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Floor loads of panel buildings are supported on Yel'tical reinforced concrete 
slabs TatheI' than on columns or traditional brickwalls. "}Iultistore,v buildings 
construded in this system ha ye become Yer.'- popular recently. because they 
are economical both structurally and technologically. Se\-eral problems. hOlY­
ever, of the structural analysis of panel structures are still uncleared, and it can 
be said \dthout exaggeration that theoretical research \nlrk lags behind prac­
tical clemancls. This is even more true for the ahyays more frequent dynamic 
problems, part of Iyhich either are not at all soh-ed .'-et or the available solution 
is unsatisfactory in l1UUl.'- respects, such as that of the determination of the 
horizontal natural frerluenc:y of multistorey panel buildings. The structure is 
designed in most case", 'with non-symmetricacl structural IHtlls. and from the 
point of vie,,- of the ,-ibration them.': this means that the huilding cannot per­
for111 pure flexural or pure torsional yibrations. 

In a simple girder of llon-s.'-mmetrical section. 'where the centre of gnlvit.': 
dolOs not coincide 'with the shear centre. the free vibration is composed of si­
multaneous flexural and torsional yibrations. Vibrations of this character are 
termed .. coupled" vibrations. The .. couplecl" vibration of the girder can be 
described b.'- an equation system of three simultaneous partial differenti[Ll 
equations of the fourth order ([I, 4. IIJ) the solution of >"hich is yer.'- c1iffieult 
e-.;-en in ease of simple type girders. 

As to the horizontal free vibrations of panel buildings, the.'- are evidentl.'­
"coupled" vibrations, similar to those of the girder. Nevertheless because of 
the different character of the structures they cannot be approached in the same 
way. The most decisive structural difference between the t-wo is that while 
every point of a girder section - conform to the theory based 011 the BprnouUi­
Nat'/pl' h.'-pothesis can onl.'- perform movements suiting the given geometrical 
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conditions and not independently of the adjacent points. the load-bearing 
,;ralls forming the slab structure consisting of elements connected in most 
cases at ske,Y angles can perform some mm-ements only in interaetion. ,yhile 
others independently of each other. It is clear therefrom that this yibration 
system is a yery complex one. and the existing methods are unappropriate to 
soh-e similar pl'Oblemes. 

In the follo,ring. a computation method is presented to detcrminc the hOl'i­
zontalnatural frequency of multistorey panel buildings lending itself for gene­
ral cases of the mentioned type of buildings. proyidecl certain simplifying con­
ditions are met. 

2. Computation principles and the assumed model 

The considered building consists of horizontal floors and of pcrpendicular 
structural ,mlls between. The cross-sectional ele'nltion of such a building is 
ShmYll in Fig. I. These ,yalls at ske,\" angles and structurall:- properly connected. 
form a single 'wall unit. in lack of such a connection. ho\w,-er. each 'wall has to 
be considered a separate element. 
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In computation the follmring assumptions are made: 
Cl) The load-bearing \\'alls beha,-e elasticall:- in yibration, 
b) Each floor forms in his own plane a plate to be considered infinitely rigid, 

but normally to it, they are perfectly flexible, This means that in the plane 
of the floor each \\-all element must displace and rotate by the same amount 
but normally to it they may deform independently of each other. 

This condition is closely satisfied in reality and it is also in accordance with 
the actual design practice, In fact, floors deyelop an essentially 10,\'er resistance 
to moments causing bending normally to their plane than wall elements in their 
own plane, because in precast floor units usually no connections to bear bending 
moments are provided above the supports. :.\Ionolithic floor structures, how­
ever, to be built in the usual structural panel system, consist of moderately 
thick reinforced concrete slabs with negligible transverse rigidity. 
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c) Floor plan layout and thickness of the ,ntll elements are quite arbitrary, 
through identical throughout the building. Interaction of superposed ,mll ele­
ments bebreen storeys ,yith themselyes and the foundation is assured by illeans 
of rigid connections at the joints. Thus. the superposed ,rall elements constitute 
vertical cantile;,-ers. 

d) The torsional rigidity of the indi,-idual ,,-all elements is ;,-el":-- 10,Y as com­
pared to the flexural rigiclit:--. and can therefore he neglected in deformation 
analyses. 
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\\-all elements ,,-ith open cross-section haye in fact Yer:-- lo,y torsional rigid­
ities compared to the bending rigidity. hence this assumption is quite justified. 
In case of closed (box-type) cross-sections the torsional rigidity of the ,mll 
element might be important. therefore neglecting it bears on the results; hO\\-­
eyer this kind of ,raIl element occurs but seldom in practice. It should be noted 
that taking into account the torsional rigidit:-- of a closed cross-section does not 
inY0lve changes in the solution principle: it is onl:;- tedious to compute each 
facto]" intenening in the equations. 

e) The mass of the structure for each store:--. includinfL the mass of the floor 
of the walls and of other components. is assumed at the floor level but there is 
no restriction for the mass distribution itself. 

f) The effect of damping modifying the natural frequenc:-- has been neg­
lected. 

The model used for computation purposes is shown in Figure 2. The eross­
section realized by cutting the building b:-- a horizontal plane immediately 
above any floor - contains only the floor. considered as a disc, rigid in its plane, 
,vithout the supporting ,mU elements. Such a section will be called in the fol­
lo,ving the building cross-section. As mentioned in the introduction, the cross­
section of the building differs essentiall:-- from the cross-section of the ordinary 
girders in bending and therefore the usual cross-section characteristics have to 
be interpreted. In the follo,ving the centre of gravity (8) of the bUilding CI"OSS-
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sectioll means the common centre of gravity of all sections of the wall elements 
in that cross-section. This generally does not coincide "with the mass centre 
U::JI) of the cross-section. which rcpresents the centre of gravity of the mass 
concentn).ted on floor le,-el and continuously distrihuted in the horizontal plane. 

Similarly as the section of the girder. the building cross-scction has also a 
point. "which ,,"hen acted upon b:- a horizontal external force acting in the 
plane of the floor. the eJ"oss-seetion (floor) is onl:- displaced but does not rotate. 
i,-hercas a torque aeting on the floor would produce rotation around this point. 
This point is nallled in the follOidng the rotrdioll centre of the building cross­
section (0). 

