between fibre of strain Et and the reference axis: 
relative distance of a fihre of strain et to the reference axis, if top fibre 
strain is cc; 
relative distance of a fibre of "train E to the reference axis. 

Stresses, intemal forces 
a [kp/eJ1l~] axial nul' mal stress in any concrete fibre: 
P [kp] sum of axial stresses a; . " 
JI [kp cm] reference axis moment of stresses a. 

2. General stress-strain conditions for a cross-section 

General relationships based un the principle of cross-sectional rotations 
involve the following fundamental assumptions: 

1. The Bernoulli-N"avier hypothesis is yalid; 
2. Concrete stress and strain are in a given relation: 
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3. Steel stress and strain are in a gh-en relation; 
4. Values of the initial prestress strain and of its reduction due to 

losses are given; 
5. No repeated load acts: 
6. Concrete cracks at ultimate tensile strain and fails at ultimate com-

pressive strain; 

i. Prestressing steel is honded; 
8. External forces produce no internal axial force. 
Let us consider a cross-section of a givf'n geometry (Fig. 1). A given 

strain diagram of a concrete section defines a unique stress diagram, hased on 
the relationship u = u(c). 

Fig. 1 

Force P and its moment Jl to the reference aXIs can he written ae • 

P = h \- b(I)) U[E(I))] di), 1 

h~_;: b( 'I) ry" ['('J) 1 d'I./ 
(1) 

The strain E at a section level, for $ and jl given in function of if' is expressed 
by the relationship: 

i) I' ') 
"\, --1.... (r _ J: 
l : r ~ ,. 

~~os train heyond the ultimate compression heing possible, it is: 

~ Ec 

jl ~ (F - ~ Cl 

and of course: 

where }' like 1', IS sign-dependent. 
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Integral;;: (1) co-ordinate yalnes P, AI to the arhitrary yalnes ~, i', hence: 

P = II (~, y) , } 

lVI=v(~,y). 
(2) 

At seryice loads, the moment of external loads and the initial prestress are 
giYen, while ~ and j' are unknown still to be determined, together with the 
corresponding prestress modified hy the deformation. 

The yalues ~, i' 'will he determined from the expression for the normal 
force composed hy the simultaneously acting prestress strain and the steel 
strain increment due to the external load. Its horizontal projeetion balances 
the resultant of the axial concrete stresses: 

(3) 

The external load moment is balanced hy two moments, the one due to the 
prestress and the other to the eoncrete stresses: 

l~le = IVI + p. e. (4) 

Substituting Eqs. (3) and (4) into (2) we ohtain: 

Ale = v(~,)') + e· u(~,y) (5) 
and 

P[ cl' -:- f(8;~, y)] = - ll(~, y). (6) 

Eq. (5) defines a straight line in the co-ordinate system P, 111 (Fig. 2), while 
Eq. (6) a CUlTe in the co-ordinate system I', ~, pertaining, of course, to giyen 
cp and {! (Fig. 3). This curye can also be plotted in the co-ordinate system 
P, 11,1 since 'with Eqs. (2) the ~ and i' yalues define a unique couple of yalues 
P, jl (Fig. 4). 

The intersection of this etu·ye plotted in the co-ordinate system P, 111 
with the straight line giyen by Eq. (4) defines the couple of yalues P = PI; 
jI = 11'11 belonging to thE' couple of yalues ~ = ;1' Y = i'I. If we haye yalues 
;1 andy]: the stress-strain condition of the cross-section is known. The radius 
of curyature and the crack width can he determined if the MVRASHOY [5] V' 
value depending on the matcrial properties and the steel type is known. 
K_.\.mL.\.N [4] has determined the stresses for yalnes ; [, i' [ in the special ca;;:e of 
an assumed linear elasticity of concrete and ;;:teel. 

Eqs (2) can he represented as a family of curves in the co-ordinate system 
P, 1v1; i' is constant along each cm·ve, and each point of this cun-e helongs to a 
certain value of ~. Once this familv of curves is put down, the values ~ [, ;'1 
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can be read at the intersection of the straight line (5) by the curve (6). Know­
ing the curve family, values All, PI and ~h /'1 can be obtained 'without plotting 
(5) and (6), by simple regllla falsi, similarly to the NIiirsch graphical method. 

