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Abstract
This paper introduces a dynamic programming (DP) ap-

proach for solving deterministic combinatorial operational op-
timization problem of water distribution networks. The imple-
mentation of dynamic programming over control domain using
permutational symmetries is suggested to replace the state space
based DP procedures. To enhance the understanding an ap-
plication on a ub–network of the water supply and distribution
network of the city of Sopron (Hungary) is presented which is
sufficiently small to track the (pseudo) state space and approach
related quantities.
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Nomenclature
Notation Description
Npump Number of pumps in the main distribution network
Nres Number of water reservoirs in the main distribu-

tion network
Npow Number of power stations in the main distribution

network
Nwell Number of well fields supplying the main distri-

bution network

Variable Unit Description
qpump

i,t m3/h Flow rate of pump i at time t
qwell

i,t m3/h Flow rate of well i at time t
di,t m3 i th water demand between time t and t+

1
ppump

i,t kW Power consumption of pump i at time t
Vi,t m3 Water volume of reservoir i at time t
Ei,t kWh Supplied energy by power station i at

time t
wt e/kWh Energy tariff at time t

1 Introduction
Optimization is a highly researched topic energized by the

industry. In waterwork systems the need for optimization is
twofold: it is required either at design stage of waterworks
[7,8,16,34] or more frequently the demand focuses towards op-
erational level: having a given waterwork topology one aims
to achieve an optimal control of the active hydraulic elements
(pumps, valves) satisfying water demand with minimal energy
consumption. Sophisticated operation can result in significant
savings even in small scale waterworks.

So far the scientific research of this topic resulted in an ex-
tensive growth of the optimization techniques. Currently meta-
heuristics dominate the research arena [1, 5, 6, 31, 32], they are
widely applied due to their flexibility and robustness. However,
they often provide poor solutions if the CPU time is limited for
optimization making them unsuitable for online control [23].

Besides heuristics, deterministic solvers own a great fraction
of the stake. Among those, dynamic programming (DP) has
long been recognized as powerful tool and global optimizer,
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however it targets only continuous optimal control problems
in the field of operational optimization of waterwork systems
[9–15, 35]. In the context of dynamic programming discrete
pump models are rarely used, the literature lacks the applica-
tion of DP on combinatorial problems introduced by on/off type
pumps or/and valves implemented in a water distribution sys-
tem.

To decrease this research gap here the utilization of dynamic
programming on combinatorial problems related to operational
optimization of water distribution networks is examined. In or-
der to achieve better understanding a small scale water network
is used as illustration.

The paper is organized as follows: Section 2 describes the dy-
namics of the investigated water networks while Section 3 gives
a brief overview on dynamic programming approaches on the
context of water resources management problems. Section 4 in-
troduces a novel dynamic programming approach as the main
contribution of this paper. Sections 5 and 6 present an applica-
tion example of the introduced technique where a combinatorial
and a mixed–combinatorial problem are under inspection. Fi-
nally, Section 7 includes the conclusions and hints the future
work.

2 The water distribution system model
The primary goal of a water distribution system is to satisfy

the residential and industrial demand by delivering water from
sources (wells) to users. A simple water supply system is shown
in Fig. 1. The network consists of water reservoirs, water de-
mands, power station, water source (well field) and pumping
stations transferring the water through the distribution system.
In essence a pumping station (represented by single ”Pump”
units in the model) is a group of individual (fixed or variable
speed) pumps running parallel. As the terminology suggests,
fixed speed pumps can be operated only at a given revolution
number, thus they are often termed as on/off type control ele-
ments. In contrast, variable speed pumps use frequency con-
verter to allow the setting of arbitrary speed within a given range
achieving higher degree of operational freedom.

To derive the water distribution network model the following
assumptions were taken into account:

• The fluid (water) is incompressible.

• The water demands are deterministic, and known a priori.

• Only constant speed pumps are operated in the main distribu-
tion network which is connected with water source by vari-
able speed pumps (considered as a typical water distribution
system configuration).

• The variations of the pump operation points at a given pump
speed are negligible or in other words the flow rates and cor-
responding power consumptions are correlated. Due to the
authors’ best knowledge most of the real water networks can
be modeled in this manner.

The former condition allows the (fixed speed or variable speed)
pumping stations to be represented by a (finite or infinite) set of
flow rates and corresponding energy consumptions. Using this,
the term ”pumping station” is often referred as ”pump” through-
out this paper, however under both phrases one means a set of
individual pumps.