A horizontal force passin~ through the l'ot,ltion centre displaces the floor 
only in its plane. in general. hm\·eyer. the d.irection of the displacement does 
not agree with the direction of the force. As seen below. among the infinity of 
directions there are b\"o orthogonal directions so that thc force acting in these 
directions incites onl:,: displacement in direl'tiol1 of the f()rce. and these will he 
termed pril!!'Ijxd dirc!"l/r!ll8. 
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eros:ci-sectional area of the i.,-all element: 
principal inertia moments of the wall clement cross-section: 
lllodulus of elasticity: 
\\"cnkenin!£ coefficient of thc \y,1I1 elcnwnt: 
centre of ~ra ,·it.i" of el'Os:=;-:=;ec·tion : 
mass centre: 
eentre of shear or tor:=;ion: 

P.c;:. Pc!"· P.(;! = p,u rigidity coefficients of the iHlll element: 
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co-ordinate system in the floo]' plane: 

ifl 

eo-ordinate axis normal to thc plane of the flool';;: 
co-ordinate ;;y:=;tem in the prineipal direction:=; of the buildin!! 
cross-section and displacement along the axes: 
co-ordill<1tes of the mass centre in the 11. i· system: 
angle of rotation around the centre of rotation of the building 
cross-section: 
potential energ.'-: 
inertia moment of the building cross-section lllass acting in the 
rotation centre: 
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kinetic energy; 
numerical yalue of torque inducing unit rotation of building 
cross-section: 
mass of floor concentrated at storey leyel; 
numerical yalue of force "ding in princ'ipal direction and induc­
ing nnit displacement. 

3. Determination of cross-section characteristics 

Centres of grayity and of mass of the building cross-section, as defined abcn-e, 
arc determined by the \wll-kncnnl computation method for eentl'oicls of planes 
and masses, respectjyely. Xei\" notions are principal directions and rotation 
ccntre, functions of the cross-sectional rigiclit:; ancll'elatecl 'with the l'igidit;,- of 
the incli,-ic1ual \\"a11 elcments. considered as rigidly restrained cantilC',-ers. Their 
determination will be discussed next. 

·'3.7 D2/cnnilluiioll (1' f'iqidItYiuci!;1'8 of the /lull rZr172Cllt8 

As knmnl from the theui';,- of strength, then; is aliY<l:-s a clHlracteristic point 
in integral beam closs-sections, \I'hieh if passed by a force parallel to the plane 
of the cross-sedion. this cross-section is onl:- displaced, and if aded upon b:- a 
torque, the cross-section rotates around this point. The point itself is termerl 
the ('l'lItl'e of 811crO' O/' /OI'SII)II. This characteristic point is ahyays on the sym­
metry axis of the cross-section, therefm'e in Celses of bisymmetr:- it coincides 
\yith the ccntre of grayity. though it may also be determined for general 
cases [9J. 

The feature common in both the principal directions of inertia of the beam 
cross-section and of the building cross-section is that an external force peLrallel 
to an:- of them will displace the cross-section parallelly to the direction of the 
force. As the principal directions of inertia for the cross-section (1.2) and its 
principal inertia moments (J1 , J~) can be easil;,- determined hy means of rela­
tionships knO\nl from the strength theory [I). they will be assllmed to be knO,Yll 
in the following. 

Computation of rigidity coefficients of each \\'all element is also known from 
the literature [I,9J and will be but shortly treated. 

Assume a prismatic bar rigidly clamped at one end. made of homogeneous 
material obeying Hooke's la,\". To displace cross-section i at a distance :z from 
the clamping, b:- magnitudes J 1 and J~. parallell;,- to principal directions 1 
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and 2, resp., forces PI and P~, parallel to the respecth-e displacements, have to 
be applied in the shear centre of the cross-seetion ,,- at a distanee c (c from 
the damping point. Force values can be determined from a relationship known 
from the theory of strength. as: 

and 

respectively. 
In the formula 

J.) 
PI = -=- .dW : 

11 
(1) 

(2) 

" (~.~ .. :, 1 
11 = ~ !c:.:.--~ 

E.2 0) 

'where E is the modulus of elasticity of the bar material and 8 a factor express­
ing the effect of'll'all openings (doors. iyindoiYs), the determination of 'which 
'will be discussed in chapter 7. 

Assume now a co-ordinate system xy at a clistanee .: from the clamping and 
determine the external force to be applied in eross-seetion le to obtain unit dis­
placement of the cross-section shear centre in direction of axis :t. If the x axis 
is not a principal direction, the displaeing fOl'ee is not parallel with the x axis, 
but ean be deseribed b~- eomponents Pu ctncl P.c'y in clirections ;r and.IJ, respec-

2 'f'f 

Fly.S. 

tiyely, iyhich can be computed as follo,\'s. The components in the principal 
clirections 1 and 2, respectively, of the unit displacement in direction of the 
~t axis, at an angle?: to the principal clirection 1 - as seen in Figure 3 are 1. 
cos?: and -1. sin ?:, respectively. These ean be produced by forees 

and 

J~ 
Q1 = ~ cos?: 

11 

Q::. = J 1 . 
-- sIn?: 

H 

(3) 

(4) 
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acting in direction of axes 1 and 2, respectively, according to formulae (1) and 
(2). The required force components Per): and p;>;y are given by the sum of pro­
jections in directions ;r and y, respectively. hence: 

Q (-)' 1 (I . ,) J ") P.t.t = 1 cos X - l 2 SIn x = H . 1 Sll1- X -. 2 cos- X (5) 

(6) 

For a unit displacement in direction y of the considered cross-section, forces 
pyy and PY2' in direction of axes y and,t'. resp .. should be applied. They can be 
determined as abm-e, namely: 

1 [J ., J' ,) J p;", = I1 . 1 eos- x-· 2 :3111- Z (7) 

1 'J - H cOS:X:3l1l;; (. 1 (8) 

The quantities ]J.,,," p~,y and jJ:ry=py;r ,yill be named in the follo,,'ing the riqi­
dity coefficients of the lcall clement. 

