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Abstract

The flutter instability analysis of a bridge deck is based on

flutter derivatives determined by wind tunnel tests on a section

model having two degrees of freedom, heave and pitch (hereafter

referred to as the heave–pitch model). The imperfections and

the eccentricity that arise during the forced sinusoidal vibra-

tion of the section yield erroneous derivatives. This paper stud-

ies the relationship between these errors and the imperfections.

Rotational excitations around two eccentric axes (hereafter re-

ferred to as the pitch–pitch model) of the section model show

that the determined derivatives are less error-prone to imper-

fections. Determining the derivatives, like angular speed flutter

derivative A∗
2

for the aeroelastic torsion moment, gives a more

accurate value, so the flutter instability analysis yields a more

accurate estimate of the flutter wind speed. Numerical values

are presented for the case of a thin airfoil and a bluff bridge

cross section.
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1 Introduction

The considerable interaction of aerodynamic forces and struc-

tural motions is called aeroelasticity. Flutter refers to the aeroe-

lastic phenomenon where structural motions become oscillatory

with amplitude monotonically increasing in time, which can

even lead to the collapse of the structure (in the wide signi-

fication of flutter [1]). Flutter instability analysis of a bridge

deck begins with wind tunnel investigation of flutter deriva-

tives. These derivatives are used in both simplified and com-

plex verification methods to determine the structure’s aeroelas-

tic behaviour and the flutter wind speed, thus the accuracy of

the determined derivatives is primordial. This raises the ques-

tion of the accuracy of these terms, especially with regard to

model errors. Nowadays computational fluid dynamics (CFD)

simulations tend to give acceptable results [8] and, in the near

future, it seems to surmount the issues present in wind tunnel

tests and will be the preferred solution to the flutter analysis.

The flutter analysis of a recently built extradosed bridge [4]

raised the need to investigate the assumed errors involuntary

present in the wind tunnel test driven by a robot arm. The anal-

ysis of the effects of some geometric imperfections and eccen-

tricity is the motivation of the present paper.

Some hereafter defined imperfections that can occur in a wind

tunnel test, due to geometric constraints and quality of the used

test equipment, are studied is this paper. These imperfections

have their effects on the determined derivatives, which will thus

be prone to be erroneous. Two kinds of errors are analysed for

the case of a wind tunnel test set-up with vertical and angular

displacement degrees of freedom (hereafter referred to as the

heave–pitch model): the eccentricity of the rotation centre and

the centre of gravity of the section; and the rotation of the sec-

tion during vertical displacement excitation. These errors can be

related to the geometry of the model and/or to mistaken theoreti-

cal assumptions concerning the configuration, hereafter referred

to as the imperfections.

The study of the considered imperfections uses a newly devel-

oped two degrees of freedom (DOFs) description of the section.

This model is used in the analysis of the errors due to the im-

perfections and in the development of a test configuration where
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the section is forced by two distinct rotations around two given

axes (hereafter referred to as the pitch–pitch model). This set-

up yields new derivatives, from which the derivatives defined to

the centre of gravity can be calculated. Imperfections of this

model are also studied and presented, which yield derivatives

less prone to error.

Eccentric flutter models can also be used for power genera-

tion, as is presented in a feasibility study [2].

2 Description of the pitch–pitch section model

Consider a symmetric section of a bridge deck on which cen-

tre of gravity aeroelastic vertical lift force Lh and torsion mo-

ment Mα per unit length act due to the oncoming wind with

speed U. The motion of the section subjected to these aeroelas-

tic forces is described by equations [6]

mḧ + chḣ + khh = Lh

Iαα̈ + cαα̇ + kαα = Mα (1)

where h and α denote the vertical deflection (heave) and tor-

sional rotation (pitch) of the centre of gravity (c.g.) of the sec-

tion. The section has m and Iα as the mass and mass moment

of inertia per unit length, respectively, ch and cα as the viscous

damping constants according to the two movements, kh and kα

as the stiffness coefficients of the heaving and pitching modes,

respectively. Based on analytical theories of Theodorsen [7] and

Klöppel et al [5] the aeroelastic forces can be written in a form

with force coefficients in function of the motion of the section.

These force coefficients have been rewritten in a new form by

Scanlan [6]. This latter formulation is used in this paper.