, , , , , 
'''' ,~ , 

1;r ,at 
+-------:f---

-1],5 

Fig. 3 

, , , , , , 

10 
I' 

\ 

Fig. 2 

lp 
I 

/1 

v-
I 
I 

Fig. 4 

i1 

3. Cracking moment, moment causing given crack "Width, 
and ultimate lllOlllent 

The method presented in Section 2 suits to determine the stress-strain 
condition for an arhitrary -!I'1e yalue. The prohlems of determining the cracking 
moment, the moment producing a given crack 'width and the ultimate moment 
differ essentially from the general case treated in Section 2 in that here the 
yalue of I' is kno"\\-n, or given as a function of ~. Thus, in these special cases 
the P, 11'1 values are defined hy one value of ~, i.e. there is a single curve in the 
co-ordinate system P, lVI; and Eq. (6), now with a single unknown, delh-ers ~I' 
This is 'why in the considered spccial cases the moment asked for (either 
cracking, producing a given crack width, or ultimate moment) can he deter­
mined hy regula falsi. (See [1], [8].) 

The determination of the relationship hetween P and NI for a constant 
Ye and varying ~ has heen treated in detail hy SZ_UAI [7] for the special case 
of failure, neglecting the concrete tensile stresses and assuming constant 
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compressive stresses. He suggested an application for non-ultimate moment 
cases, and developed a method for determining the llloment maXllllUlll and 
the pertaining force P. 

Expressions for general cases can be 'written according to general for­
mulae, as compiled in Table 1. Relationships detcrmining moments for a givcn 
crack width are essentially idcntical 'I-ith those for thc cracking momen L 

simply replacing ct and thp illtcgrationlimit y; hy the strain for the C01TPspond­
ing lp value and the relativc spacing for Et, respectively. 

4. Limit analysis by a single analytic fUllction 
describing the concrete stress-strain diagram 

Eqs (1) are apparently determined by the strcss-strain function of tllt' 
concrete. Various approximations have been applicd to describe the test 
stress-strain diagram of concrete. }Iostly, either linear clasticity or rigid­
plasticity has heen assllmed, or a comhination of both in thc compressed or 
tensile zone (sec e.g. [2]) or possibly another function composed of linpar 

sections. 
Even assuming a linear a = a( 1:) function, complex relationships arist' 

for the stress-strain analysis of the cracked section. There are few methods 
known for the stress-strain condition beyond the cracking moment, assuming a 
non-linear stress distribution. For instance, ROZE='BLL'}IAS [6] obtained highly 
complex relationships for linear or constant stress distrihution, even applying 
further approximations. In general cases, the use of computers cannot be 
avoided. Computer formulae can hest IH' obtaint:'d hy approaching the concrt:'tt' 
stress-strain diagram hy a single analytic expression. By this reason it is 
ach-isable to eliminate yariahles from tht:' integration limits arising Whl'll 

functions are composed of different expressions for certain sections. Lnder 
these conditions the rational funetion with second degree denominator seems 
to be most conyenient and most simple to describe the function a = a( E) 

(Fig. 5): 

(7) 

where 



(;('Iwrul ea~e 

I: = l(q ; ?', i;) 

I' c =, 1'1 (1 -I -?;-l-~;~d 
l; re 

)1 I 'p-i; - 1'1 

~pper} limit of integration 
.Lower 

)' 

-"f! 

PIP ,= n (i;,)/) 
(2) 

lH 1 Jvlo= v (i;,?,) 

Bo'l I I'it = l (it; )/,i;) 

(.1) P (cl' + I'it) - n (i;,)/) 

(4.) Me=M+P.,) 

(5) P [cl' + l(l}; )1[, i;J)] u(i;['l'[) 

(6) 1He ,= 11 (I; [, )' J) ·1 (, . ,,( i; [, )' [ ) 

Tablt~ 

First ('l'lwk Hpp('nrH ;':' ~ ':) 

I: '~lcr (1/; 1;) 

I' ,. BI ('I _L(~) 
1 -- s 

!; 
1"1 -I- Cc 

ex 

--'f! 

I' 11 (i;, ex) ua (i;) 

.M lJ (i;,ex) =~ Vcr (i;) 

I:it '~.I~c({}' i;) 

fsl = cl"l- fit 

P 'c., (fl' I eit)-~ uer (i;) 

iller = .M -I p. l< 

p -J;'r (l}, i;[r)1 =" -- lIer (i;cr) 

1Hcr = 'Vcr (E)' I (" IIcr (l;=cr) 

Spt'I'iul t~IIH(~H 

I"nilurl' J' -J',,(i') 

I Jj(I/; i;) 

( l' 
\--.;:~ 

I ,= Cc l_ILt'/.'. 1) 

1) !; --·11' 

( '") (81 I J) t t l'c I; ~ -~.::' -- <; -- 'I' S -.- 'f! 

