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I, Introduction

Floor loads of panel buildings are supported on vertical reinforced concrete
slabs rather than on columns or traditional brickwalls. Multistorey buildings
constructed in this system have become very popular recently, because they
are economical both structurally and technologically. Several problems, how-
ever, of the structural analysis of panel structures are stilluncleared. and it can
be said without exaggeration that theoretical research work lags behind prac-
tical demands. This is even more true for the alwayvs more frequent dynamic
problems, part of which either are not at all solved vet or the available solution
is unsatisfactory in many respects, such as that of the determination of the
horizontal natural frequency of multistorev panel buildings. The structure is
designed in most cases with non-svmmetrical structural walls. and from the
point of view of the vibration theory this means that the building cannot per-
form pure flexural or pure torsional vibrations.

In a simple girder of non-symmetrical section. where the centre of gravity
does not coincide with the shear centre, the free vibration is composed of si-
multaneous flexural and torsional vibrations. Vibrations of this character are
termed ..coupled” vibrations. The ..coupled” vibration of the girder can be
described by an equation system of three simultaneous partial ditferential
equations of the fourth order ([1. 4. 11]) the solution of which is very difficult
even in case of simple type girders.

As to the horizontal free vibrations of panel buildings, they are evidently
..coupled” vibrations, similar to those of the girder. Nevertheless because of
the different character of the structures theyv cannot be approached in the same
way. The most decisive structural difference between the two is that while
every point of a girder section - conform to the theory based on the Bernoulli-
Navier hypothesis — can only perform movements suiting the given geometrical
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conditions and not independently of the adjacent points. the load-bearing
walls forming the slab structure — consisting of elements connected in most
cases at skew angles — can perform sonie movements only in interaction, while
others independently of each other. It is clear therefrom that this vibration
system is a very complex one, and the existing methods are unappropriate to
solve similar problemes.

In the following. a computation method iz presented to determine the hori-
zontal natural frequency of multistorev panel buildings lending itself for gene-
ral cases of the mentioned type of buildings. provided certain simplifving con-
ditions are met.

2. Computation principles and the assumed model

The conzidered building consists of horizontal floors and of perpendicular
structural walls between. The cross-sectional elevation of such a building is
shown in Fig.1. These walls at skew angles and structurally properly connected,
form a single wall unit, in lack of such a connection, however, each wall has to
be considered a separate element,

‘.
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Fig.d.

In computation the following assumptions are made:

@) The load-bearing walls behave elastically in vibration.

b) Each floor forms in his own plane a plate to be considered infinitely rigid.
but normally to it, they are perfectly flexible. This means that in the plane
of the floor each wall element must displace and rotate by the same amount
but normally to it they max deform independently of each other.

This condition is closely satisfied in reality and it is also in accordance with
the actual design practice. In fact, floors develop an essentially lower resistance
to moments causing bending normally to their plane than wall elements in their
own plane, because in precast floor units usually no connections to bear bending
moments are provided above the supports. Monolithic floor structures, how-
ever,to be built in the usual structural panel system, consist of moderately
thick reinforced concrete slabs with negligible transverse rigidity.
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¢) Floor plan layout and thickness of the wall elements are quite arbitrary,
through identical throughout the huilding. Interaction of superposed wall ele-
ments between storevs with themselves and the foundation is assured by means
of rigid connections at the joints. Thus, the superposed wall elements constitute
vertical cantilevers.

) The torsional rigidity of the individual wall elements is very low as com-
paved to the flexural rigidity, and can therefore be neglected in deformation
analvses.

Wall elements with open cross

section have in fact very low torsional rigid-
ities compared to the bending rigidity. hence this assumption is quite justified.
In case of closed (box-type) cross-sections the torsional rigidity of the wall
element might be important, therefore neglecting it bears on the results; how-
ever this kind of wall element occurs but seldom in practice. It should be noted
that taking into account the torsional rigidity of a clozed cross-se¢tion does not
involve changes In the solution principle: it is only tedious to compute each
factor intervening in the equations.

¢) The mass of the structure for each storey, including the mass of the floor
of the walls and of other components, is assumed at the floor level but thereis
no restriction for the mass distribution itself.

f) The effect of damping modifving the natural frequency has been neg-
lected.

The model used for computation purposes is shown in Figure 2. The cross-
section — realized by cutting the building by a horizontal plane immediately
above any floor — contains only the floor, considered as a disc, rigid in its plane,
without the supporting wall elements. Such a section will be called in the fol-
lowing the building cross-section. As mentioned in the introduction. the cross-
section of the building differs essentially from the cross-section of the ordinary
girders in bending and therefore the usual cross-section characteristies have to
be interpreted. In the following the centre of graviiy (S) of the building cross-
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section means the common centre of gravity of all sections of the wall elements
in that cross-section. This generally does not coincide with the mass centre
(S37) of the cross-section. which represents the centre of gravity of the mass
concentrated on floor level and continuously distributed in the horizontal plane.

Similarly as the section of the girder, the building cross-section has also a
point, which -~ when acted upon by a horizontal external force acting in the
plane of the floor, the cross-section (floor) is only displaced but does not rotate,
whereas a torque acting on the floor would produce rotation around this point.

This point is named in the following the rofntion centre of the building rross-
section (0).

