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1. Introduction

In general, prestressed concrete beams may be designed with reduced
cross-sectional dimensions as compared to these of normal reinforced beams.
The requirements for prestressed bheams are often more rigorous, e.g. the
requirement to avoid cracks or excessive crack width. Therefore, in spite of a
relatively high rigidity of prestressed structures, it is often necessary to
analyse post-cracking hehaviour and deformations, while for ordinary rein-
forced concrete beams generally a limit analysis of load capacity is sufficient.
Namely, restrictions on deformation usually require no detailed analysis and
uncracked performance is seldom a requirement.

There are several regulations for this analysis. Some of them apply
cross-sectional deformation to characterize ultimate moment, while in others
the computation method is based on equilibrium conditions for known stress
distribution, given for some limit condition.

Several methods have been developed for determining cracking and
ultimate moment. There is no general method, however, for the stress-strain
condition due to an arbitrary external moment in a cracked prestressed beam.
Elastic analysis of a cracked beam has been made by K4{rmi~ [4]. Analysis
based on assumptions by Dartriev and Karsaturov has been elaborated by
Rozensrumas [6].

The methods based on the cross-sectional deformation accept the
Bernoulli— Navier hypothesis, fundamental also for the ultimate moment
computation in the Hungarian Specification for Highway Bridges and for
different Soviet computation methods, e.g. that by Zepaxov [9]. DMITRIEY
and Kavarturov [2] assume a given stress distribution, while the position of
the neutral axis and other parameters are determined from the equilibriam
conditions.

* Presented at the Scientific Session of the Technical University, Budapest, October
31 to November 5, 1967.
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Symbols

width of cross-section

see Fig. 1.
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ultimate concrete tensile stress:

ultimate concrete compressive stress;

initial modulus of elasticity of concrete:

theoretical compressive stress at ¢ == — > for a stress-strain curve
described by a second-order fractional function:

strain at maximum tensile stress for a stress-strain diagram deseribed
by a second-order fractional function:

parameter of the rational function with second degree denominator describ-
ing the stress-strain curve:

constants depending on the parameters of the stress-strain curve (see
Table 2).

Characteristics of prestressing
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strain due to effective prestress:
excentricity of prestressing force with respect to the reference axis;

relative distance of tendon centroid from the reference axis.

Moment of external loads
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reference axis bending moment due to external loads in the section con-
sidered.

Fariables of the deformation diagram
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concrete strain in a fibre:

concrete strain at the steel centroid level:

steel strain:

relative depth of compressed concrete:

relative distance between fibre of strain ¢ and the reference axis:
relative distance of a fibre of strain & to the reference axis. if top fibre
strain is &g

relative distance of a fibre of strain ¢ to the reference axis.

Stresses, internal forces
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P {kp]
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axial normal stress in any concrete fibre;
sum of axial stresses o:
reference axis moment of stresses o.

General stress-strain conditions for a cross-section

General relationships based un the principle of cross-sectional rotations
involve the following fundamental assumptions:

1. The Bernoulli— Navier hypothesis is valid;

2. Conerete stress and strain are in a given relation;
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3. Steel stress and strain are in a given relation;

4. Values of the initial prestress strain and of it

losses are given;
No repeated load acts:

pressive strainm;

7. Prestressing steel is bonded:

5.
6. Concrete cracks at ultimate tensile strain and fails at ultimate com-
iv

8. External forces produce no internal axial force.

Let us consider a cross-section of a given geometry (Fig. 1). A given
strain diagram of a concrete section defines a unique stress diagram, based on

the relationship ¢ = o(e).
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Force P and its moment M to the reference axis can be written as:

P = h;\:. b{n) o[e(n)] diy , ]{

M=p|
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The strain ¢ at a section level, for £ and v given in function of 7, is expressed
Vg i

by the relationship:
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Nos train bevond the ultimate compression being possible, it is:
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where y like % is sign-dependent.
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Integrals (1) co-ordinate values P, M to the arbitrary values &, 3, hence:

P=u (E* 7) s
M =uv(£.y).

At service loads, the moment of external loads and the initial prestress are
given, while §{ and y are unknown still to be determined, together with the
corresponding prestress modified by the deformation.

The values &, y will be determined from the expression for the normal
force composed by the simultaneously acting prestress strain and the steel
strain increment due to the external load. Its horizontal projection balances

the resultant of the axial concrete stresses:
Ple, + &) = —u(&y). (3)

The external load moment is balanced by two moments, the one due to the
prestress and the other to the concrete stresses:

M,=M-+P-e. (4)
Substituting Eqs. (3) and (4) into (2) we obtain:

M, = o) + e-ulé) (

“n
2

and

Ple, — f(8: £.)] = — u(é. »). (6)

Eq. (5) defines a straight line in the co-ordinate system P, M (Fig. 2), while
Eq. (6) a curve in the co-ordinate system 7, &, pertaining, of course, to given
¢p and ¥ (Fig. 3). This curve can also be plotted in the co-ordinate system
P, M since with Eqs. (2) the & and y values define a unique couple of values
P, M (Fig. 4).