2.1 System dynamics
The dynamics of a water distribution system obeys the law

of continuity which represents mass balance of the nodes of the
network. Using continuity the water volume of a reservoir (Vi,t

[m3]) is determined by the inflows (incoming pump flow: qpump
j,t

[m3/h], well pump flow: qwell
j,t [m3/h]) and the outflows (out-

going pump flow: qpump
j,t [m3] and water demand: d j,t [m3]) at

time t :

Vi,t+1 =Vi,t +

 ∑
j∈C p+

r

qpump
j,t +

∑
j∈Cw

r

qwell
j,t −

∑
j∈Cp-

r

qpump
j,t

1t

−

∑
j∈Cd

r

d j,t ,

(1)

i = {0, 1, . . . , Nres − 1} and t = {0, 1, . . . , T − 1} and C?
r =

C?
r (i), where ? = {p+, w, p−, d} describe the set of hydraulic

elements (incoming pumps, wells, outgoing pumps and water
demands, respectively) connected to the same node.

In operational aspects the energy supply of the pumping sta-
tions plays a key role. The supply topology usually exhibits a
one to more correspondence, that is, a power station typically
feeds a group of pumping stations (typically 2,3). The supplied
electric energy (Ei,t [kWh]) is then expressed as the sum of the
individual power consumptions during time period t

Ei,t =

∑
j∈C p

s

ppump
j,t 1t, i = {0, 1, . . . , Npow − 1} (2)

while the consumed power of a particular pumping station is a
function of the established flow rates:

ppump
j,t = f(qpump

j,t ), j = {0, 1, . . . , Npump − 1}. (3)

2.2 Constraint system
The operation of a water distribution network is limited by the

constraint system which constitutes water reservoir boundaries,
energy consumption limits and pump operational restrictions.
The non-negativity of all model variables is assumed, however,
the method to be presented in the following sections does not
require this restriction.

By having a finite reservoir capacity, the stored water must
not exceed the upper and lower reservoir boundaries on the op-
erational horizon expressed as a general time dependent require-
ment:

V min
i,t 5 Vi,t 5 V max

i,t (4)
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Fig. 1. Network topology model

On the other hand power station usage constraints

Ei,t 5 Emax
i,t , (5)

represent an upper limit on the supplied energy at each time step.
The water exploitation from wells must be ’smooth’. As an in-

dustrial requirement this condition restricts the state of the well
pump to be changed at each time step on the optimization hori-
zon. The switch is possible only at certain time instants and the
pump must keep the established flow rate for a fixed time period
(t ∈ T fix):

qwell
j,t = qwell

j,t−1, j ∈ {0, 1, . . . , Nwell − 1} (6)

2.3 Objective function
Let wt the price of the consumed energy [e/kWh] at time

t which typically incorporates ’cheap’ and ’expensive’ pricing
periods on the optimization time scale. The total operational
cost (T C) is related to the pump energy consumption as:

T C =

T −1∑
t=0

wt

Npow−1∑
i=0

Ei,t

 . (7)

By putting everything together, an optimal control problem is
formulated: determine a suitable pump action on the optimiza-
tion time horizon which minimizes (7) subject to constraints (4)
– (6) satisfying the water demands (1).

2.4 The investigated network
As test-network a small scale sub-system of the water distri-

bution network of Sopron (Hungary) was used (see Fig. 1). By
implementing this small network the obtained optimal control
problem can be efficiently solved although its search space is
still too large for complete enumeration (Section 5.1 and [1]).
There are dozens of deterministic/stochastic approaches which
can get close to the global optimum (or determine the global
optimum) within seconds. For informative comparison some of
those were executed on the test network (results are summarized
by Setions 5.2 and 6.2).

Tab. 1. Flow rates and consumed powers of the constant speed pumps

q0 p0 q1 p1
(state) [m3/h] [kW] [m3/h] [kW]

0 0 0 0 0

1 100 55 320 110

2 420 110 550 220

Tab. 2. Minimum and maximum limits of the reservoirs. (The values with *
were changed for the different optimization tasks.)

t V min
0,t V max

0,t V min
1,t V max

1,t V min
2,t V max

2,t
(period) [m3] [m3] [m3] [m3] [m3] [m3]

0 1700 1700 200 200 1800 1800

1-23 *100 2000 100 3600 100 2000

24 *1600 1800 100 300 1700 1900

The motivation behind this example is not to solve the test net-
work and announce the superiority of our method, but to solve
it with understanding. This system is small enough to track the
state space and approach related quantities which would not be
possible otherwise.

The operational data of the test network is summarized by the
following tables. Table 1 shows the set of possible flow rates and
corresponding power consumptions of pumping stations located
within the main distribution network. Both pumping stations are
built up by constant speed pumps giving discrete control action
sets.

As optimal control problem the one-day (24h) optimal pump-
ing policy of the test network is investigated on hourly basis
(T = 24, 1t = 1h). Using this discretization the reservoir con-
straints (upper and lower capacities) are highlighted in each term
by Table 2 (term t = 0 represents the initial conditions) while
Table 3 shows the user demand and energy tariff. Finally, the
operational constraint on power station restricts the energy sup-
ply which can not exceed Emax

0,t =300 [kWh] on the optimization
time horizon.