A horizontal force passing through the rotation centre displaces the floor
only in its plane, in general. however, the direction of the displacement does
not agree with the direction of the force. Az seen below. among the infinity of
directions there are two orthogonal directions so that the force acting in these
directions incites only displacement in direction of the force. and these will he
termed principal directions.

Notatiorns:

F cross-sectional area of the wall element:

S, principal inertia moments of the wall element cross-section;
£ modulus of elasticity:

$ weakening ceefficient of the wall element;

S centre of gravity of eross-section;
Sir mass centie:
U centre of shear or torsion:

cPen = Py rigidity coefficients of the wall element:
Tre n
A= B = Z]Jij/g!: O = Z- Pizy =
i=1 f=1 im=1
K = AB-C*;
@, Y co-ordinate syvstem in the floor plane;
z co-ordinate axis normal to the plane of the floors:
U co-ordinate svstem in the prineipal directions of the building
cross-section and displacement along the axes;
Usy, Tar co-ordinates of the mass centre in the u, v svstem;
D angle of rotation around the centre of rotation of the building
cross-section:
E; potential energy:
oy inertia moment of the building cross-section mass acting in the

rotation centre:
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E, kinetic energy;

3L numerical value of torque inducing unit rotation of building
cross-section;

m; mass of floor concentrated at storev level;

Pur Pe numerical value of force acting in principal direction and induc-

ing unit displacement.

3. Determination of cross-section characteristics

Centres of gravity and of mass of the building cross-section, as defined above,
are determined by the well-known computation method for centroids of planes
and masses, respectively. New notions are principal directions and rotation
centre, functions of the cross-sectional rigidity and related with the rigidity of
the individual wall elements, considered as rigidly restrained cantilevers. Their

determination will be discussed next.

3.1 Determination of vigidity facicrs of the wall elements

As known from the theory of strength, there is alwayvs a characteristic point
sed by a force parallel to the plane

in integral beam cross-sections, which if pas
of the cross-section. this cross-section is only displaced, and if acted upon by a
torque, the cross-section rotates around this point. The point itself is termed
the centre of shear or torsion. This characteristic point is always on the sym-
section. therefore in cases of bisvmmetry it coincides

metry axis of the cross
with the centre of gravity, though it may also bhe determined {or general
cases [9].

The feature common in both the principal directions of inertia of the beam
CT O -section is that an external force parallel
to any of them will displace the cross-section parallelly to the direction of the
force. As the principal directions of inertia for the cross-section (1.2) and its
principal inertia moments (J,, .J,) can be easily determined by means of rela-
tionships known from the strength theory [7]. they will be assumed to be known
in the following.

Computation of rigidity coefficients of each wall element is also known from
the literature [7,9] and will be but shortly treated.

Assume a prismatic bar rigidly clamped at one end. made of homogeneous
material obeving Hooke’s law. To displace cross-section ¢ at a distance = from
the clamping, by magnitudes 4, and 4,, parallelly to principal directions 1

section and of the building cross
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and 2, resp., forces £, and P,, parallel to the respective dizplacements, have to
be applied in the shear centre of the cross-section I at a distance ¢ (¢ z=z) from

the clamping point. Force values can be determined from a relationship known
from the theory of strength, as:

P1 = '“*2 illn’ \
1 (1)
and
'JT]
PZ = —;Jiz,l (2)
H
respectively.
In the formula
H=2(E 2
El 2 6]

where £ is the modulus of elasticity of the bar material and s a factor express-
ing the effect of wall openings (doors, windows), the determination of which
will be discusszed in chapter 7.

Assume now a co-ordinate system xy at a distance z from the clamping and
determine the external force to be applied in cross-section I to obtain unit dis-
placement of the cross-section shear centre in direction of axis x. If the v axis
is not a principal direction. the displacing force is not parallel with the @ axis,
but can be described by components p,, and p,, in directions x and y, respec-

tively, which can be computed as follows. The components in the principal
directions 1 and 2, respectively, of the unit displacement in direction of the
z axis, aban angle « to the principal direction 1 ~ as seen in Figure 3 — are 1.
cos z and —1. sin «, respectively. These can be produced by forces

T,

@ = % cOS . (3)

and
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acting in direction of axes 1 and 2. respectively, according to formulae (1) and
(2). The required force components p.. and p,, are given by the sum of pro-
jections in divections & and y, respectively, hence:

. 1 e :
Prr = Qrcosz—asing = = Jisin?z+-Jyc0st (5)

Ji— T,

. . 41
Pew = Qreine0), cos x = —cos z&in ;:T . (8)

For a unit displacement in direction y of the considered cross-section. forces
Pyy and 22y, in direction of axes y and w, resp.. should be applied. They can be
determined as above, namely:

Py = H Jycos? z+Jasin® ()
1 .
N zeing(Jy—J2) = Py (8)

The quantities p,.. pyy and pry=p,. will be named in the following the rigi-
dity coefficients of the wall element.

3.2 Determination of the principal directions, the centre of rotution and the dy-
nams inducing wntt displacement of the buiddding cross-secizon.

