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1. First order approach: Simple plastic design

£

The analysis of the behaviour of elasti pla\ua frames neglecting the

change in geometry of the structures while setting up the equations of equilib-

>t
rinm will be referred to as first order approach. Th“ load-deflection diagram of
the frame in Fig. la according to the fl st-.,lder approach — assuming unit
shape factor — is to be seen in Fig. 1, dots and numbers indicating plastic
hinges formed at the corresponding cross-sections.

If only failure load PF is of interest, then the detailed analysis of the
structure behaviour can be omitted as the fundamental (static and kinematie)
theorems of simple plastic design directly yield the Pg value [1].

The fundamental theorems of simple plastic design can be utilised for
two purposes: namely (i) to check the failure load of a given (previcusly de-
signed) structure or (ii) — if the Pgp v alue is given — to compute the required

value of the fuﬂ-p] astic moment M, ¢f the cross-sections. This latter will be
referred to as ““direct method of design”, illustrated in Fig. 1c to e. Based on
previous consideration an adequate yield mechanism (pattern of plastic hinges)
is to be chosen (Fig. le). Denoting the displacements of the external forees in
the yield mechanism bv u; and the hinge rotations by y; (Fig. 1d), the virtual

work (’quatlon fU.I'll she
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Supposing all the plastic hinges to form under a common value M, of full-
plastic moment, the required M, value will be:
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Subsequently — using the equilibrium equations — the entire moment dia-

gram can be determined (Fig. le) and the structure will be safe if designed so
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that the bending moments due to the former moment diagram nowhere exceed
the full-plastic moment of the corresponding cross-sections.
D

The basic assumptions in Simple Plastic Design restrict its use to cases
[2]. [3] where either axial forces or deflections are small (e(}niinuous beams,

ne-swav frames with stock
cases it may give unsafe
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2. Secoud order approach

Second order approach can be spoken of where the equilibrium equations
are set up taking into account the deformations of the structure. A typieal
load-deflection diagram according to a second order approach — and supposing
again unit shape factor — is illustrated in Fig. If. It differs basically from that
in Fig. 1b; (i) branches are curvilinear; (if) the failure Ioad (peak Ioad) is less
than in the simple ph:trc theory: (iii) failure may oceur before the complete
yield mechanism has dev eloped and is followed by unstable behaviour. In
addition, the location and sequence of the plastic hinges do not necessarily
coineide with those in the first-order approach.

Though the elastic-plastic frame analysis based on second order approach
is dealt with in the literature [4], [3], [6], its practical application is cumber-
some and bound to the use of a computer.

This paper is to offer an approximate solution possible by manual cal-

culation as well.
3. Assumpiions

Let a frame — such as that in Fig. 1 — be subject to monotonously in-
creasing loads proportional to a single load factor P. In general, during the
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loading process the axial forces Ny in the members vary not only by magnitude

hut by relative proportiou to each other as well.

For sake we confine us to cases where — up to the failure

load — a good apprexizﬂ.ati@n can he reached, expressing the axial forees in the
form {(Fig

frame.

“deteriorated™ hat

forces remain

bv Eq. (1) —

~econd order cmprnach however, fa
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full-plastic moment of the cross-sections (the “strength™ of the structure) and
“flexural rigidity” EJ of the members (E being the Young’s modulus and J
the moment of inertia of the cross-section). Assuming EJ to increase infinitely,
the concept of rigid-plastic material is arrived at. failure will only cccur after

the formation of a complete yield mechanism (see “mechanism curve”™ in Fig.

2a). With decreasing stiffness the load-deflection curve may reach its peak
value after the formation of hinges less than needed for the vield mechanism

3a).

to develop (lower curves in

)

—

A special but easy to handle case of the “direct method of design™ is to
design a structure where the predetermined failure load Pg coincides with one
of the “deteriorated critical loads™ P, .. Fig. 3b represents a case with n == 3,
i. e. the structure fails as soon as the third plastic hinge has developed. The
“deteriorated” critical load P 35 (the buckling load of a completely elastic
frame with three real hinges and subject to a given set of axial forces) is a
function of geometry (L) and rigidity (EJ) data:

cEJ
Pup= 2. @)
¢ being constant. Setting
Pp= Pcr,S 5,

the required value of the frame rigidity is

Er =Y p,. (5

4
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The next problem is to calculate the required value of the full-plastic moment
M,,. To this aim let us consider two structures (¥ig. 4a, b). The first one is the
actual structure just before failure: the load factor is equal to Pg, the third
plastic hinge (at cross-section 3) is just about to develop. The displacements
and the bending moments at cross-sections j = 1; 2; 3 are denoted by u and
M;, respectively.