The handling of the water feed from well field to main distri-
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bution network is twofold. At first, the water flow of the well
pump is assumed to be known priori (qwell

0,t = 330 [m3/h])
resulting a combinatorial optimization problem where only dis-
crete decisions are available as possible pump actions. This
problem is used as a reference, for comparison see [1] and [2].
Motivated by the industry a mixed–combinatorial problem is
introduced in the second case where (besides discrete delivery
pumps) the flow rate of the well pump is considered as control
variable as well having continuous decision space.

3 Dynamic programming in water resources manage-
ment problems
Using the continuity equation (1) the dynamics of the system

can be represented in state space form:

xt+1 = xt + 1tBut + Ddt (8)

where reservoir water volumes form the state vector
xt = (V0,t , ..., VNres−1,t )

T[m3] while control variable
ut = (qpump

0,t , ..., qpump
Npump−1,t )

T[m3/h] represents the pump

flow rate decisions and dt [m3] denotes the deterministic water
inflows/demands between time t and t + 1. Using the principle
of optimality [20] Bellman and Dreyfus introduced Discrete
Dynamic Programming (DDP) which requires quantized state
space to recursively compute the iterative functional equation
(cost–to–go function)

Jt (xt ) = min
ut

{
ct (ut , xt ) + Jt+1 (xt+1)

}
(9)

to obtain the optimal control sequence {u∗
t }

T −1
t=0 ={

u∗

0, . . . , u∗

T −1
}

which minimizes (7) with respect to the
constraint system (constraint handling is usually incorporated
within the transition cost ct (ut , xt ) by penalty functions). The
need of discretization of the essentially continuous state space
makes this approach insufficient on water network operational
optimization problems having discrete control elements (e.g.
on/off type pumps and/or valves) as follows.

3.1 DDP Difficulties
In general DDP implements the ’pulling’ model [33] which

requires the state space X to be quantized beforehand, that is,
the state nodes must be generated and stored prior to initiat-
ing the computations. When no information is available about
the form of the cost–to–go function Jt (xt ), each state variable
is uniformly quantized [18]. However, there are dozens of
more efficient discretization methods available in the literature
[25–28,30] which may even resolve the curse of dimensionality
(the exponential growth of the number of nodes nodes in X sub-
ject to state space dimension) on specific problem classes [29].

Due to quantization the value of the cost–to–go function is
calculated over a finite set of node points which requires inverted
state dynamics to obtain controls ut as a function of consecutive
states x

¯ t+1, xt . However in deterministic problems if the space

of the possible decisions is discrete mostly no control action ex-
ists for state pairs {xt , xt+1} on a finite grid even for water sys-
tems with simple invertible dynamics.

To overcome the difficulties one may use a similar approach
to (Linear Programming) LP-relaxation which is a widely ap-
plied solution technique in integer programming [21]. Relax-
ation allows the decision variables to have any fractional value
on a given continuous set (usually on the interval [0, 1]). First
an optimal solution is generated allowing each decision vari-
able to be relaxed. Then the relaxed values are systematically
eliminated form the suboptimal solution by recursively solving
subproblems using linear programming methods (LP). This pro-
cedure was introduced by [22] and it is well known as branch
and bound or tree search implementing a key idea of enumer-
ating feasible solutions ”around” the relaxed optimal trajectory
such that the optimal integer solution is found.

In the interpretation, the linear programming must be replaced
by dynamic programming to ensure the finding of global op-
timum at each stage. The high number of subproblems to be
solved until the feasible solution is found makes this approach
cumbersome to employ for practical problems. unpractical.

Other possibility is the use of DDP by parceling the state
space i.e. introducing state cells by partitioning instead of state
nodes by sampling. At this point the problem can be handled
as Markov Decision Process (MDP) [2] utilizing the distribu-
tion of states over partitions. Although the evolution of the sys-
tem is deterministic the transition between partitions is assigned
by probabilities: from one state cell more possible target cells
can be reached by a given control action depending on the po-
sition of the initial state of the system x

¯ t within the state cell.
The transition probability matrix is simple to compute (e.g. by
Monte Carlo simulation), however it may consume remarkable
CPU time even for simple systems depending on partition den-
sity. The resulting MDP problem is then solved by stochastic
dynamic programming and the obtained solution is back–tested
on the original deterministic problem.

On the other hand, partitions can be simply treated as sink
cells by keeping only the best candidate solution within a cell at
time t (all others are removed causing remarkable information
loss) [24]. Besides that, the method is simple to implement how-
ever, it usually obtains solution far from global optimum when
coarse discretization is used. Like MDP approach, the finding of
global optima is guaranteed by a sufficiently dense partitioning
(number of partitions approaches to infinity) in which case the
problems grow far beyond the capabilities of digital hardware.