The principal directions of the building cross-section can be determined by
supposing that the displacement due to a force parallel to the principal direction
and passing through the rotation centre will also be parallel to the divection
of the force. The reverse is also true. namely that the so-called restoring force
produced by the displacement in the principal direction has its influence line
alto in the principal direction. In the so far unknown centre of rotation of the
building cross-zection scheme in Fig.4 a co-ordinate svstem of arbitrarv ay
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axes has been assumed. Axis @ includes with the principal direction an angle
a,. Let us displace the cross-section supported by m wall elements along the
principal direction by . The influence line of the force R necessary for the
displacement is also in the principal direction. The components A cos «, and
A sin «, of displacement in direction of the » and y axes, respectively, and
forces necessary to produce these displacements are equal to the components
of R in direction of the corresponding axis. Between the forces necessary to
induce the displacement components and the corresponding components of
R, the following relationships can be written by means of the rigidity coeffi-
cient of each wall element:

m Y om
4 7 I } 7 ol o -
deos wy X pres+dsina, > piey, = Rcos z,
j=1 (=1
. < .
dsinwg > pigy-Acos uy D prey, = Rsing, . (9)

In the equations p;,.. pryy and p;., = Py stand for the rigidity coefficients
of the ¢-th wall element and the summation comprises all m wall elements.
Introducing notations

7

3

i [— Y‘va . N . U
;1 — Z j)z',z:,L'w B - ]«71'1131: c - 2 p[.vy
(=1 i=1 i=1

and multiplving the first equation by sin «, and the second one by -—cos«, we
obtain:
Asinu,cosu, A+ Adsin?x,0 = Kcosu,sinx,

—dsino, cos v,B8—dcosty, (' = — R cosz,sin %, . {10)
Reducing the two equations and simplifving by 2

(4~ B)sina, cos o, —Clcos? o, —sin z,) = 0.

The obtained relationship can be written in a more expedient form by intro-
ducing functions of double angles. As it is known:

8in 20, = 281n 2, COS %,

cos 20, = €08 o, —sin® «,

) 1--cos 2u T . 1 —cos 2o
cOs¥zy = —————  and  sin?zy = —— "

After substituting and arranging:
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Finally, dividing the equation by cos «,. it can he written:

20

(11)

From this relationship it appears that for «, two solutions exist. Namely, if

an z, satisfies the equation. also the angle «, = Lot will satisfv it since
tg 2z, = tg(2u,+7) = tg 22,. This means that two directions normal to each

other are found for which the determination of the principal direction is valid,
and thereby the existence of the principal directions is proved.

As seen, in the formula for «, the distance between the clamping and the
considered cross-section does not intervene, therefore the relationship (11) can
be used equally for the huilding cross-section considered at any storev.

Later on, also the force inducing a unit displacement in the principal direc-
tion will be needed, therefore determination of this force will be considered
next. The force causing a displacement 4 = 1 in the principal direction in-
cluding with the v axis an angle «, is denoted by p. Accordingly, equations (9)
can be written in the following form:

Acoso,+~Csing, = pcosu,
Bsing,+Ccosa, = psina,. (12)

Multiplying the first equation bv cos =, and the second one by sin «,. subtract-
ing the second from the first. the following relationship is obtained:

dcosta,— Bsin?z, = plcos? o, —sin® «,).
Hence:

A cos? gy —Bsin® xg

p= 5 —
CO8= 2o — 81”2

Introducing again the relationships for the double anglesas described above,
the obtained equation can be written as:

1

o= 2—6_55—2/9 lA(l—i;—cos 20} — B(1 —cos 2u0) ] | (13)

For the force p causing unit displacement in the principal divection also a
direct relationship might be deduced, by substituting the value for 2¢, according
to (11) into formula (13). This latter, however, includes the trigonometric

function cos 2u,, therefore the relationship between cos 2z, and tg 22, may be
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applied. According to formulae known from trigonometry, cos 2z, can he
expressed by tg 2«, as follows:
1

cos 2y = ———uw——o.
T 1o
V1-te® 20

Replacing tg* 2z, by its value obtained from (11} it can be written:

cos 2%y = — ___1____ = A‘_B 1 = — A_B_l— (14)

2 D

Hee
[
e
o
[
—~—
-
m——
b
|
&
]
3
1o

e
(A -8By

i

where D = ' {4 BJ e O

2

Now the relationship (13) can be simplified by replacing cos 2z, in (13) by

its form in (14):
D T A-B A4-B
r=gp| {1” 5D J_B[.I‘ 5D ”

After reduction we obtain

p==—5—=D= —— =C*. (13)

4-B 4#_73;',;’ (.4~B‘3

The double sign of the square root results in two values. corresponding to
the two principal directions. The higher and lower values (p, and p, in the
following) are obtained by taking into account the square root with its positive
and negative value, respectively. Thus. using the symbols in Fig. 4, the forces
inducing unit displacement along the principal directions can be computed as
follows:

{16)

9 — - —
P B

Now the determination of the rotation centre of the building cross-section
will be considered according to [7] and [9]. Let us apply to the floor, at a
distance = from the clamping, a horizontal force £,=1 Mp, parallel to the x
axis in Fig.4, acting in a still unknown rotation centre. By definition it does
not rotate the floor, only displace it by 4., and 4., in direction of axes & and
y. respectively. Similarly as for the computation of the principal directions,
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the following projection equations can be written for directions x and y:

—'.t 1‘4’1 - . .L‘I/CY 1 1
Ayl 1,y B=0 [ (17

I

Introducing the simplification N = 4B —C? from the obtained equation
svstem the floor displacements can be expressed as:

=2y = &
S S

Knowing the displacements, forces in directions » and y acting on each wall
element are easilv computed from external force £, = 1 Mp. Forces acting on
the i-th wall element in directions v and y arve, respectivelv:

1/ R

ey == l])l/"' ].:‘31 Pire = "[?tB]Ju" C ])Z:'g/J (18)
1 A .