γU

c.g.
δ

ηB/2ηB/2

G
G′

D′

D

B/2B/2

Fig. 1. Section model with two rotational degrees of freedom: γ and δ

Consider the same section with two independent rotational

degrees of freedom (fig. 1). Define the points G and D in

the horizon of the centre of gravity (c.g.) spaced at distance

ηB/2 from the latter to windward and leeward side, respectively,

where B/2 denotes the half-width of the section. Denote these

same two points by G′ and D′ in a displaced position of the sec-

tion. Defining by γ the angle of the displaced line G–D′ and by δ

the angle of the line D–G′ to the original horizon results in a well

determined description of the displaced position. These two an-

gles will be used as the two degrees of freedom (pitch–pitch

DOFs) of the section. There exists a bijective relation between

the DOFs of the heave–pitch model and those of the pitch–pitch

model supposing small displacements.

The force and moment equilibrium written to the windward

rotation axis (denoted by G) yields a lift force equivalent to the

one acting at c.g. of the section (Lγ = Lα) and a moment (Mγ)

which contains the aeroelastic moment Mα acting at c.g. and the

lift force Lh multiplied by the eccentricity. Both relations can be

organized to obtain coefficients for the incidences γ and δ and

angular speeds γ̇ and δ̇. These coefficients represent physical

phenomena similar to the derivatives of the heave–pitch model,

so they can be treated as derivatives and denoted with second

indexes γ and δ, respectively to the DOF considered. Writing

the equilibrium to the leeward axis D gives a relationship for

lift force Lδ and moment Mδ analogue to the previously defined

ones. These relationships are

Lγ = Lδ =
1

2
ρU2B

(
KH∗2γ

γ̇B

U
+ K2H∗3γγ + KH∗2δ

δ̇B

U
+ K2H∗3δδ

)
Mγ =

1

2
ρU2B2

(
KA∗2γ

γ̇B

U
+ K2A∗3γγ

+K(A∗2δ + ηH∗2δ)
δ̇B

U
+ K2(A∗3δ + ηH∗3δ)δ

)
Mδ =

1

2
ρU2B2

(
K(A∗2γ − ηH∗2γ)

γ̇B

U
+ K2(A∗3γ − ηH∗3γ)γ

+KA∗2δ
δ̇B

U
+ K2A∗3δδ

)
(2)

where K =
2π f B

U
is the reduced circular frequency of the motion

of the section, f is the frequency of the oscillating motion and

B is the width of the section, U is the oncoming wind speed, ρ

is the mass density of the air, and, assuming the linearity of the

aeroelastic forces, the newly defined A∗
i j

and H∗
i j

(i = 2, 3; j =

γ, δ) derivatives have a bijective relationship with angular and

heave derivatives A∗
i

and H∗
i

(i = 1..4), respectively, defined to

the c.g. This relationship is of the form

A∗2γ =
H∗

1
η2

4
+

H∗
2
η

2
+

A∗
1
η

2
+ A∗2

A∗3γ =
H∗

3
η

2
+

H∗
4
η2

4
+ A∗3 +

A∗
4
η

2

H2γ =
H∗

1
η

2
+ H∗2

H3γ = H∗3 +
H∗

4
η

2
(3)

and

A∗2δ =
H∗

1
η2

4
−

H∗
2
η

2
−

A∗
1
η

2
+ A∗2

A∗3δ = −
H∗

3
η

2
+

H∗
4
η2

4
+ A∗3 −

A∗
4
η

2

H2δ = −
H∗

1
η

2
+ H∗2

H3δ = H∗3 −
H∗

4
η

2
(4)

The derivatives are functions of the reduced wind speed

Ured = U
f B

.

This model will be used to investigate the previously de-

scribed imperfections on the classic heave–pitch section model.
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3 Imperfections and errors resulted in the heave–pitch

section model

Consider a heave–pitch section model under a wind-tunnel

investigation. During the test the model is excited with only one

of its DOFs at a time (a sinusoidal heaving motion h and twist

motion α alternately).

Suppose geometric imperfections of the heave–pitch model in

two ways; in the case of rotational and of heave forced vibration.

In the case of the rotational excitation define the imperfection as

an eccentricity η B
2

of the excitation axis to the c.g. of the section.