Another alternative to resolve the state space discretization
problem is the forward generation of the state nodes on the opti-
mization time horizon simply by using the sate transition func-
tion (8) and feasible decision sequences. The method only gen-
erates states that can be reached from a given initial state (or
set of initial states) [33]. The state generation as well as dy-
namic programming algorithm (cost–to–go recursion) involve
substantial computation therefore their sequential application is
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Tab. 3. Water demand data and energy tariff t 0 1 2 3 4 5 6 7 8 9 10 11

d0,t [m3] 35 15 14 24 29 39 53 65 65 55 52 53

d1,t [m3] 196 81 76 133 165 216 296 362 363 308 292 295

wt [e/kWh] 1 1 1 1 1 1 1 1 2 2 2 2

t 12 13 14 15 16 17 18 19 20 21 22 23

d0,t [m3] 61 60 53 53 57 59 60 72 71 69 52 34

d1,t [m3] 343 334 298 296 319 330 336 403 398 384 288 189

wt [e/kWh] 2 2 1 1 1 1 2 2 2 1 1 1

computationally inefficient.
To overcome the computational difficulties a new dynamic

programming approach is introduced.

4 Dynamic programming in control domain
The essential idea the proposed technique replaces the origi-

nal state space and implements discrete dynamic programming
in a series of pseudo states considering symmetries. The pseudo
state variable is defined over the control domain where symme-
tries are introduced by the invariance of the original state x to
the permutations of a control sequence. We call this concept as
permutational invariance.

The permutational invariance of a system represented by a
general nonlinear dynamics

xt+1 = ft (xt , ut ), t = 0, . . . , T − 1 (10)

where xt = (x1,t , . . . , xn,t )
T is the state vector and ut =

(u1,t , . . . , um,t )
T denotes the control vector is defined as fol-

lows.
Let 0 j,t denote the set of all possible permutations of the

control sequence (the j th component of the control vector){
u j,τ

}t
τ=0 = {u j,0, u j,1, . . . , u j,t } by time t and let ϒt =

01,t × 02,t × · · · × 0m,t be the set of all possible control ac-
tions over the permutation sub–sets by time t , that is,

ϒt =

{ ({
u1,τ

}t
τ=0 , . . . ,

{
um,τ

}t
τ=0

)
|
{
u j,τ

}t
τ=0

∈ 0 j,t , j = 1, . . . , m
}
.

(11)

By determining all possible permutation sets, the decision space
becomes partitioned: Dt =

⋃Np,t
j=1 ϒ j,t where Dt is the set of

all possible control sequences by time t and Np,t denotes the
number of permutation sets at time t . Applying the controls
{u(1)

τ }
t
τ=0 and {u(2)

τ }
t
τ=0 for a system represented by (10) let x(1)

t+1

be the obtained state (x(2)
t+1 respectively). The underlying system

is called permutationally invariant if

x(1)
t+1 = x(2)

t+1, (12)

for every {u(1)
τ }

t
τ=0, {u

(2)
τ }

t
τ=0 ∈ ϒ j,t pairs (∀ j ∈ {1, . . . , Np,t })

and t ∈ {0, 1, . . . , T −1}. In other words, control actions which
are members of the permutation set ϒ j,t map the system into the
same state.

By using the integrator form of the system dynamics (8)

xt+1 = x0 +

t∑
τ=0

1tBuτ +

t∑
τ=0

Ddτ (13)

the commutative operations applied to the control vector se-
quence highlights the permutational invariance. In other words,
the water volume of a reservoir at time t depends on the total
delivered water (cumulative defined using the control variable)
rather than the schedule itself.

Using permutational symmetries let us define the pseudo state

ξξξ t =

t∑
τ=0

1tuτ (14)

denoting the total delivered water by time t . By recursively com-
puting the iterative functional equation using pseudo states

Ĵt+1(ξξξ t+1) = min
ut

{
ĉt (ut , ξξξ t ) + Ĵt (ξξξ t )

}
(15)

the above defined water network optimal control problem can be
solved achieving the global optimum. Here the forward iteration
of (15) is preferred due to the setup of the optimization problem:
besides the initial state x

¯0 at the end of the optimization period
usually a set of the achievable states (target set) is given instead
of a particular target state xT .

By substituting the pseudo state into (13) we obtain the dy-
namics

xt+1 = x0 + Bξξξ t +

t∑
τ=0

Ddτ (16)

connecting the domains of the original x ∈ X and pseudo states
ξξξ ∈ 8. In combinatorial problems 8 is essentially discrete
where the nodes are defined by the permutations of the control
sequences. For the recursion of (15) the ’reaching’ dynamic pro-
gramming model [33] is applied, which generates the states and
determines the optimal decisions simultaneously. As great ben-
efit the handling of permutations and the forward recursion can
be simply managed by using basic operations (insert, find, com-
pare, etc.) on arrays.