The intersection of this curve plotted in the co-ordinate system P, M
with the straight line given by Eq. (4) defines the couple of values P = P,
M = M, belonging
&rand yp, the stress-strain condition of the cross-section is known. The radius
of curvature and the crack width can be determined if the Murasrov [5] »
value depending on the material properties and the steel type is known.
KAirMAN [4] has determined the stresses for values &, v, in the special case of
an assumed linear elasticity of concrete and steel.

to the couple of values § == &}, y = y,. If we have values

Eqgs (2) can be represented as a family of curves in the co-ordinate system
P, M; y is constant along each curve, and each point of this curve belongs to a
certain value of £. Once this family of curves is put down, the values &;, v,
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can be read at the intersection of the straight line (5) by the curve (6). Know-
ing the curve family, values M;, P; and &, y; can be obtained without plotting

(5) and (6). by simple regula falsi, similarly to the Mérsch graphical method.
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3. Cracking moment, moment causing given crack widih,
and ultimate moment

The method presented in Section 2 suits to determine the stress-strain
condition for an arbitrary M, value. The problems of determining the cracking
moment, the moment producing a given crack width and the ultimate moment
differ essentially from the general case ireated in Section 2 in that here the
value of y is known, or given as a function of &. Thus, in these special cases
the P, M values are defined by one value of £, i.e. there is a single curve in the
co-ordinate system P, M; and Eq. (6). now with a single unknown, delivers &;.
This is why in the considered special cases the moment asked for (either
cracking, producing a given crack width, or ultimate moment) can be deter-
mined by regula falsi. (See [1]. [8].)

The determination of the relationship between P and M for a constant
v, and varying & has been treated in detail by Szarar [7] for the special case
of failure, neglecting the concrete temsile stresses and assuming constant



compressive stresses. He suggested an application for non-ultimate moment
cases, and developed a method for determining the moment maximum and
the pertaining force P.

Expressions for general cases can be written according to general for-
mulae, as compiled in Table 1. Relationships determining moments for a given
crack width are essentially identical with those for the cracking moment,
simply replacing ¢; and the integration limit % by the strain for the correspond-

ing v value and the relative spacing for e;, respectively.
4. Limit analysis by a single analytic function
describing the concrete stress-strain diagram

Egs (1) are apparently determined by the stress-strain function of the
concrete. Various approximations have been applied to desecribe the test

o

tress-strain diagram of concrete. Mostly, either linear elasticity or rigid-
plasticity has been assumed. or a combination of both in the compressed or
tensile zone (see e.g. [2]) or possibly another function composed of linear
sections.

Even assuming a linear ¢ = ¢(¢) function, complex relationships arise
for the stress-strain analysis of the cracked section. There are few methods
known for the stress-strain condition beyond the cracking moment, assuming a
non-linear stress distribution. For instance, RozeExBLUMAS [6]obtained highly
complex relationships for linear or constant stress disiribution, even applying
further approximations. In general cases, the use of computers cannot bhe
avoided. Computer formulae can best be obtained by approaching the concrete
stress-strain diagram by a single analytic expression. By this reason it is
advisable to eliminate variables from the integration limits arising when
functions are composed of different expressions for certain sections. Under
these conditious the rational function with second degree denominator seems
to be most convenient and most simple to describe the function ¢ = o(e)
{Fig. 5):
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The values o5, ¢, E can be assumed so as to obtain realistic values for o &
i, &3 for instance to give a close approximation to the diagrams presented by
Harisz [3]. The monotonously inereasing diagram at the compression side,
in contrast to the empirical decreasing curve, is of no importance, except near
the ultimate moment. but also here it is not too significant.

6’ ”An
&c |
[ it ;
L
o 5
1T
Fig. 5

'

Eqgs (1) corresponding to function ¢ = o(e) from Eq. (7) are compiled in
Table 2, for the case of Fig. 6.

Correlated values of P and M, given in explicit form, are easy to cal-
culate by means of a computer. P, M curves related to given ¢; values are at
our disposal to plot for different cross-section types, and so are curves for a
given crack width. Similarly, curves for correlated values of P and M pro-
ducing ultimate compression in the top fibre can be plotted according to (7).

6. Conclusions

Different stress-strain relationships for prestressed pre-temsioned beams
can be given for the general case. Unless the beam is erackfree and of a lineaxly
elastic material, it is rather complicated to determine the stress-strain condition
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due to a given force, and it is only expedient if the tests are followed by calcu-
lations. Cracking moment, moment for a crack width, or ultimate moment are
more simple to determine and feasible in engineering practice. It is more
advisable therefore to specify in codes of practice that service moment must
not exceed the moment for the specified erack width limit. than to give a
limit for the crack width for the given (e.g. service) load.

Table 2
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There exists an analytical function giving a fair approximation to the
conerete stress-strain diagram both in compression and in tension. Such a
relationship is of great use especially in computer limit analyses of cracking
and of given crack width.

Summary

General expressions have been presented for the siress-strain conditions of prestressed
concrete beams subject to arbitrary loads. also suitable for determining crack width due
to any moment. They can also be applied to determine cracking moment, moment producing
a given crack width and ultimate moment as special cases of the general method. By introduc-
ing a single analytical function truly fitting the concrete o0—¢ diagram both in tension and in
compression, it presents a relationship especially useful in digital computation.
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Discussion

P. Le~sEgr Institute for Building Research:

This lecture is of high value as it presents general relationships for the limit analysis
of prestressed concrete beams by which the behaviour can be followed up to failure during
loading.

Digital computers make it possible to apply this method for general cases. I wonder,
however, if thev do not permit to replace the computational assumptions by more exact
ones. Such are for instance the Bernoulli-Navier hypothesis (assumption 1) in the lecture,
the idealized o0—=¢ diagram for concrete with no decreasing part of the diagram at the compres-
sion side (assumption 2). and the improbability of a repeated load acting on the beam (assump-
tion 3).

Moreover, according to the first half of assumption 6. for the cracking moment the
concrete tensile strength is also taken into consideration. It would be more correct to consider
the cracking moment for zero crack width as the limit of crack control, since during the life-
time of the beam the cracking moment may be exceeded several times.