Tiey = —v].r,r' Pivy=—r- I,/ Piyy = ']f Bpi.z.'y"‘c ]r/ig;yJ. (19)

The external force being their resultant. it can be written that its moment, in
a point (in our case in the origin O of co-ordinate syvstem «'y" in Fig.5)
equals the sum of moments of the forces applied at the same point for each
wall element.

Therefore:

Here 2; and y; are distances of the shear centre of the 7-th wall element from
axes y and &', respectively; and y’ is the distance of the rotation centre from
the @7 axis. This latter distance is. using (18) and (19):

12 m t i 7
g — N, N L : . T 5
Yo = E|< Y Piez— 2 'l"pi"w}—r“: [Z Ty Diyy — Z-Usl)z'“’]' (20)
= = K= =1

O 63280111, — Periodica Polytechnika
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Similarly, examining the effect of force R, = 1 Mp acting in direction of

1

the 7 axiz, the distance of the rotation centre from the y axis can be deduced

a
@ .

— > pg,‘;yJ .

Finally it will be determined what moment is needed in the rotation centre

of the building cross-section to produce unit rotation of the cross-section.
To this purpose it is supposed that the floor pertaining to the C(m<i<lez'ed Cross-
section undergoes unit rotation. In this case the shear centre of the i-th wall
element is displaced in directions o and y by 2; and y,, resp. and to induce the

displacement, in the shear centre forces

and

Pive—Yi 17)4";1'2’) “23/\

have to act in direc w and y, respectively. In these formulae ; = r,—ua,
and y; = yi—y, st or the ordinatae of the shear centre of the #-th wall
element in the co-ordinate svstem at the rotation centre. The sum of the mo-
ments pertaining to the rotation centre und due to f(§1'ce< developed by the

rotation mu:’f be equal to the torque of the couple producing the rotation.
Thus:

tions
zlf

The difierential equation of a complex vibrating svstem may often be di-

rectly expressed by the Lagrange equation. hm(m\hms including

kinetic and potential energy of the structure determination of the
natural frequency of multistorey panel 1_‘)uilding:\; tne same method is chosen,
starting from the displacements of the floor ¢ of the building. As mentioned
above, the vibrational motion of the floor can be deseribed by its rotation
about the rotation centre and a simultaneous displacement. Instead of the
displacement of the rotation centre of the floor, further on its components u
and v in the principal directions will be considered and the rotation denoted by
@ as shown in Fig.6. As seen, the displacement causes the rotation centre of
the floor to move into 7 and its mass centre into &y, At a given instant the
kinetic energy can be obtained as the momentum of a rigid body performing
rotating and advancing motion.
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The kinetic energy of the mass of the /-th storey, concentrated in the plane
of the foor, is:
gt gt -

Emf — 2 _L‘ B} “%_

%—’ng(j)i("d_u U — Uaritg ). (25)

{The superscript point denotes the time-dependent derivative of the displace-
ment.)
The kinetic energy of the whole building. expressed in matrix form, is:

Mu--

i *EQ(@ L ATB (i 7 — 2,"_\[/3( ) (26)

with vectors:

7l i1 ot
]
v = U V = Vs @ et (j),

and diagonal matrices:

M= <=my, my. .. 00,>: do= <J, Jopo o Ty=
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The potential energy of the floor is in the same instant:
1 . . 2 -
Ey = 5 kg N;—].,ll"—]”ﬂz@) . (27)

Here L,; and k,; denote the spring constants of the floor displacement in
directions v and v, respectively, whereas I ; denotes its torsional spring con-
stant.

The potential energy of the whole building. similarly expressed as for the
kinetic energy:

1 . .
By =5|u*K, u+v* I\.,J'-}-—@‘ﬁ‘l&g@ (28)
with vectors:
Uy I D,
w= | u Vo= | U D = | D;
"y Ly (f)“

and diagonal matrix:
K=<k, Ly, . . .. k=

The Lagrange differential equation of motion is:

dadE, o0F, J0E,
dr dg aq dg

ity

(29}

In this equation g(u, v, @) are vectors of the so-called generalized co-ordinates
characterizing motion of the floor mass centre, and f the active dynam vectors.
f being zero in the considered case of free vibration.

The derivatives of the Lagrange equation are:

0E., . Iy
= .7" = Mu-— L'_\[Z‘?}.@
ou

ok, .. N

— = ¥y )l;[f‘d@

() v

3, s ar - -

()F 2= F @ F (v — )

0D

and
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doE, .. | s

—CTi ()u = Jlu—lJ[?{I@
KRS ER T .

dt ov

d oFE, o —_ -
a{;%&; = —ry Mt My Ld,®

0 ]5111 o E.n aEm

= = =0

du  Iv 0D

thus

OE; .

" = K,u

0 o 0.