. --If' 

P u [I;, ?' cm] == lIJ (i;) 

M, .' vli;,?,c (i;)] 11J m 
lit o~.Ij (I); i;) 

/'(1:1' + Bit) =.- - Ilr (i;) 

1V1j= M ·1- p. () 

P[fl' +Jj(i}; .;)] ~ - lIJ(';J) 

!Hr O=I'J %) -I 1<' lIJ (l;=J) 

'" MOlllcnt I'.r a givell emek width is ohlained by applying the S'"lle relalionships 10 11", sell;l". 
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The values as, et, E can he assumed so as to ohtain realistic values for ac, ec; 

at, et; for instance to give a close approximation to the diagrams presented by 
HAL . .\.SZ [3]. The monotonously increasing diagram at the compres;;;ion side, 
in contrast to the empirical decreasing curve, is of no importance, except near 
t he ultimate moment, but also here it is not too significant. 

~ CH 

"" r--- lens ion 
vc I "A "(enlarged) 

--------------+-~~~+---E 

compre~ 

Fig. 5 

b 
"! 

-1.----,,-- j-......J:----1-y-

I
ln' .-if~~CICJY"h 

aXIs T 
-t-'-t- I<xh 

! 
J 

Fig. 6 

Eqs (1) corresponding to function a = a(e) from Eq. (7) are compiled. in 
Table 2, for the case of Fig. 6. 

Correlated. values of P and ,lyI, given in explicit form, are easy to cal­
culate by means of a computer. P, NI curves related to given et values are at 
our disposal to plot for different cross-section types, and so are cun'es for a 
given crack width. Similarly, curves for correlated values of P and .1.111)1'0-
cl ucing ultimate compression in the top fibre can be plotted according to (7). 

6. Conclusions 

Different stress-strain relationships for prestressed pre-tensioned heams 
can he given for the general case. Unless the beam is crackfree and of a lineal'ly 
elastic material, it is rather complicated to determine the stress-strain condition 
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due to a given force, and it is only expedient if the tests are followed hy calcu­
lations. Cracking moment, moment for a crack width, or ultimate moment are 
more simple to determine and feasible in engineering practice. It is more 
advisable therefore to specify in codes of practice that service moment must 
not exceed the moment for the specified crack 'width limit, than to give a 
limit for the crack width for the given (e.g. service) load. 

f' < ex; - %~ 

i' > ex; %. 

H(ij) 

Table 2 

P = bi! {PI G(y) 

ji = W {PI H(;;) 

(1/i1)G(-rp+%)-G(-rp)} 

(1-i11)H rp--'-%)-H(-rp)} 

P = bh {P~ G t·) -. (/31 - /3~) G (ex; - %~) + 
+(l-Pl)G(a-l-;-%)-G(-rp)} 

j~:[ = bh~ {pz H (y) - (PI - p~) H (IY. %~) -;-

-·-(l-Pl)H(O:-l %)-H(-rp)} 

R (;; - q: - ;) arctg 

-----:::'::::--'---"- arctg 

There exists an analytical function gtvmg a fair approximation to the 
concrete stress-strain diagram hoth in compression and in tension. Such a 
relationship is of great use especially in computer limit analyses of cracking 
and of given crack width. 

Summa!')' 

General expressions have been presented for the stress-strain conditions of prestressed 
concrete beams subject to arbitrary loads. also suitable for determining crack width due 
to any moment. They can also be applied to determine cracking moment, moment producing 
a given crack width and ultimate moment as special cases of the general method. By introduc­
ing a single analytical function truly fitting the concrete a-c diagram both in tension and in 
compression, it presents a relationship especially useful in digital computation. 
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Discussion 

P. LE);KEI. Institute for Building Research: 

This lecture is of high yalue as it presents general relationships for the limit analysis 
of prestressed concrete heams by which the hehayiour can be followed up to failure during 
loading. 

~Digital computers make it possible to apply this method for general cases. I wonder. 
howeyer. if they do not permit to replace the computational assumptions by more exact 
ones. Such are for instance the Bernolllli-_'Yavier hypothesis (assumption 1) in the lecture. 
the idealized O-C" diagram for concrete with no decreasing part of the diagram at the compres­
sion side (assumption ::). and the improbability of a repeated load acting on the beam (assump­
tion :1) . 

.\loreoyer. according to the first half of assumption 6. for the cracking moment the 
concrete tensile strength is also taken into consideration. It ,,-ould be more correct to consider 
the cracking moment~ for zero crack width as 'the limit of crack control. since during the life-
time of the 'beam the cracking moment may be exceeded seyeral times. ' ~ 