Besides the simple implementation the introduced approach
solves the discretization problem of the sate space as well.
Through dynamics (16) the discrete pseudo state space simul-
taneously introduces a grid on X as well. The nodes are intro-
duced only on the achievable subset of the original state space
at time t by a non uniform discretization. In what follows com-
puter resources are not waisted by introducing nodes on X be-
forehand which can not be reached at time t . For each intro-
duced node on state space there is a corresponding control ac-
tion which can be observed as a straightforward corollary of the
definition of the pseudo state variable.
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4.1 Extended reservoir constraint system
Using problem specific information further reduction on the

size of the search space of the optimization problem can be
achieved.

Reservoir volume constraints are usually stricter at the end of
the optimization period (t = 24) than before (t < 24) result-
ing a ’sudden jump’ in constraint system (see Fig. 2). This
produces a set of states – called dead storage – from which the
final constraint can not be satisfied by any possible pump ac-
tion(s). By implementing smooth reservoir constraints in time,
the candidate solutions are not allowed to evolve into dead stor-
age spaces. This ensures the avoiding of the creation of such
state nodes from which it is not possible to reach the target set.
The following equations were used to find a time dependent cor-
ridor as extended constraint system for reservoirs:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

500

1000

1500

2000

Time [h]

W
a

te
r 

le
v
e

l 
[m

3
]

 

 

Dead storage

Initial condition

Maximum

Minimum

Time−dependent minimum

Fig. 2. Dead storage of Water Reservoir(2)

V min
0,t = max( 100, V min

0,t+1 +330 )

V max
0,t = min( 2000, V max

0,t+1 +330 +420)

V min
1,t = max( 100, V min

1,t+1 +d0,t −420)

V max
1,t = min( 3600, V max

1,t+1 +d0,t +550)

V min
2,t = max( 100, V min

2,t+1 +d1,t −550)

V max
2,t = min( 2000, V max

2,t+1 +d1,t )

(17)

which must be computed backward (t=23,. . . ,1). For example
Fig. 2 shows the extended constraint system for Water Reser-
voir (2).

5 Water network optimization as combinatorial prob-
lem
As indicated in Section 2.4, first, the optimal pump schedule

of the reference network with fixed well inflow is investigated.
The system evolves according to

xt+1 = xt +

 −1 0
1 −1
0 1

ut +

 1 0 0
0 −1 0
0 0 −1

dt (18)

where x0 = (1700, 200, 1800)T , dt = (330, d0,t , d1,t )
T and

ut =

(
u0,t ∈ {0, 110, 420}

u1,t ∈ {0, 320, 550}

)
(19)

The goal is to minimize the total cost of the operation

T C =

23∑
t=0

[
(6.40 · 10−1)u0,t − (9.00 · 10−4)u2

0,t

+ (3.16 · 10−1)u1,t + (8.65 · 10−5)u2
1,t

]
wt

(20)

subject to reservoir constraints xmin
t ≤ xt ≤ xmax

t and energy
supply limitation:

(6.40 · 10−1)u0,t − (9.00 · 10−4)u2
0,t + (3.16 · 10−1)u1,t

+ (8.65 · 10−5)u2
1,t ≤ 300

(21)

Functions (20) and (21) were derived using second order inter-
polation on corresponding data pairs summarized by Table 1.

The obtained optimal control problem has two discrete de-
cision variables giving 9 possible control actions at each time
step. By going further in time the number of solution candi-
dates explodes far beyond the capabilities of brute–force search
techniques due to exponential growth.

5.1 Magnitude of the search space
Although the topology of the test network is conceptionally

simple the problem cannot be solved by exhaustive (brute–force)
search. Indeed the size of the search space (number of possible
solutions) equals (32)24

≈ 1023 (2 pums, 3 possible states, 24
terms). Let us make an estimation on the total computational
time required by complete enumeration of the search space.
Making an irrational assumption that 1015 candidate solutions
can be evaluated in one second then the total time required for
finding the optimum is still 2.529 years. However, 1015 candi-
date solutions in one second needs approximately 105 teraflop
(floating point operations per second), while the world’s fastest
supercomputer’s (Tianhe-1A) performance is 2.5 × 103 teraflop
[4].

5.2 Results
Using the introduced dynamic programming technique the

size of the problem is highly scaled down. Fig. 3 depicts the
exponential growth of the problem size (number of possible so-
lutions) in time (appears as linear function on the logarithmic
scale). Great reduction is achieved by exploiting permutational
symmetries resulting 18 magnitude of order at the end of the op-
timization period. The constraint system further decreases the
size of search space, obtaining it in enumerable size at 24th time
step guaranteeing the finding of the global optimum.

In contrast to the original constraint system the relaxed reser-
voir constraints appear where the dead storage forms (usually
at the end of the optimization horizon) obtaining additional re-
duction (about 1–2 magnitude of order) which is a significant
achievement even in this simple case. Note that the size of the
dead storage depends on the initial condition.