= %,V

v

0 E}L 5
=K,

o®

. . 0 E/l . .,
The three derivatives, based on To. Are seen to be actually the magnitudes
1t :

of the restoring force or moment in vibration, due to the elastic support of the
floor. In single mass systems, with one degree of freedom, they are easy to
determine; in the present case, however, as there are several masses, the mag-
nitude of the restoring dynams acting on a certain mass is influenced by the
dizplacement of the other masses as well, namely the displacement of one mass
entrains the other mass and vie rerse. A method for computing the restoring

dynams will be considered in the following for such cases.

PR

Fig.r.

The cantilever shown in Fig. 7 earries concentrated masses. Denote displace-
ments of direction I at the i-th and Z-th mass produced by unit horizontal force
acting at 7, by ., and «¢,,, respectivelv. Similarly, the unit horizontal force
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acting at mass & produces displacements .. and a,; at L and ¢, respectively.
As known from the interchangeability theorem of Ua.r well, ap = a,. In the
knowledge of the preceding. the forces & inciting jointly a dmphceuent Eat
mass 7 can he computed. Yet these forces vield the elastic restoring force acting
on the mass m; during the simultaneous displacement ;.

The elastic restoring forces acting on each mass will be determined by the
following system of equations, based on the principle of superposition:

aplyra,l, + . a, R, = E
oy I+t By .+, By = &

s I » ; D &
anlLlT([ﬁz Lo o v e ookl = Sae

The equation syvstem written in matrix form:

Ne=¢§ (30
with vectors:
T T -
Aty ] S1
> =
Lo | w2
) i R ' é f
| |
!
o -
‘h i ] i w2
- p— f — J—
and matrix:
e —_—
b, 7P a,
3 12 iz
N= 1y Mlow oo Ao
7 D o Con
The solution of the matrix cquation:

{31}

where X1 is the so-called inverse matrix of X. Matrix ¥ being symmetrical,

its inverse is also symmetrical, hence «¢';; = «

On the basis of the foregoing. the derivatives with respect to the generalized
co-ordinates of the potential energy will Le:

a];/’z .

au
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which give at the same time the restoring dynams acting on the floors.
In the above

(Terms with comnia subseript represent the corresnonding terms of the inverse
X1 of the matri ' vith the load factors.)
Thereby the leseribing the motion will be as
follows
(32)
~E)E =0

Before solving the differential equation system, the coefficients (load factors)
of the equation systems used for the determination of the restoring dynams

have to be computed. They are easily obtained on hand of chapter 2.
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Namelv, In the relationship (16) forces p, and p, occur. necessary for unit
A \ 1 2 R
displacement in directions « and v, respectively. In the equation systems for
r, and r,, coefficients expressing the displacements due to unit forces are
simply their reciprocals:
1 1

v and sy = ——
Puak P

(33

Ay it =

where p;,. denotes the force acting at L and inducing unit displacement at the
i-th point. According to sense, relationship (16) is valid for the determination
of any p,.. only the respective distances for points ¢ and £ have to be substi-
tuted in terms of H in equations (3), (6), (7). (8).

The rotation of the building cross-section due to unit moment is equal to the
reciprocal numerical value of the moment acting in the floor plane and inducing
unit rotation.

Thus:

2

!

i
t

where the value of 3 can be computed from the relationship (24).

The svstem being rigidly fixed at one end and unsupported at the other.
hence, if the i-th building cross-section is rotated by an angle @ in its plane.
then all cross-sections & between it and the free end will rotate by the same
angle, so that it can be written:

Qi = Uz (35)

The differential equation svstem will be solved by the usual method for
multiple-mass vibration systems. The free vibration of the svstem is supposed
to be a harmonic vibration and can be described by the functions

u = u,sinof
Vo= vy s of

D = Dgsin of

hence
U= —pluysinwt
V = — vy sin o
D = — > Dysin ol .

b

Substituting the above into differential equation system (32) and dividing
throughout by sin wf, we obtain:
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(N2 — 0 M)uy+-0v, — oy M@y = 0
G w- (N — e M)vy—w2uyMdy = 0 (36)

. ‘, 2w -1 .
s M Uy — Wy war M V0+(Nq) —JQC!)Z) @y = 0

Here 0 denotes the zero matrix of n-th order. Introducing furthermore nota-
tions
(NI—o*'M) =P
oy M =q (diagonal matrix)
(N'=o"M) =R
—o?ryM =S (diagonal matrix)
(N;,} —dy) =T
the equation system takes the following from:
Pup-0vy-Q®, =0
Ouy+-Rvy+-8®; =0
Quy—Sve+-T®, = 0.

(37)

The obtained homogeneous equation system has a solution other than zero,
if the determinant formed of the coefficients is zero. In the considered case the
coefficient matrix is given by the hypermatrix:

W=|P 0 Q
0 R S (38)
T

Q S

Finally the equation to determine the natural circular frequency of the vibra-
tion is as follows:

let W = (det P) (det R det T—det §?) det @* det R = 0 (39)

The obtained equation is, in terms of o7, of 3n-th order, with 3n roots. As the
matrices in the characteristic equation are symmetrical and hypermatrix W
itself is symmetrical, the equation has real roots and so the results for w are
either real or pure imaginary. It follows from the physical conditions of the
motion that pure imaginary roots and negative real roots are impossible, there-
fore in fact, w may have n values. The lowest one is the natural circular fre-