3.2 Dclumination of the principal directions, the ('('litre of !'Otation and the dy-
nams inducillq und displacement the buildinu N08s-seciioll. 

The principal directions of the building cross-section can be determined by 
supposing that the displacement clue to a force parallcl to the principal cliTection 
and passing through the rohuion centre y,-ill al:30 be parallel to the direction 
of the foree. The rCverse is also true, namel)' that the so-called restoring force 
produced by the displacement in the principal direction has its inHu!Cllee line 
also in the principal direction, In the so far unkno,yn centre of rotation of the 
building cross-section scheme in Fig..! a co-orclinate system of arbitrar)- :l'.1j 



62 Vf:ltTES 

axes has been assumed. Axis :r includes with the principal direction an angle 
iJ.r,. Let us displace the cross-section supported by m wall elements along the 
principal direction by .:::1. The influence line of the force R necessary for the 
displacement is also in the principal direction. The components .J cos iJ. v and 
-:::1 sin O:u of displacement .:::1 in direction of the :l' and y axes, respectively. and 
forces necessar;.- to produce these displacements are equal to the components 
of R in direction of the corresponding axis. Bet'ween the forces necessary to 
induce the displacement components and the corresponding components of 
R, the folloiYing relationships can be iiTitten by means of the rigidity coeffi­
cient of each 'wall element: 

m m 

.J cos 'Xo Pi .r.r -i- - 1 sin St: o jJf.r!l == I? cos 'l..() 

,J sin 'Xv :>' p"",-1- j cos 'Xv :> Pi,t!' = R sin 'Xo . ..::....,; ~.... .- v 
(9) 

In the equations Pi.,-.r, Pi!]!] and P,'.(!] = Piy." stand for the rigidity coefficients 
of the i-th wall element and the :summation compriscs all III iyall elements. 

Introducing notations 
III 111 

.1 _ "'" ," • 
_-:1 - ..:::;:.; Fix;;, C = Pixy 

i=l 

and multiplying the first equation b;.- sin ':1.0 and the second one by --cos 'Xv we 
obtain: 

.:::1 sin 'Xo cos 'Xo A +.J sin:! 'XoC = R cos ':1.0 sm 'Xo 

-.J sin 'Xo cos ':I.oB - -'..1 cos" 'Xo C - R cos 'Xo :sin 'Xo . (10) 

Reducing the two equations and simplifying by .J: 

The obtained relationship can be written in n. more expedient form b~- intro­
ducing functions of double angles. As it is known: 

sin 2'Xo = 2 sin 'Xo cos 'Xo 

cos 2':1.0 = cos2 'Xo - sin2 'Xo 

l+cos 2xo 
and sin 2 

:%:0 
] - cos 2xo 

After substituting and arranging: 

A-B. C --- sm 2xo - . cos 2xo 0, 
2 
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Finally, dividing the equation by cos '7. 0 , it can be written: 

20 
t cr ')~ - --­
'" -J·O - A-B 

u3 

(11) 

From this relationship it appears that for '7.0 hw solutions exist. ::'ifamely. if 

an '7. v satisfies the equation, also the angle '7.:: = ::r 'will satish- it since 2 . 

tg 2'7.:; = tg(2'7.;,+::r) = tg 2'7.~. This means that tu'O directions normal to each 
other are found for UJ121ch the determination of the principal direction is mUd, 
and thereby the CJ.:isience of the principal directions is proved. 

As seen. in the formula for '7.0 the distance between the clamping and the 
considered cross-section does not intervene, therefore the relationship (11) can 
be used equally for the building cross-section considered at any storey. 

Later on, also the force inducing a unit displacement in the principal direc­
tion will be needed, therefore determination· of this force 'will be considered 
next. The force causing a displacement ..J = 1 in the principal direction in­
cluding with the x axis an angle '7.0 is denoted by p. Accordingly. equations (9) 
can be "\vJ'itten in the follO"l"ring form: 

Acos'Xo+Csin'7.,) = pCOS'7.o 

B sin 'Xo + 0 cos 'Xo psin'Xo. (12) 

JIultiplying the first equation b:-- cos 'Xo and the second one by sin 0:0' subtract­
ing the second from the first. the following relationship is obtained: 

Hence: 

p 
A cos~ 7.0 - B sin" 7.0 

cos~ 7.0 - sin" 'Xo 

Introducing again the relationships for the double angles as described above, 
the obtained equation can be written as: 

1 [A(I+COS 2xo) -B(l cos 2Xo)]. 
2 cos 2xo 

(13) 

For the force p causing unit displacement in the principal dil'ection also a 
direct relationship might be deduced, by su bstituting the value for 2'7.0 according 
to (11) into formula (13). This latter, however, includes the trigonometric 
function cos 20: 0 , therefore the relationship bet'ween cos 2'Xo and tg 20: 0 may be 
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applied. According to formulae knO,Yll from trigonometry, cos 27.0 can be 
expressed by tg 27.0 as follO\ys: 

1 

r l-i- tg:.! 27.0 

Replacing tg:.! 27.0 b:' its "alue obtained from (11) it can be 'written: 

cos 27.0 
1 

where D = ll4 ;Bf -C:.!, 

A-B 1 A-B 1 
--:z D 

( 14) 

X OT\' the relationship (13) can be simplified by replacing cos 27.0 in (13) h:' 
its form in (14) : 

~ lrA f,l-A-BJ-B(,l- A-B)] A-B 2D 2D 

After reduction 'we obtain 

__ -1.-B , D _ A+B . '/f (A-El:.! p- - - ---
') - } 

(L3) 

The double sign of the square root results in t'\\'O "alues. corresponding to 
the h,'o principal directions. The higher and lower "alues (p" and Pl' in the 
follo\\'ing'i are obtained by taking into account the square root 'with its positiYe 
and negati,'e yalue, rcspecti,;ely. Thus. using the s:'mbo1s in FigA, the forces 
inducing unit displacement along the principal directions can be computed as 
folIo-ws: 

(16) 