On the other hand, the size of the pseudo state 8 grows in time
unlike the state space X . For comparison the state space was
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Fig. 3. Number of states for different ’discretization’ methods

uniformly quantized using 100 cells on each coordinate consid-
ered as a sufficient discretization scale required to obtain satis-
factory results by ”conventional” dynamic programming.

The introduced method was implemented under C++ and ex-
ecuted on a computer equipped with Intel Core 2 Duo T6600
CPU (2.2 GHz) without parallelization. The achieved optimal
cost was 5830 ewhich is obviously better than the best solution
found by the genetic algorithm (5865 e, [1]) or by a conven-
tional DP approach (6170 e, [2]). The optimization process
consumed about 0.02-0.03 second CPU time, the corresponding
optimal schedule is shown in Fig. 4.

The implementation of the reservoir constraints in pseudo
state space is accomplished by using the integrator form (13)
and rearranging the system equation (18)

(
xmin

t+1 −

t∑
τ=0

Ddτ − x0

)
≤

 −1 0
1 −1
0 1

ξξξ t

≤

(
xmax

t+1 −

t∑
τ=0

Ddτ − x0

)
,

(22)

where the left and right hand side of (22) can be pre–calculated
at the beginning of the optimization process.

In this particular example, the reservoir constraint system rep-
resents a ’cube’ in the 3 dimensional state space X which is
transformed into a (general) polygon lying within the 2 dimen-
sional pseudo (state) space 8. This polygon is formed by a rect-
angle (min and max limits of Reservoirs 0 and 2 which are con-
nected only with one pump) whose corners are cut off by the
constraints on Reservoir 1 appear as 45 degree rotated cutting
edges in 8, see Figs. 5 and 6. This particular reservoir is af-
fected by two pumps (incoming and outgoing): the signed sum
of the delivered water by pump 0 and 1 located within the main
distribution network.

On the other hand the power station constraint handling is
managed simply by eliminating the candidate solution form in-
ventory which does not satisfy (21). Fig. 5 shows the optimal
trajectory and constraint system over pseudo state space.

Using a constraint system ’slice’ in pseudo space at time pe-
riod 23 the shape of the cost–to–go function is shown in Fig. 6.
It is interesting to note that the cost–to–go function is rugged
(regardless to energy price peaks) although the objective func-
tion (20) implements a smooth, quadratic formula. Ruggedness
appears due to the combinatorial nature of the problem: the fi-
nite control set.

Finally a comparison is given in Table 4 summarizing the
obtained results by different optimization approaches. The ta-
ble targets to give information on how the solvers respond to
the constraint system. The investigation serves only informative
purposes; all tested solvers were used with their default setup-
parameters. As the capacity of a water reservoir is becoming
narrower the number of the feasible solutions approaches zero.
Stricter constraint system enhances the performance of DP (less
nodes to be considered) while introduces challenges for other
solvers. To implement this, three different optimization prob-
lems were introduced beyond the original task by decreasing the
useful capacity of Reservoir 0. These setups were then solved
by world-leader general purpose optimization methods as well,
which are freely available on the internet at NEOS’ homepage
[3]. The consumed time was in the same order of magnitude
as in the case of the authors’ solver. The source code of NEOS
model files (implemented under GAMS) and DP approach can
be downloaded from [17].

6 Water network optimization as mixed-combinatorial
problem
Motivated by the industry, here the flow rate of the well pump

is considered as control variable as well having continuous de-
cision space. The dynamics of the systems can be written

xt+1 = xt +

 −1 0 1
1 −1 0
0 1 0

ut +

 0 0
−1 0

0 −1

dt (23)

where x0 = (1700, 200, 1800)T , dt = (d1,t , d2,t )
T and

ut =

 u0,t ∈ {0, 110, 420}

u1,t ∈ {0, 320, 550}

u2,t ∈ [0, 500]

 . (24)

The water delivery of the well pump is restricted by constraint
(6) on the optimization horizon. In what follows the control se-
quence {u2,t }

23
t=0 must have the following pattern (the flow rates

are adjusted for billing periods):

{u2,t }
23
t=0 = {330, 330, 330, 330, 330, 330, 330, 330︸                                                ︷︷                                                ︸,

q1, q1, q1, q1, q1, q1︸                      ︷︷                      ︸, q2, q2, q2, q2︸            ︷︷            ︸,
q3, q3, q3︸       ︷︷       ︸, q4, q4, q4︸       ︷︷       ︸}.

(25)

where the flow rates q1, . . . , q4 can take any value on the interval
[0, 500]. The corresponding objective function and constraint
system were earlier defined in Section 5.
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Tab. 4. Comparison of the optimal solutions
found by the NEOS solvers and the proposed DP tech-
nique on different test problems (nf. = feasible solu-
tion not found).