6 63230/I1I — Periodica Polytechnika
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quency of the fundamental vibration and the others the circular frequencies
for more complex vibration forms. In the considered case only the fundamental
vibration is of interest, as in rather squat buildings more complex forms of
vibration do not occur. Thus the natural circular frequency of the building
® = Op;,, and the natural frequency is:

N = C’)min‘ (4:0)
27

5. Approximation of the natural frequency

According to the method discussed above, the natural frequency of panel
buildings can be determined without difficulty, however for multi-storey build-
ings the problem can only be solved — economically — by using a digital com-
puter, because of the great number of equations and unknowns. To eliminate
this disadvantage an approximation method will be presented vielding a fair
approximation even for an arbitrary number of storeys, involving no special
computation problem. The computation is based on the approximation method
of Dunlerley, reducing the problem to determine natural frequencies of 7 one-
mass gystems rather than to determine the natural frequency of a vibrating
svstem consisting of » masses:

o<l (41)
w* = o

Here o, is the fictitious natural circular frequency of a girder of negligible
mass, acted upon by the ¢-th mass onlv. The obtained value is 5 to 15 per cent
lower than the exact result.

The procedure to adopt is therefore to compute the natural frequency of a
single-storey building and to vary the position of this storeyv according to the
considered storey of the building. Namely, there is always a single-mass sys-
tem, performing coupled vibrations, for which the equation system (36) might
be written as well, however in an essentially simpler form, as for a single-mass
system the restoring dynam is the product of the spring constant and the
displacement. The spring constant is equal to the numerical value of the dynam
inducing unit displacement, defined already in chapter 8; for p, and p,and M in
cases of displacement and of rotation, see formulae (16) and (24), respectively.

Accordingly, the equation system expressing the free vibration of the ¢-th
single-mass system is:

Il

[ow B v R e

(Pui — M%) u, + 0 uym;D;
o9
(Pvi — M) v — > uym; Dy =

9

wrvgm; — Uy + (M —J 63070y =

(42)

e e’
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The homogeneous equation system has a solution other than zero if its deter-
minant formed of the coefficients is zero, i.e.

(Pus— m;e?) 0 m2eym;
0 (P — m0%) — U = 0,
w2m; — Uy (M ;— ys00%)

After expanding the determinant, the following equation of 3-rd order is
obtained for o*:
ae’ +bot et +d =0 (43)
where
a = mi(uim;+vimi—dJ o)
b = midJ o(Pui+ Pui) — '7722'(Pm'l‘§.1+ pz*ivfu) +md ;]
¢ = —[mMpui+ Pei) = PuiDei) o)
d = puyipe: My

It follows from the symmetry of the deferminant that the equation has real
roots. In the considered case the circular frequency pertaking of the funda-
mental frequency is of concern, so that for n” storevs n different 4, values
are obtained, of which the natural circular frequency can be determined by
means of formula (41).

6. Consideration of the weakening effect of wall openings
fel X b

When computing rigidity coefficients of the individual wall elements, the
factor s intervening in the H value is related to the weakening effect of doors
or windows. This factor should be assumed mainly according to results of
experiments [7]. Denoting by e the relation between the width of the wall
opening and the width of the wall itself, then the factor s can be determined as:

for £=0,55,

s = 3461 (44)
for 0,

Ut
Ot
1A
o

A
[am}
~1

$=3 : (45)
V(l—e)*

Above results are valid for a single wall. In practice, wall elements are mostly
assembled of several wall units rigidly joined along the edges and usually each
part contains different openings. In this case the factor s pertaining to the
whole wall element may be the average value of the factors computed for each
wall unit as mentioned above.
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7. Numeric example

The approximation of the natural frequency — as described above — is present-
ed on a model of a 4-storey panel building as shown in Figure 8. The dimen-
sions are given in the figure. The model is made of a plastic material Columbia
C with a dynamic modulus of elasticity £ = 40 000 kp/em?. The adjacent wall
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Fig.s.

units are rigidly connected along the vertical edges, therefore thev form wall
elements. The model contains 5 such separate wall elements. numbered as seen
in the figure, indicating also the principal directions of inertia (1,2) of the cross
section, and the shear centre (0U) of each wall element.
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The principal inertia moments of the wall cross sections are:

Wealdl element 10 J=37,75 em? Ja=10,75 em!
Wall element J,=17.00 cm? J.=0

Wall element 3:  J,=137,00 em? J.=35,9 cm?
Wall element J,=17,00 cm? Ja=0

Wall element 9 J;=17,00 cm? Ja==0,

(83

¢ M

Computation of the rigidity factors according to (5). (6). (7), (5):

Wl element 1

117l eleiment 2

Wall elemnent 3

Rigidity factor values » related 1o each stovey; one for cach wall element.