Xo,\' the determination of the rotation centre of the huilding cross-section 
\I'ill be considered according to [7J and [H]. Let us apply to the floor. at a 
distance;; from the clamping, a horizontal force 1(,.= 1 }Ip, parallel to the .r 

axis in EigA, acting in a still unknown rotation centre. By definition it does 
not rotate the floor, only displace it by Jty and .d xy in direction of axes x and 
,IJ, respectiyely. Similarly as for the computation of the principal directions, 
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J u :i+J.ryC=11 
_1.,.xC J.r!,B = 0 r 

65 

(17) 

Introducing the simplification E = AB - C2. from the obtained e<luation 
system the floor displacements ean be expressed as: 

B 
I.,), = J(' 

c 

KnOlYing the displacements. forces in clireetions .r and .I) acting on each 'sall 
element ,ne easil:' computed from external force R.,. = 1 }[p. Forees ading on 
the i-th "lmll element in directions x and .I) are. respeeti'.-ely: 

I, :' Pi "!' C Pie!,) 

('Pill!} 

(18) 

(HI) 

The external foree beillg their resultant. it ean be written that its moment. in 
a point (in our case in the origin (j' of co-ordinate system .r'.I/' in Fig.a) 
equals the sum of moments of the forces applied at the same point for each 
"lmll element. 
Therefore: 

!­
,:",v .>;~ ¥'f 

Here .l·; and .I); are distances of the shear centrc of the i-th wall element from 
axes.1/· and x', respectiYel:-; ancl.l/ is the distance of the rotation centre from 
the x' axis. This latter distance is. using (18) and (19): 

(20) 

J, O;J:!80/IIL l'eriociica Polyt<'chnika 
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Similarly. exarmmng the effect of force It ,I = 1 }Ip acting in direction of 
the .If axis. the distance of the rotation centre from the .1/ axis can be deduced 
as: 

1 
;l"; Pi)"y J. 

Finally it I,ill be determined "\yheet moment is needed in the rotation ccntre 
of thc building cr08s-seetion to produce unit rotation of the ero;;:,;-section. 
To this purpose it is suppo;;ecl that the floor pertaining to the considered cross­
section undergoes unit rotation. In this case the shear centre of the i-th "\mU 

element is displaced in directions .r and y by ;l'i and .I};. resp. iUld to i11(I11ce the 
displacement, in the shear centre force;; 

(22) 

and 

i' If (28) 

ha\e to act in directions ;L' anel .ij, respectiyely. In the':'e formulae .r; = ')·i-X,) 

and :lh y;-y;, stand for thc ordinntae of the shear centre of the i-th "\\"aU 
element in the co-ordinate s:,--stem at the rotation centre. The sum of the mo­
ments pertaining to the rotation centre and clue to force,:, del-eloped b:,-- the 
l'Otation must be equal to the torcjue nf the coupk producing the rotation. 
Thus: 

Jj .r 

4:. Diffel'e:ntial 

The cli£fcrential 
recdy 

/1'( .y, -:2 

of the vihratio:n and its solutio:n 

Inn~~ oftf"~n be (li­
the relati011,:,hips inc·luding 

kinetic and potential energ~- or the stl1lc-tme. J'or the determination of the 
natural frequency of multistorey panel buildings the same method is chosen. 
starting from the displacements of the Hoori of the building. :\.s mentioned 
aboye, the vibrational motion of the floor call be described b~- its rotation 
about the rotation centre and a simultaneous displacement. Instead of the 
displacement of the rotation centre of the floor. fmther Oll its components l! 

ande in the principal directions "\yi11 bc considered and the rotation clenoted by 
(jJ as ShOIHl in Fig.G. As seen, the displacement causes the rotation centre or 
the floor to mo,-e into 0' and its mass centre into &~I' At a given instant the 
kinetic energy can be obtained as the momentum of a rigid bod~- performing 
rotating and acl-;-aneing motion. 



v=:2 

llOlUZOSLIL SAIT1:.1L FREQCESCT 

- ("·:$1 

r::::::;~:~ -_ 

o Sf 
H 

I 
__ I 

--j 

r;:;.6. 

It­
/ 

I 
I 

-
I 

-. I 
-'-.1 

...., 
I 

I 

(57 

The kinetic energy of the Jllass of the i-th storey, concentrated in the phUle 
of the floor, is : 

(25) 

(The superscript point denotes the time-dependent deriyatiye of the displace­
menL) 

The kinetic energy of the ,\"hole building. expressed in matrix form, is: 

-1' (213) 

iyith vectors: 

u 

and diagonal matrices: 
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The potential energ~- of the floor is in the same instant: 

1 [I. ., 2 ~·u; u"i (27) 

Here k,,; and I.· ri denote the spring constants of the floor displacement in 
directions I! and 1'. respectiyely. whereas kqi denotes its torsional spring con­
stant. 

The potential enen;y of the \\'hole building. similnrly expressed as for the 
kinetic enel'g~-: 

(28) 

C/J[ 

u Il; (jJ; 

and diagonal matrix: 

The Lagran!Le cliffen·ntial Nluatinn of motinn is: 

f. (2D) 

In this equation q (u, Y, Q) are yectors of the so-called gc.'llernlizecl cCH)]'dinates 
charaderizing motion of the 11001' mass centre. ,11111 f the actiYe dynam Yedors. 
f being zel'O in the (·onsiclered case of free yibration. 

The deriyatin~s of the Lagrange equation are: 

and 

dE", 

cHI> 
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cl aEIII 
elf au 
(1 riE", 

ell () '" 

a Eh -_ 
-d$ = 1,,-,f,<V. 
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riEh 
The three derinlti\-es. based Oil are seen to be achwliy the ma,unitudes 

qo 
of the restoring foree or moment in yibmtion, clue to the elastic SUPllOl't of the 
floor. In single mass systems. \yith Olle degree of freedom, they cere ec].sy to 
determine; ill the present case. hO\yeyer, as there are "eyeml masses, the mag­
nitude of the restoring dywl.ms actinu on a c~'rhl.in lllass i" influenced by the 
displacement of the other m;lsse:-; as ,yell. namely the displacement of onc mass 
entrains the other 11111;:;: and (il', /'It-V! .. -\. method for cOlllputinu the restOl'inu 
d~-nall1s 'I-ill be considered in the fnll()\\-inu for ;:11ell C'a;:es. 