V min
0,1..23 V min

0,24 Cost, NEOS solvers [e] Cost [e]

[m3] [m3] Cbc Glpk Gurobi MOSEK scip XpressMP DP

100 1600 5830 5920 6215 5940 5975 5830 5830

1000 1600 5940 6005 5940 6120 5975 5920 5920

1600 1600 6370 6170 6370 6395 6135 6140 6115

1700 1700 nf. nf. nf. nf. nf. nf. nf.
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Fig. 4. Optimal schedule: 5830 e. Peak charging periods (2 e/kWh) are
gray shaded while off–peak periods (1 e/kWh) are colourless. Thin lines
represent constraints.

Fig. 5. Optimal trajectory on the pseudo state space. The grey shaded
polygons express the evolution of reservoir constraints in time. The projection
of the trajectory can be seen on the marginal planes.

Tab. 5. Comparison of the optimal solutions
found by DP and DP-LP. The best solution was type-
set in bold numbers.

V min
0,1,...,23 V min

0,24 Cost [e], DP (Discretization level below.) Cost [e]

[m3] [m3] 4 5 6 7 10 18 51 DP-LP

100 1600 5755 5755 5755 5755 5755 5755 5755 5755

1000 1600 5920 5810 5810 5810 5810 5810 5810 5810

1600 1600 6115 6030 5920 5920 5920 5920 5920 5920

1700 1700 failed 6295 6245 6245 6245 6085 6085 6085
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Fig. 6. Cost–to–go function at time period 23. Top: the original problem.
Bottom: the energy tariff is uniform (1 e/kWh on the optimization horizon).
Due to finite control action sets the shape of the cost–to–go function is rugged

(regardless to energy pricing) even though the objective function is a smooth,
quadratic formula.

Tab. 6. Comparison of the optimal solutions
found by the NEOS solvers and DP-LP. The best so-
lution was typeset in bold numbers.

V min
0,1..23 V min

0,24 Cost, NEOS solvers [e] Cost [e]

[m3] [m3] Cbc Glpk Gurobi MOSEK scip XpressMP DP-LP

100 1600 5830 6025 5830 5940 5755 5830 5755

1000 1600 5940 6190 5810 5940 6130 6100 5810

1600 1600 6210 6245 6085 6250 6085 5975 5920

1700 1700 6470 6520 6085 6305 6085 6085 6085
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Fig. 7. Optimal schedule: 5755 e. Peak charging periods (2 e/kWh)
are gray shaded while off–peak periods (1 e/kWh) are colorless. Thin lines
represent constraints.
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6.1 Modified algorithm for problem solving
To handle the continuous control variable (besides the dis-

crete ones) the most obvious technique is the discretization of
the well’s flow range and the use of the obtained discrete set
as control domain for the well pump. This introduces a pure
combinatorial optimization problem which can be solved by the
introduced dynamic programming approach (referred as DP).
On the other hand discretization of the domain of the contin-
uous variable(s) is not beneficial on real size networks due to
the curse of dimensionality: the exponential growth of the size
of the control domain with sub–domain cardinalities.

To overcome the difficulties an alternative solution technique
is proposed observing that the well pump operation and the oper-
ation of the main distribution network can be treated separately
[19]. Using this as key idea, first a candidate solution is gener-
ated for the main distribution network (just like in combinatorial
case) by removing the constraint on the joint reservoir (Reser-
voir 0 in this particular example). This includes only the pumps
of the main distribution network allowing the stored water in the
joint reservoir to be outside the boundaries. At the second step
a simple linear programming technique (LP solver) seeks for
the possible well pump operation whether the constraints on the
joint reservoir can be satisfied or not determining the feasibility
of the given candidate. Feasible solutions are used to calculate
the value of the cost–to–go function while infeasible ones are
removed from candidate solution inventory. By repeating this
process the dynamic programming recursion continues until the
termination criteria is met.

Besides the simple implementation the main benefit is the un-
affected search space, that is, the water supply of the main distri-
bution network does not increase the complexity of the problem
thus it is defined only by the operation of the main distribution
network. The approach is able to handle numerous well inputs
providing easy interpretation capabilities for real size networks
as well. It assumes that the energy used for supply is not in-
cluded in the objective function. This assumption however does
not contradict with real life since well pumps usually represent
less than 5% of the total energy consumption of a water distribu-
tion network. This small fraction of the total energy required by
the water supply of the main distribution network can be simply
neglected in the corresponding model.

On the other hand the achieved benefits come with a price.
This makes the presented solver an approximate dynamic pro-
gramming approach. ’Approximate’ reflects to the fact that it
does not ensure the finding of the global optimum of the under-
lying problem, one may get it however it is not guaranteed. We
refer to this method as DP–LP.

The comparison of the obtained optimal control policies of
different well handling setups (Fig. 7 and 4) highlight the fact
that greater operational flexibility on well fields allows better
cost reduction.