The second one is the *deteriorated” structure with three real hinges
subject to axial forces only, the load factor being P, = P ;. This structure
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Fig. 4

will buckle under the load P, ;. The displacement and the hinge rotations
during buckling are denoted by u and y;, respectively. The axial forces in
both structures are defined by Eq. (3), and are supposed to keep unchanged
during bueckling.
Let us set up two virtual work equations. using two-way combination
of loads and displacements of both systems:
‘._\_-‘ XI'PFﬁ,' - ;‘ J‘IIJ:/TJ - X [3KPF \ u'u dx = Elf x u'n” dx
i j I I !
S PPy 0'u dx = EJ [ u'u" dx. (6)
k ! i
where u” and u’’ denote first and second derivatives, respectively. (Displace-
ments © and u contain only first order terms, so uy, = u; = 0.)
After subtraction:
-1 s “r AT A —_— v 22,7 ~
N Pruy— X My, = '\fﬁ]\’ (P s— Pr) fu'u/ du. (7D
] ' !

Considering Eq. (5)

P[: :_‘ 7-1'—111' == ‘_\;’ ‘W'Ij.—/:] (8)
i J

Now if failure has to occur at Pg = P, , (Fig. 4c), bending moments M; in
cross sections j = 1, 2, 3 have to equal the full-plastic moment, and thus

v

PFEVJZ‘:I—LI' == \ﬂl-’-”v‘_‘/! . (9)
}
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Eq. (9) replaces Eq. (1) of the Simple Plastic Theory and helps to compute the
required value of M. Supposing all the plastic hinges to form under the same

value of M. by analogy to Eq. (2):

oy

v, = Fpr RS (10)
= | %
J

Using Eqgs. (8) and (10) the flexural rigidity EJ of the members and the
full-plastic moment in the plastic hinge cross-sections ean be computed.
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moment d agram !

The moment diagram M, refers to the structure after removing one plastic

hinge chosen arbitravily (Fig. Sc). As thus the frame gets into a state of stable
equilibrium and the pI wstic hinges can be considered as real hinges with exter-

nal moments equal te the fuﬂ-mmﬁ: ic moment ac

can be determined by

moment diagram

of the “deteriorated” (Fig
axial forces only), which can be (irt@z;n ne? by known me hfmt« of second-
order elastic theory [4], atleast as far as its shape is conecerned. The constant

factor a is to be chosen as follows:
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Like the bending moments, the displacements — among them plastic
hinge rotations y; — can be huilt up of similarly chosen components:
g Zi I > P

where y; and 7; are hinge rotations in the two structures defined above. We

shall get the actual moments and

that for all hinge rotations

iure) should be zero.

s tln
failure the {w

ment diagram

Ip

interaction curve heiween axial force and ful
to prove th

line like that indicated in Fig. 6. It is
value of the load facter P will

this prove will be given in a
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The suggested direct design method is not applicable if failure occurs
after formatien of a complete yield mechanism. This case is dealt with in [10]
in detail.

Finally, a special case emerges if in Eq. (9)

X =0, (15)

as ¢. g. in case of the frame indicated in Fig. 7, the actual deformations being
normal to the buckling deformation. This case may lead to a bifurcation under
stable conditions [11].

The use of the Simple Plastic Design is restricted to cases where change in geometry of
the structure has negligible effect, otherwise it may give unsafe estimate of the failure load.
Paper offers a direct method of design to be used when the structure fails by instability of the
whole structure before a complete vield mechanism has developed. Attention is drawn to a
special application of Shanley’s phenomenocn as well.
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