The cantile\-cl' ShOl\,]l in Fiu ... carries concentrated masses. Denote displace­
ments of direction:; at the i-th and l.,-th m;lSS produeed by unit horizontal force 
acting at i. b~" a" and (tu:. respectiyel.\". Sil1lilarl~", the unit horizontal force 
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acting at mass k produces cusplacements a!:!: and CL!;i at l: and i, respectiyely. 
As knOlHl from the interchangeability thcorem of JIancell, et!:i = Cl U:' In the 
kno,yledgc of the preceding, the forces R inciting jointl~- a displacement ;; at 
mass i can be computed. Yet these forces yield tile elastic restoring force acting 
011 the mass llIi during the simultaneous displacement 

The elastic restoring forces acting on each mass \yill be determined by the 
follo\Ying system of equations, based on the principle of superposition: 

(fllBI +a1'2R'2 -:- ... -:-rl1nR i? 

a'21Rl-+-a'2~R'2+' .. +a'2nRn 

The equation ,,:-stem \\Titten in matrix form: 

and matrix: 

(I ~l 

a fil fI I':':: 

The solution of the lllo.hix equation: 

(3 1) ) 

(J 

(:31 ) 

where N -1 is the so-called illyerSe matrix of N. ~,Iatrix N being symmetrical. 
1ts inyerse is also symmetricaL henc:e a';j a·ji. 

On the basis of tile foregoing. the cleriYati,-es ,,-jth respect to the generalized 
co-ordinates of the potentii,l cnerg)- will be: 



r 

which gi;;-e at the same time the l'e;-;toring c1ynams acting on the floors. 
In the aboye 

({'c'll U l rlu"l:!.ll::.-T ... ....:-,a~!·lj!Ui1 

.,. +a;!,;2 ji ul1 

-- {/ !.-'·/lnL'n 

.. - (/ 

(Terms ~\\'ith comma ""he'm, 
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X-I nf the nlatrix X fOl'111ed v;ith the load 
Thereb:- the differential Cfllli'ltion the motion \\'ill be as 

follcHi's: 
u = (I 

() (32) 

== (}. 

BefO'e soh-ing the differential equation system, the coefficients (load factors) 
of the equation systems used for the determination of the restoring d:~nams 
have to be computed. The:~ are e[lsily ol)t[linecl on hand of chapter 2. 
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Namely, in the relationship (16) forces PI and p~ occur. necessary for unit 
displacement in directions u and c', respectiyely. In the equation systems for 
1'1£ and 1'", coeffieients expressing the displacements clue to unit forces are 
simply their reciproeals: 

([a.if: and 
p,·.!ie 

\\-here Pilc denotes the force acting at k and indueing unit displacement at the 
i-th point. According to sense. relationship (16) is yalicl for the determination 
of any Pilc' only the respecti,-e distances for points i and 1,' haye to be substi­
tuted in terms of 11 in equations (;3). (6). (7). (8). 

The rotation of the building cross-section due to unit moment is equal to the 
reeiprocalnumeJieal ndue of the moment acting in the floor plane and inducing 
unit rotation. 
Thus: 

1 
JI 

'where the yalue of.:.11 can he computed from the relationship (2±). 

The system being rigidly fixed at one end and unsupported at the other. 
hence. if the i-th building cross-section is rotated 1;y an nngle (fJ in its plane. 
then all eross-seetions k between it and the free end ,,-ill rotate hy the snme 
an;.de. so that it can be \\Titten: 

The differential equation system ,,-ill he soh-eel by the usual method for 
multiple-mass yibration systems. The free yibration of the system is supposed 
to be a harmonic- ,-ibmtion and can he described b:- the functions 

hence 

U U o sin CO)t 

v = Vo sin c·]t 

I!> I!>fJ sin wt 

U uP Uo sin cot 

Substituting the above into differential equation system (32) and dividing 
throughout by sin wt. \\-e obtain: 
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uo+(N~1-w~},1)Vo-W2?lJIlVI€l>o = 0 

Uo W,~IlJI}l Vo+(N~;-JOW2)€l>o = (I 
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(36) 

Here 0 denotes the zero matrix of n-th order, Introducing furthermore nota­
tions 

=Q 
(~J~l_ co2 }!) = R 

w 2 C'JI}1 = S 

(:~r;j,l_ w2 J O) = T 

the equation system takes the follo\\'ing from: 

PUo-LOvo--:-Q<po = 0 

Ouo+Rvo+S€l>o = 0 

Quo+Svo--'-T€l>o = 0, 

( diagonal matrix) 

(diagonal matrix) 

(37) 

The obtained homogeneous equation system has a solution other than zero, 
if the determinant formed of the coefficients is zero, In the considercd case the 
coefficient matrix is giYen by the hypermatrix: 

w= p 0 Q 
0 R S 

Q 8 TJ 
(38) 

Finally the equation to determine the natural circular frequency of the Yibra­
tion is as follo\\'s: 

let W = (det P) (det R det T - det 82 ) det Q2 det R = 0 (39) 

The obtained equation is, in terms of 0/, of 3n-th order, with 3n roots, As the 
matrices in the characteristic equation are symmetrical and hypermatrix \V 
itself is symmetrical, the equation has real roots and so the results for ware 
either real or pure imaginary, It follows from the physical conditions of the 
motion that pure imaginary roots and negative real roots are impossible, there­
fore in fact, w may have 11 values, The lowest one is the natural circular fre-

G G32S0jIII - Periodica Polytedmiku 
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quency of the fundamental vibration and the others the circular frequencies 
for more complex vibration forms. In the considered case only the fundamental 
vibration is of interest, as in rather squat buildings more complex forms of 
vibration do not occur. Thus the natural circular frequency of the building 
W Wmin' and the natural frequency is : 

N 
(!)min 

2::r 
(40) 

5. Approximation of the natural frequency 

According to the method discussed above, the natural frequency of panel 
buildings can be determined without difficulty, however for multi-storey build­
ings the problem can only be solved economically - by using a digital com­
puter, becausc of the great number of equations and unknowns. To eliniinate 
this disadvantage an approximation method will be presented yielding a fair 
approximation even for an arbitrary number of storeys, invohcing no special 
computation problem. The computation is based on the approximation me"chod 
of Dunk:erley, reducing the problem to determine natural frequencies of n one­
mass systems rather than to determine the natural frequency of a vibrating 
system consisting of n masses: 

1 _ ~~ 
- i'~i O)~ • 

(41) 

Here COi is the fictitious natural circular frequency of a girder of negligible 
mass, acted upon by the i-th mass only. The obtained value is 5 to 15 per cent 
lower than thc cxact result. 