128 5.75.100

[
=
b



Wall element 1;
Ist

117 storey-:

storey:

IIT storey:

IV' th

'\T"h

Wall element 2,
=
Ire
IIr”
e
y
Wall element 3,

lst

II::d

storex:

storey:

storey:
storey :
storey:
storey:

storey :

storey:

storey :

VERTES

249 4,6-10°

HH::SE —F
H‘I‘:g‘%s=j:§_%.gi
HI‘Z%ziﬁ%lQ:

PP = 5,96-10F kp/em
p‘f}’fzj = 4,09.-10—2F kp/em
0 = 5,96-10—*F kp/em
P = 7.43.10-3E kp/em
PP = 5,12.10~3%F kp/em
P = 7,43.10-E kp/em
P = 2.19.10-3F kp/em
P 1,52-10-3F kp/em
1”(1!;? = 2,19.-10-3F kp/cm
,pm"j: 9,1-10-4E kp/om
ptlﬂj = 6,3.10—%F kp/cm
p‘:’r;;: 9,4.10-4F kp/em
PV = 1,8.10~E kp/em
P = 3.27-107E kp/om

rY,,= 4.8-107F kp/em

_}J‘_" = 2,96.10*F kp/em

P4 = 3.7 -10-3E kp/em

PO 1,13.10-%E kp/em
pfj:;_} = 4,64.10-*F kp/cn

2 = 2,37.10~E kp/em

J
(V)

2,39-10-1E kp/em

6,24.1072F kp/em

= 2,98.10-E kp/cm
7.8 103K kp/em
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IIT storey: P50 = §,85-103F kp/em
Pyn=2,51:10~3E kp/em
IV™ storey: P = 3,73-107%E kp/em
P4, = 9,75-107E kp/em

V* storey: PP = 1,93.10-°F kp/em
Py = 5,0-10~'E kp/em

Wall element 4,

I* storey: 7y, = 2,96-10—°F kp/em
I1* storey: pin = 3,7 -1073 kp/em
11T storey: pil=1,13.10—°EF kp/em
IV™ storey: Py = 4,64.10E kp/em
V™ storey: Py, = 2,37-1071F kp/em

Wall element 3,

I* storey: pY = 2,96-10—%E kp/em

I1* storey: il = 3,7 -10-3E kp/em

IIT™ storey: P = 1,13.10%E kp/em

IV storey: P = 4,64.10~*F kp/em

V& storey: P57 = 2,37.10*F kp/em
AT = 35,78.10-E B' — 15, 9.10—E ' = 4,09-10-2F
A% = 44,63.10-3F B = 18,93.10-3E " = 5,12.10—%E
AT — 13,30.10-3E BY — 5,63.10-E ¢ = 1,52.10-%E
AW = 55,08.10—F BY = 23,79.10—E OV = 6,3 -10E
4Y = 28,84.10—F BY = 12,17-10~E CV = 3,27.-10E.

Determination of the principal directions according to formula (11):

20 2.4,09.10-
g 2, = = = 0,412
A—B  19,8§.10-

2o, = 22°26’ o, = 11°13",

This angle indicates the direction u of the greater displacing force; the other principal
direction is its normal.

Computation of forces indueing unit displacement in the principal directions, according
to formula (16):
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I* storey:

D)

. r{( 35,78-10-‘—’—%-15,9-10—‘-’) _ [( 35,78-10—2—15,9-102) ‘
p, =& - -

2
( ERRRUE
- (4,09-10—2) J} = [36,59.10~ kp/em

P = F(25,84.10~2—10,75.10-2%) = £15,09-10-2 kp/em.

IT* storey:

_ "44,63-10-3-1-15,93.10-3) 14.63.10-9—18,93.10-%) :
p,=E 5 - -~15,12.10~¢
) L / ‘

4 2

= E 45,55.10~% kp/ern

P = E(31,78:1075-13,8.10-%) = F17.95.10-% kp/em.

((13,3:107 563100 )
P =

- { 13,3.10-3-+-5,63.10-3 |
E =
) H 2

= [ 13,537-10-% kp/cm

Pt = E(946.107 ~4,11.10~% = E 5,35.10~% kp/cin,

IV storey:

23,79-10~4--55,98.10~%  [{ 55,08.10~1—23,79.10~* }*

Y = I i Ue v "" a |—;\};A
f')g,\ = Ll 5 — i J 16,310 j

2 g 2
= F 56,9510~ kp/em
SV

P o= FE(39,88.1071—17,1.10%) = [ 22,75.10~ kp/cm.

V* storey:

p =K ’(
i l 3

5 i

= L 29,43-10-* kp/em

]z;‘_‘ = [(20,5-10-*—8,93.10-% == 11,57-10~*% kp/cm.
Determination of the rotation centre according to formulae (20) and (21):

A = 205,25: B = $7,15; C = 23.5;

, 87,15 . 23.5 _ .
y, = ——— (1699—11,75) -- — (1200,5—11,75) = 10,1 cm
717300 17-300

]1\-
i

{

B

|

[——

28,84.10~35-12,17.10~ | 2<,<4-1o~1-12.j7.1r)—4}: [, - N\__;}'—‘]I/:‘L
I L J

K= 4B—C*= 17 850—550 = 17 300.
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205 23,5
@) = o (1200,5—11,75) - — o (1699—11,75) — 14,1--2,3 — 16,4 om.
a
17 300 17 300

Determination of the torsional moment of the couple inducing unit rotation, according
to formula (24):

I storey

i P 2 \ 2y E
* |
1 ~16.2 | —9.9 212,0 160,5 l 126 | 584 6,55
2 —~12,4 3,7 154,0 32,4 —70,7 1‘ 0 [ 0,00 0
3 0.4 —2,1 0,16 4.4 0,8 | 0 1 0,15 4}
!
4 156 | —6,1 2440 37.2 | —950 | 72 | 0 0
5 1L6 5,7 134,0 4 62,7 i G ] 0,98 0
= | 10,8 T3 5,55
i H i {
I i j i i !