This geometric imperfection could also be treated as a wrong

assumption concerning the DOFs of the model. During the wind

tunnel test the assumption that no heave occurs holds (h = 0),

while the eccentricity makes the heave motion appear. The exact

value of the aeroelastic forces acting on the section are the ones

defined in the previous section. With the false assumption the

determined derivatives contain errors which are

∆H∗2 =
H∗

1
η

2

∆H∗3 =
H∗

4
η

2

∆A∗2 =
H∗

1
η2

4
+

H∗
2
η

2
+

A∗
1
η

2

∆A∗3 =
H∗

3
η

2
+

H∗
4
η2

4
+

A∗
4
η

2
. (5)

The relative errors of these derivatives are shown in figures 2

for a thin airfoil [3], [6]. The relationships of the errors in the

derivatives to the imperfection are linear for some derivatives

and non-linear for others, the magnitudes of the errors are in

the order of the other derivatives than the one examined, and

are functions of the reduced wind speed. The relative errors

depend on the derivatives themselves, so they have a complex

relationship with the imperfection.

The relative error in the angular speed derivative H∗
2

(fig. 2

(a)) for the lift force is linearly dependent on the eccentricity

η, but at the zero point of the derivative the relative error pro-

duces huge values. This implies the difficulty in determining the

real zero point of the derivative. The angular derivative for the

lift force contains a large relative error in the precious small re-

duced velocity domain. Precious in the sense of an aeroelastic

instability investigation.

The relative error in the angular speed derivative A∗
2

(fig. 2

(c)) is non-linearly dependent of the imperfection, with higher

order dependency at small reduced velocities. The non-linear

relationship is present at a higher value of the imperfection fac-

tor than those shown in the diagram. Due to the fact that many

simplified instability analyses rely on this sole derivative the ap-

plied analysis’ result is also affected by the imperfection, which

leads to inaccurate flutter wind speed. One of the main purposes

of a new model configuration is to diminish this error and assure

reliable instability analysis results. The derivative A∗
3

(fig. 2 (d))

is almost constantly sensitive to the imperfection at all reduced

velocities, except for the small reduced velocity range where rel-

ative error is non-linear and is acceptable for small eccentricity

only.

For the case of the heave excitation of the model the assump-

tion is that no rotation occurs during the test series. As the im-

perfection supposes a small rotation α = ν
B/2

h of magnitude lin-

ear to the heave excitation, analysis steps analogue to the afore-

mentioned ones produce errors in the heave flutter derivatives

such as:

∆H∗
1

H∗
1

=
H∗

2

H∗
1

2ν

B

∆H∗
4

H∗
4

=
H∗

3

H∗
4

2ν

∆A∗
1

A∗
1

=
A∗

2

A∗
1

2ν

B

∆A∗
4

A∗
4

=
A∗

3

A∗
4

2ν (6)

The errors are linear to the imperfection factor ν, with magni-

tude increasing as a function of the reduced wind speed. The

model geometric size B also affects the uncertainties in the

derivatives H∗
1

and A∗
1

in a logical way, the larger the model size

the more accurate the results produced. As the orders of A∗
1

and

A∗
2
, and H∗

1
and H∗

2
are the same, the error is easy to handle.

On the other hand the same is not true for the remaining two

derivatives as there is an order of magnitude difference between

the derivative and the one that its error is related to. As there

is a zero point in H∗
4

its relative error gets unacceptably high at

reduced velocities above the zero point.

4 Errors in the pitch–pitch section model

Similarly to the heave–pitch section model the determination

of the derivatives of the pitch–pitch section model in a wind-

tunnel investigation is to be performed in two steps according

to the two degrees of freedom. The section model is excited

by sinusoidal rotations in its DOFs alternately. In the case of

an oscillating rotation around the windward rotation point the

assumption of having no rotation around the leeward axis holds

(case of excitation in γ and δ = 0). The recorded lift force and

torsion moment around the axis in point G give the derivatives

with index γ. The same steps apply for the determination of

derivatives corresponding to the rotation around the axis in point

D and result in derivatives with index δ.