The procedure to adopt is therefore to compute thc natural frequency of a 
single-storey building and to vary the position of this storey according to the 
considered storey of the building. Xamely, there is ab;;;ays a single-mass sys­
tem, performing coupled vibrations, for which the equation system (36) might 
be written as well, however in an essentially simpler form, as for a single-mass 
system the restoring dynam is the product of the spring constant and the 
displacement. The spring constant is equal to the numerical value of the dynam 
inducing unit displacement, defined already in chapter 3; for pu and Pv and .Ji in 
cases of displacement and of rotation, see formulae (16) and (24), respectively. 

Accordingly, the equation system expressing the free vibration of the i-th 
single-mass system is: 

(pui-miw2)u,+w21JjjJ7niWi = 0 ) 

(Pd-miw2)1Ji-w2uJ,1.miW; = 0 f\" 
w21JMmiUi-w2u~lImivi + (.1.11; -J oiW?)<i\ = 0 

(42) 
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The homogeneous equation system has a solution other than zero if its deter­
minant formed of the coefficients is zero, i.e. 

(Pili-miOi") 
o 

o 
(Pti -111 i(j)2) 

-co211Jlmi 

(j)2UjImi 

_0)2u :J1m ; 

(JI;-J 0;0)2) 

o. 

After expanding the determinant, the following equation of 3-rd order is 
obtained for 0)2: 

'shere 
(l0) G + bco4 + cw2 + cl = ° 

a = mf(U~imi+t'=1!mi-JOi) 
b = m,{Jo;(pui+Pri) mi(p,,;ll~+PriU=1!)+miJli] 
c = -[llliJ1i(Pui+Pti)-i-PuiPrJo] 
cl = P"ilJc.iJ1;. 

(43) 

It fo11o"ws from the symmetry of the determinant that the equation has real 
roots. In the considered case the circular frequency pertaking of the funda­
mental frequency is of concern, so that for n' storeys n different Ll min values 
are obtained, of which the natural circular frequency can be determined by 
means of formula (41). 

6. Consideration of the weakening effect of wall openings 

\Yhen computing rigidity coefficients of the individual "wall elements, the 
factor s intervening in the 11 yalue is related to the "weakening effect of doors 
or iyindoiYs. This factor should be assumed mainly according to results of 
experiments [7]. Denoting by c the relation beh,"een the width of the wall 
opening and the width of the v;all itself, then the factor s can be determined as: 

for c::§ 0,5.5, 
s 3.46 c + 1 (44) 

for O,55::§8::§O,7, 
1 

s = ----- (45) 

Above results are valid for a single wall. In practice, iyall elements are mostly 
assembled of several wall units rigidly joined along the edges and usually each 
part contains different openings. In this case the factor s pertaining to the 
whole wall element may be the average value of the factors computed for each 
wall unit as mentioned above. 
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7. Numeric example 

The approximation of the natural frequency - as described aboye is present­
ed on a model of a 4-storey panel building as shown in Figure 8. The dimen­
sions are given in the figure. The model is made of a plastic material Columbia 
C 'with a dynamic modulus of elasticity E = .JJ) 000 kp!cm2 • The adjacent wall 

I 
I 
I 
I 
I 
I 
I 
I 

-

~ 
:1 

~. - '""';' 
I I 
I I 
I I 
I I 
I I 
I I 

~. 'f 
I 
I 
I 
I 
I 
I 
I 

I 'f I 
I I 
I I 
I I 
I I 

~. 'I' 'e 

~I 
I 

I 
I 

I I 
>::----/::>;>;.. .. ::>.: ~ -".------.............. ......-......... ,';" /'>::. .1 

8cm B B B 

Grou.nd {ok:;o 

F'y.S. 

units are rigidly connected along the yertical edges. therefore they form wall 
elements. The model contains 5 such separate 'saIl elements. numbered as seen 
in the figure, indicating also the principal directions of inertia (L2) ofthe cross 
section, and the shear centre (0) of each ,mll element. 



The principal inertia mOllwllts or tlw wall eross s('erio!ls are: 

Trail dei/wnt 1: 
Trail clWlfid :Z: 
Trail element 8: 
Tr(lll clement L 
n-'Ill clement .J: 

-l1='57,7;5 em! 

-l1 = 17,00 em! 

-l1=1:37.00 em! 

-l1=17.00 cm! 

-l1= 17,00 ('m! 

-l"= 1O.7ij ('m! 

-l~=0 
:l'5,H (,In: 

.10=0 

Complltnrio!l of th" l'i,-,idit~· f",·((.l'S >\e('ol'llin" to (ii). (ti), (7), (8): 

1. .)_ 
H M ._.) 

I ')'l -fl -' .. ) 

1 . _ .. 
H j,,()1I 

jl., /1 Ui.O 

l~ ::.J.U 

F: 11 

u 

1 1- I) 
J-I j ~ 

u 

1 _ _ 
P.,... H J ,.0(1 

jJ."i''' 0 

Pox!, I). 