6.2 Results
First the detailed dynamic programming techniques (DP and

DP-LP) are compared on problems defined in Section 5. Un-
der DP the operational range of the well pump was discretized
obtaining sparser and denser setups for comparison. The well
pump control set configurations were as follows: {0, 165, 330,
500}[m3/h], {0, 165, 330, 415, 500}[m3/h], {0, 110, 220, 330,
415, 500}[m3/h], {0, 80, 160, 245, 330, 415, 500}[m3/h], {0,
55, 110, ..., 440; 500}[m3/h], {0, 30, 60, ..., 480; 500}[m3/h],
{0, 10, 20, ..., 500}[m3/h] obtaining 4, 5, 6, 7, 10, 18 and 51
discretization levels on well pump operating range.

Table 5 summarizes the results. The conclusion is obvious:
stricter constraint system requires finer discretization on the well
pump operational range to achieve the global optimum. The
finer the discretization is the more flexible the operation of the
well becomes. In this particular example representing the well
pump control set by 18 control actions seemed satisfactory. On
the other hand DP-LP has obtained the attainable optimum as
well on each problem instances.

In contrast Table 6 shows the achieved best solutions by
NEOS solvers compared to DP-LP. It provides only an infor-
mative comparison on the performance of the approximate dy-
namic programming with respect to NEOS solvers on this par-
ticular problem. Finally the optimal schedule corresponding to
the original problem (Tab. 6 first row) can be seen in Figure 7.

7 Conclusions and further work
A novel optimal control approach was introduced for opera-

tional optimization of water distribution networks having on/off
type controls (discrete active hydraulic elements) and applied
to a small scale sub-network of the water supply and distribu-
tion network of Sopron (Hungary). The approach resolves the
problem of state space discretization and allows dynamic pro-
gramming to be used as optimal control tool on combinatorial
pump scheduling problems. By observing permutational sym-
metries in the dynamics of water distribution networks a series
of pseudo states formed over control domain are used to recur-
sively compute the Bellman equation replacing the original state
space based dynamic programming procedures.

As a great benefit the finding of global optimum on combi-
natorial problems is always guaranteed however in its current
form the usability is restricted to small and medium sized water
networks due to the curse of dimensionality. Besides combi-
natorial optimization a combined dynamic programming–linear
programming (DP–LP) technique was invoked to handle contin-
uous decisions as well represented by the water feed of the main
distribution network. By using this technique the cardinality of
the control domain remains unchanged while its dimension is in-
creasing by additional continuous control variables (represented
by well pumps). Thus the complexity of the problem is deter-
mined only by the main distribution network. By partially re-
solving the curse of dimensionality numerous well fields can be
handled. In addition these benefits are coupled with the ease of
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implementation on real size networks. On the other hand DP–LP
approach does not guarantee the finding of the global optimum
on mixed–combinatorial problems besides that a great potential
was demonstrated by the application.

All things considered the authors suggest further studies on
the utilization of DP–LP on real size water distribution net-
works.
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31 Bene J, Hős Cs, Computation of Cost-optimal Pump Scheduling for Re-

gional Waterwork using Genetic Algorithm, Fifth Conference on Mechanical
Engineering (Gépészet 2006) (Budapest, Hungary, May 25, 2006).

32 , A Novel Constraint Handling Technique for Genetic Algorithm-

based Pump Schedule Optimization, Seventh Conference on Mechanical En-
gineering (Gépészet 2010) (Budapest, Hungary, May 25, 2010).

33 Jensen P A, Bard J F, Operations research: models and methods, Wiley,
2003. doi:10.2307/2344020.

34 Koncsos L, Balogh E, A simulation-optimisation methodology for de-

signing the operation of emergency reservoirs in the Hungarian Tisza

basin, Periodica Polytechnica Civil Engineering 54 (2010), no. 2, 101-106.
10.3311/pp.ci.2010-2.05.

35 Darabos P, Software package for controlling water supply systems, Period-
ica Polytechnica Civil Engineering 41 (1997), no. 2, 135-145.

Water network operational optimization 612012 56 1

http://www.neos-server.org
http://www.neos-server.org
http://www.cbc.ca/news/technology/story/2010/10/28/ technology-china-fastest-supercomputer.html
http://www.cbc.ca/news/technology/story/2010/10/28/ technology-china-fastest-supercomputer.html
http://www.artificialevolution.net/
http://www.artificialevolution.net/
http://portal.acm.org/citation.cfm?id=1377053.1377350

	Introduction
	The water distribution system model
	System dynamics
	Constraint system
	Objective function
	The investigated network

	Dynamic programming in water resources management problems
	DDP Difficulties

	Dynamic programming in control domain
	Extended reservoir constraint system

	Water network optimization as combinatorial problem
	Magnitude of the search space
	Results

	Water network optimization as mixed-combinatorial problem
	Modified algorithm for problem solving
	Results

	Conclusions and further work