A= E(19,8-7,03—13,1) = F 14,63 kpem

storey

CMiPscy

i
1
1 ; 15,7-10-1 5.53.10~1
2 0 \ 0
H i
3 0 ! 1,82.1¢ ! 0
4 | 9,0.10-1 0 0
5 i 0 d 1.3.10-1 ! 0
! i ;
- i : 0
X [ 8531071

24,7101 ] 11.02.10~1

MY = E(247-~1,1—1,74) = £ 1,87 kpem

i 2 it 1
1 4,655.10-1 2,13.10-1 ! 244,107
2 0 0,36.10~1 0
3 0 0,40.10-1 | 3}
4 2,75.10-1 O ] 0
5 0 0,36.101 l o
x 740101 3,25.10-1 1 2,414,101
1

M™M= (0,740,325 —0,488)E = E 0,577 kpem
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IV™ storey
i 23 Diyy/ B Y2 piz/E TiYiDizy! E
1 1,99.10-1 0,92.10~1 1,01.10-1
2 0 0,15.10—1 0
3 0 0,17.10-1 0
4 1,13.10-1 1] 0
5 0 0,15.10~1 0
xz 3,12.10~1 1,39.10-! 1,01.10-1
MY = (0,312-0,139—0,202)F = 0,249 & kpem
V* storey
i i Dig/E Ui PizslE ZiY iDizy/ E
1 1,02.10-1 0,47 101 0,524.10-1
2 [V} 0,076.101 0
3 0] 0,085.10-1 0
4 0,58.10-1 0 0
5 4] 0,076.10? 0
1.60.10~1 0,707.10"! 0,524.10~1

MY = (0,16--0,07—0,102) = 0,125 kpem

Figure 9 shows the calculated principal directions of displacements u and » and the
rotation centre 0. The mass of the building is assumed on each floor level. In the case
under consideration the uniformly distributed mass intensity is 8-107% kg/em? for each
storey. The centre of mass §,, is in the intersection of the diagonals of the cross-sectional
rectangle and in the co-ordinate system ay at the rotation centre its co-ordinates are

e
f ) irry3 u
/ [T
//(
/
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@, = —0,4demandy, = —2,1 em. The co-ordinates of the mass centre in the co-ordinate

system u, v are obtained by co-ordinate transformation:

u, = —0,4 cos 11°13’—2,1 sin 11°13" = —0,4.0,980—2,1.0,194 = —0,8 cm
v, = 0,4 sin 11°13'—2,1 cos 11°13’ = 0,4.0,194--2,1.0,980 = —1,98 cm
The mass concentrated on one storey m, = 4,0 kg.

Computation of the inertia moment referred to the rotation centre of the mass con-
centrated in the cross-section:
Moment of inertia referred to the rotation centre:

J, = 426 kg cm?®

After substitution, five different equations of 3-rd order arise for «* according to
Eq. (43), yielding five basic natural circular frequencies o*:

@} = 5,75-10" sec—?

i = 17,35-10! sec™*

oy = 2,25-10% sec™*

wi = 8,95-10% sec—?

wF == 4,15.10% sec—*

The natural circular frequency:
1 1 1 1 1 1
= _ _ 4 _ -+ e — == 4,01.10"" sec?
" 5,75-107 7.35-104 2,25.104 8,95-10° 4,45.10°
w? = 2,5.10°% sec—*
w = 50 sec™!

The natural frequency of the considered model:

.50
N = — = 7,9 gec~!
27

8. Model test

A model has been made with dimensions and material as discussed in chapter
7. The design mass for each storey level was simulated by shots uniformly
distributed over each floor. The quantity of shots has been established so that
the mass of the floor should be 4 kg. The developed model supplied with a vib-
rometer is shown in Fig.10. Natural frequency was measured by an electronic
vibrometer type SD/3 with pick-ups fixed on each floor level as shown in the
figure. To determine the natural frequency, two kinds of vibration inducing
effects have been applied. Either the model was pulled horizontally at its top
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level and then suddenly released or a support rigidly fixed to the model and
otherwise immobile was given a small horizontal impact. Both vibration effects
had the same result and the following could be concluded from the measure-
ments:

Fin 10,

The madel subjectecd to either effet assumed the vibration form corresponding
to the fundamental vibration. No maore complex forms of vibration could be
observed. The frequency of the simultaneous bending and torsional vibrations

I
&l

was 9 Hz. The vibration pattern recorded on film tape is shown in Fig. 11.
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Summary

Horizontal free vibrations of multistorey panel buildings can be classified as so-called
, since in general cases the building is unable to perform purely

“coupled vibrarions
flexural or purely torional vibrations. These vibrations are similar to the corresponding
beam vibrations, structurally however the two are quite different. Namely, whereas each
point of a beam cross-section can only move in correspondence with given geometrical
structural walls constituting

conditions, and not independently of the adjacent points
the skeleton can execute some motions in mutual dependence and agzain some others
independently of cach other, in accordance with the theory based on the Bernoulli-Navier
hypothesis. Determination method for the horizontal natural frequencies of multistorey
buildings undergoing such vibrations has been presented.
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