Rigidity factor Hl1\1e8 " related 10 ea ell storc~'; onc fol' each wall elernent. 
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TVall element 1; 

1st storey: 

I1"d storey: 

HY" storey: 

IVth storey: 

V'h storey: 

lFall clement :?, 

1st storey: 

11"° st orey : 

HYcl storey: 

I'{th storey: 

V th storey: 

TV all element 8, 

1st storey: 

VERTES 

243 4,6·10" 
H n =:3E =~ 

36 3 1,.5.5.104 

HIlI = 3E = E 

3,67·10' 
E 

p~~x = .5,96 ·lO-"E kp/cm 

]J~~y = 4,09-10-2E kp/cm 

}J~~y = .5,96·10-"E kp/cm 

7,42·10-3E kp/cm 

P~;y= .5,12·1O-3E kp/cm 

p~~:,= 7,-±3·10-3E kp/cm 

p;~;= 2,19.10-:3£ kp/cm 

}J~;~'= 1,.52·1O-:3E kp/cm 

}J~~~= 2,19·10-3E kp/cm 

}J;l~; = 9,-±·10-'E kp/cm 

p;I~~= 6,3.10-'E kp/cm 

9,4·10-'E kp/cm 

J,8·10-'E kp/cm 

:3,27·10--'E kp/cm 

J.8.10--'E kp/un 

2,3'·10--:E kp/em 

2,39 .1O- I E kp/C1n 

6,24·1O-"E kp/Clll 

2,98·10-2E kp/cln 



IIIrd storey: 

I\~th storey: 

yth storey: 

Wall element 4, 

1st storey: 

II"d storey: 

npd storey: 

I\-th storey: 

ytl> storey: 

Wall element 5, 

1st storey: 

II"d storey: 

np" storey: 

ITth storey: 

ytl> storey: 

Al = :3.5,78.10-"E 

An 404,63.10-"E 

All! = 13,30.10-"E 

55,98·10-lE 

HORIZOSLIL S~{T[,RAL FREQUESGY 

p~!~= 8,85·10-3E h-p/cm 

p~~;~)= 2,51·1O-3E h-p/cm 

J)~I~;= :3,73·10-3E h-p/cm 

p~:;= 9,75·10-4E kp/cm 

p~~~ = 1,93·10-3E kp/cm 

p~:~ = 5,0·10-4E h-p/cm 

p~l~y = 2,96.10-~E kp/cm 

P~~~:I = 3,,, .1O-3E kr/cm 

p7~:/= 1,13·10-3E kp/cm 

p~I,~;: = 4,64.10-1E kp/cm 

P~;'I = 2,:37 ·10-1E kp/cm 

p~I~z = 2,96·10-~E kp/cm 

p~~~ = 3,7 ·10-3E kp/cm 

p~;~)= 1,D·I0-aE kp/cm 

p~l:; = 4,64.10-1E kp/cm 

p~~~ = 2,:37·10- 1E kp/cm 

15, 9·1O-~E 

18,93.10-3E 

BlII = 5,63.10-3E 

B lY = 23.79·10- 1E 

B" = 12,17 ·10-4E 

Cl = 4,09.10-~E 

CH = 5,12.10-3E 

Cm = 1,52.10-3E 

6,a ·lO-·IE 

3,27 ·10-1E. 

Determination of the principal directions according to formula (11): 

2C 
to' '>cc -== --- = 

eo - (> A-B 
:2 ·4,09·10-~ 
19,88.10-~ = 0,412 

Cl" = 11 °13'. 

79 

This angle indicates the direction u of the greater displacing force; the other principal 
direction is its normal. 

Computation of forces inducing unit displacem.ent in the principal directions, according 
to formula (16): 
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1"' storey: 

)1 = E{( 35'78.1O-~+15,fJ'10-") ~ [( 35,'8.1O-~-15,fJ.1O")..L 
1" 2 ' 2 , I 

-'- 4,09·10-" - ,- = E36,.5fJ.1O-' kp/cm ( )"J}I " 

Ira storey: 

1I f( +,-1,,63.10-"+18,9:3.10-3 ) 
p = Ei 

- 11 t 2 , f( H,G:3.10-3 -18,fJ:3.1O-:J)' (-. ")" Ill"} 
-- ;).12·10-" I = .) , 

l - '. 

HI"" storey: 

E 

= E 1:-3,"i7·10-:; kp/em 

2:3, i~J .10- 1-.5;3,98.10- 1 

:2 l-( ;);3,\)',·10-1_:2:-:'7\).10-1 \J' 
\ :2 

= E (:39,88.10-' 17,] .10-') E 22,7":)·10-' kp:cm. 

Y!' storey: 

28,8J·10-1,-1:2,17.10- 1 
1':[ (, 2':;.'-±·1O-'-12,1.7·10- 1 i )"]l."l 

E - ----___ ------- ',') ')- 1(' -". ' 
-- \ '),- I" J 

2 

= E 2fJ,-!:3·10-' kp i cll1 

11,57.10- 1 kp,'Clll, 

Detcrmination of thc rotation centre accOl'clinl,; to formulae (:20) and (:21); 

A = 20;3,25; B= 87,15; C = 2:3.5; E = AB-C" = I. S50-550 = I. :300. 

. S'.15 23.;3 
!l" = I. ~OO (1699-11,75) -,- 17 :;00 (1200,5-11,75) = 10,1 cm 
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. 205 23.5 
'''0 = -- (1200,5-11.75) - --' - (1699-11,75) = l.J..l"':'-2.3 

'J 1 i 300 . 17 :300 . . 
16,,1, cm. 

Determination of the torsional m.oment of the couple inducing unit rotation, according 
to formula (2,1,) : 

IH storey 

Xi !,'i .t1 Zli Z; ,'It 

-Hi,2 -9,9 212,0 n~~fl Iljf),;) 

2 12,-1 ;j,7 15-1,Ci :3~,± -70., 

3 0,4 -2.1 n,lii 4,4 I)," 

4. 15,G -li,l 2H.n :37.:2 - 9,5,0 
.; 11,0 ;3,7 13-1,0 32.4 0') -_.1 

~ 

J1' = E(19,S-',9:3-l:3, l) = E 1-1,G;3 kpcm 

i I /:- Jl/:i'_ E 

1 
I 

1;;.1.10- 1 

2 11 

v 11 

4 9,II·llr 1 

.) " 
,:: I 2-1,7.111- 1 

, 

J1" = E(2,-lo'-1,1-l,''!) 