The investigation of the errors in the measured derivatives due

to the imperfection in the pitch–pitch model leads to the follow-

ings. Let the imperfection be defined as an unexpected move-

ment of the fixed point described by a rotation δ = λγ in the

non-excited DOF. The errors of the derivatives shall be:

∆A∗2γ = λ(A∗2δ + ηH∗2δ) ∆A∗3γ = λ(A∗3δ + ηH∗3δ)

∆H∗2γ = λH∗2δ ∆H∗3γ = λH∗3δ (7)

Similar relations can be concluded for the other pitch excita-

tion test series, with an independent λ factor for this case. The

errors in the derivatives are given as:

∆A∗2δ = λ(A∗2γ − ηH∗2γ) ∆A∗3δ = λ(A∗3γ − ηH∗3γ)

∆H∗2δ = λH∗2γ ∆H∗3δ = λH∗3γ (8)
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(a) Relative error in H∗
2

(b) Relative error in H∗
3

(c) Relative error in A∗
2

(d) Relative error in A∗
3

Fig. 2. Relative errors in
∆H∗

i

H∗
i

and
∆A∗

i

A∗
i

(i = 2, 3) due to imperfect eccentricity η (case of an thin airfoil)

(a) Relative error in derivative

A∗
2γ

(b) Relative error in derivative

H∗
2γ

Fig. 3. Relative errors in angular speed derivatives with imperfection factor magnitude of λ = 0, 0.05, 0.1 (light grey, mid-grey, black, resp.)

Without presenting diagrams of the relative errors in all

derivatives the remarks are the following for the case of a thin

airfoil. The relative errors in the derivatives A∗
2i

(i = γ, δ) (fig. 3

(a)) are only present in the region of small reduced wind speeds.

These errors decrease with increasing eccentricity η of the rota-

tion axes. This means that the derivative sensibility to the im-

perfection can be weakened by spacing the two rotation points.

Derivative A∗
3γ is highly contaminated by the imperfection fac-

tor λ at the precious small reduced velocities, which error is not

present in the derivative A∗
3δ. The same applies to the deriva-

tives H∗
3γ and H∗

3δ for the lift force. Angular speed derivatives

contributing to the lift force contain high errors in the lower and

higher reduced velocity ranges for H∗
2δ and H∗

2γ (fig. 3 (b)), re-

spectively.

4.1 Determination of the derivatives defined to the centre

of gravity

The derivatives determined on the pitch-pitch section model

are converted into the derivatives defined to the centre of gravity

of the section using the equations (3) and (4). The relative errors

in the latter derivatives were determined for a thin airfoil, us-

ing the theoretically defined derivatives of Theodorsen [7], and

the derivatives of the extradosed bridge of the motorway M43

in Hungary [4]. During the analysis we assumed that the two

phases of the wind tunnel tests and their imperfections are in-

dependent from each other. The derivatives of the bluff section

were fitted on the data measured in a wind tunnel on a heave-

pitch section model and are treated hereafter as the derivatives

without imperfections, see figure 5.

The figures 4 and 5 present the perfect and imperfect (erro-

neous) derivatives with different supposed imperfection factors

in the wind tunnel test (λ = 0, 0.05, 0.1). Although an imperfec-

tion of 10% is relatively high, it is used as a demonstration in

the present theoretical investigation. It can be observed that the

same motion derivatives corresponding to the torsion moment

and the lift force have similar diagrams (e.g. H∗
1
–A∗

1
, fig. 4 (a)–4

(b) for the case on the thin airfoil, fig. 5 (a)–5 (b) for the bluff

section). The derivatives H∗
3

and A∗
3

do not depend on neither

the imperfection factor λ nor the eccentricity η. The absolute

errors in the derivatives H∗
2

and A∗
2

(fig. 4 (c) and 5 (c)) increase

with the supposed imperfection and increase with the applied

eccentricity for the airfoil but decrease with it for the bluff sec-

tion. All errors in the other derivatives show a dependency on

the reduced velocity (e.g. 4 (d) and 5 (d)). These errors can be

compensated by increasing the applied eccentricity η, in other

words by spacing the two rotational axes.