E 

-1,(j;::;·11)-1 

2 I) 

3 0 

4 2:/;3.11)-1 

;:J () 

1,-1i)·10-1 

i,:j.ltl-1 

1,2.11>-1 

J~32.1fl-l 

(, 

1,Z·jil-l 

11.1)2.1((-1 

EL>;. kpc:m 

y~ j:: 

2,1:3.10- 1 

1\30.10- 1 

0,40.10-' 
11 

0,30.10-1 

:3 .. 2;j.}(J-l 

J 

1 
(0,74-0,32.S-0,4SS)E E 0,;3'1 kpcrn 

:r'-j p "E ZIP 

12~\j 

IJ 

(, 

7.2 
I1 

111,8 

:~ .. ):).lO-l 

n 
11 

11 

11 

E 

:,:!,±±.lij-! 

Cl 

U 

Cl 

U 

2,-1-1.111-1 

P;y/ E XU1iPt.r/ E 

;),S-,b G,55 
1\0G 0 

(1,15 0 

I) 0 

O:VS 0 

7.93 (i,;J5 
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IVth storey 

i xi PiyylE Y; pi:r:dE XiY£Pi.:::y/E 

1 1,99.10-1 0,92.10- 1 1,01.10-1 

2 0 0,15.10-1 0 

3 0 0,17.10-1 0 

4 1,13.10-1 0 0 

5 0 0,1.5.10-1 0 

1: 3,12.10-1 1,39.10-1 1,01.10-1 

M 1V = (0,312+0,139-0,202)E = 0,249 E h-pcm 

v,n storey 

:Cj p;yy/E YiPi;;:.J;!E XiYiPizylE 

1,02.10-1 0,47 .10-1 0,524.10-1 

2 0 0,076.10- 1 0 

3 0 0,085.10-1 0 

4 0,58.10-1 0 0 

5 0 0,076.10-1 0 

1,60.10-1 0,707.10- 1 0,.524.10- 1 

J1\' = (0,16-;-0,07-0,102) = 0,125 kpcm 

Figm'e 9 shows the calculated principal directions of displacements Il and v and the 
rotation centre O. The mass of the building is assmned on each floor leveL In the case 
under consideration the uniformly distributed mass intensity is 8 ·10-" kg/cm" for each 
storey. The centre of mass S;;[ is in the intersection of the diagonals of the cross-sectional 
rectangle and in the co-ordinate system t'Cy at the rotation centre its co-ordinates are 

Fig.D. 
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X.11 = -0,4 cm and Y3I = -2,1 cm. The co-ordinates of the mass centre in the co-ordinate 
system 1l, v are obtained by co-ordinate transformation: 

U.11 = -0,4 cos 11 °13'-2,1 sin 11"1:3' = -0,4.0,980-2,1.0,194 = -0,8 cm 

1'.11 = 0,4 sin 1P13'-2,1 cos 11 °13' = 0,4·0,194--2,1·0,980 = -1,98 cm 

The mass concentrated on one storey rn .. = 4,0 kg. 
Computation of the inertia moment referred to the rotation centre of the mass con­

centrated in the cross-section: 
:\Ioment of inertia referred to thc rotation centre: 

J o = 426 kg cm~ 

After substitution, fivc different equations of 3-rd order arise for cv" according to 
Eq. (43j, yielding fi,'e basic natural circular frequencies co": 

COf = 5,75.10" sec-" 

CUf, /,35.10 ' sec-" 

corn 2,25.104 sec-2 

col\- 8,95.103 sec- 2 

w~, = 4,45.103 sec-" 

The natural circular frequency: 

1 

co" 5,75.10" 2.25·10' 8.95·10" 

CU 50 sec- I 

The natural frequency of the' considered model: 

50 

2:r 

8. lVIodel test 

4,4,,).10" 
4,01.10-.1 sec" 

A model has been made 'with dimensions and material as discussed in chapter 
7. The design mass for each storey level 'Y<1 .. S simulated by shots uniformly 
distributed over each floor. The quantity of shots has been established so that 
the mass of the floor should be 4 kg. The dewloped model supplied with a vib­
rometer is shown in Fig.IO. Natural frequency ,ms measured by an electronic 
vibrometer t}1)e SDJ13 with pick-ups fixed on each floor level as shown in the 
figure. To determine the natural frequency, two kinds of vibration inducing 
effects have been applied. Either the model was pulled horizontally at its top 
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level and then suddenly released or a support rigidl~- fixed to the model and 
otheJ'\\-ise immobilc 'was giyen a small horizontal impac-t. Both 'dbration effects 
had the samc rcsult and the follmyini! coul(l be C'onC'luclecl from the measure­
ments: 

The Illodel suhjected to either cffet ",:sumi'd tlw \-ilJj'ati(jll r'll'm ('olTespomling 
to the fundamental yjl)l'atiol1, ::\Cl ll.lU],C' complex forms or -\-ibl'atioll could be 
obscl'Yccl. The fl'C(lUCnc\- uf the "illl1db.n(1 )\1" ]l{'ndin:.; ilDrl t(Jrsional yilJl'ations 

WieS 0 Hz. Th(~ yihration lJatt(~!'l1 ]'cc()]'(led Oll film is .~hO\nl in 11. 
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Summary 

Horizontal f1'(:e \-ibrations of multistorey panel buildings can be classified as so-called 
·'c·ouplec! \-ibrations", since in general caSl'S the building is unable to perform purely 
flexural or purPly torional \-ibrations. These vibrations are similar to the corresponding 
bean} yibrations, structurally hO\\"('\"('r till' nn) are quitl' diffl'renL -:\amel~', \vhereas each 
point of a beam cro8s,sl'ctiun ean only ll1U\-e in corrl'sponclE:nce with given geometrical 
conditions, and not indejlendl~ntly of till' adjaeent points, struC'ttn'al walls constituting 
the skelcton ean execlltl' some motions in l11utual dapcn(lenee and again 801ne others 
inckpemlently of each other, in aceordanel' with the theory based on the Bernoulli--:\aviel' 
hypothesis. Determination method for the horizontal natural frpqueneies of multistorey 
builrlim;s undergoing such \-ibration8 has been presented. 
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