Concerning the relative errors in the derivatives (figures 6 and

7) the followings are concluded. Relative errors in some deriva-

tives show dependency on the reduced wind speed, others show

sensibility to the applied eccentricity depending on the reduced

velocity, and others show improvements with increasing eccen-

tricity. The heave speed derivatives H∗
1

and A∗
1

(fig. 6 (a) and

7 (b)) include errors of great magnitude at almost all reduced

velocities, which errors can be diminished by increasing the ap-

plied eccentricity. The relative errors in the heave derivatives

show similar behaviour, but the errors stay unacceptable at both

small and high eccentricities. This causes no huge practical is-

sues as these derivatives are in several cases omitted from the

flutter analysis. The angular speed derivatives H∗
2

(fig. 7 (a)) and
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(a) H∗
1 (b) A∗

1 (c) A∗
2

(d) A∗
4

Fig. 4. Thin airfoil derivatives due to the imperfection factor λ. Light grey: without imperfection (λ = 0), mid-grey: λ = 0.05, black: λ = 0.10

A∗
2

(fig. 6 (b) and 7 (c)) are contaminated with errors linearly de-

pendent on the eccentricity, and the determination of their zero

becomes inaccurate. The relative errors included in the angu-

lar derivatives show strange relations. The relative error in the

derivative H∗
3

for the lift force decreases exponentially as a func-

tion of the reduced velocity, even if the eccentricity increases

it. This gives acceptable measures of this derivative at all re-

duced velocities but the very small ones. The angular derivative

A∗
3

for the torsional moment seems to be practically insensible

to the eccentricity and the supposed imperfections. The heave

derivatives H∗
4

and A∗
4

show relative errors with magnitude of

great significance, the determination of these derivatives with

the pitch–pitch model is questionable.

The relative errors are functions of the supposed imperfec-

tions and it seems that the model size has no effect on them. But

as the size of the model increases, or as the applied eccentricity

increases the imperfection diminishes, due to the easier geomet-

ric manoeuvrability.

5 Sensitivity of the flutter speed to the model imperfec-

tions

The study investigated also the effect of the imperfections on

the critical wind velocity, referred to as flutter speed UF . The

complex eigenvalue analysis [5] of an undamped two degree-

of-freedom cross section was used in the determination of the

flutter speed. The effect is represented as the ratio of the flut-

ter speed resulted with the erroneous derivatives to the one with

no errors. The most unfavourable sign combination of the ec-

centricities and the imperfections were used to obtain the rep-

resentable values. Hereafter the relative mass µ is the ratio of

the mass of the cross section to the mass of the circumscribed

air mass, the relative torsional inertia radii rα is the ratio of the

torsional inertial radius to the half width, and ε represents the

ratio of the considered torsional to the heave eigenfrequencies.

The erroneous flutter speed on the heave–pitch (h and α)

model is influenced by the width B of the section. The figure

8 (a) presents the case of the heave–pitch model of a thin air-

foil with the torsional imperfections ν and the eccentricity η of

the rotational axis to the centre of gravity. It is concluded, that

although the relative mass µ compensates the error, the latter

reaches quite important values even at high eigenfrequency ra-

tios ε.

The figure 8 (b) shows the results of a similar analysis this

time based on the pitch–pitch model with the torsional imper-

fections λδ and λγ for the two rotational degrees, resp. The vari-

ation of the flutter speed is represented as a function of the ap-

plied η eccentricity. The error seems to highly depend on the

eccentricity and has an extremum at a singular value of it. The

similar diagram shown on fig. 9 is resulted for the case of the

bluff section.

The coupled flutter phenomenon of a bridge cross section ap-

pears as an undamped rotation around an eccentric quasi rota-

tional axis. The phase shift of the vertical and angular harmonic

motion causes the vertical movement of this quasi rotational

axis, that is why we have denote it “quasi” (not to be confused

with the body, nor the space rotational axis). One could assume

that the optimal eccentricity, when the flutter speed error is min-

imum, coincides with the quasi rotation point. This coincidence

could be used in the wind tunnel investigation by preliminarily

estimating the required eccentricity of the set-up based on expe-

riences in hope of minimise the errors treated in this paper. Un-

fortunately the analyses showed that the optimal eccentricities

for the presented configurations were at around 1.3–1.8 times

the eccentricity of the quasi rotational point.

6 Conclusions

The analysis of the effects of the supposed (model or ge-

ometric) imperfections and eccentricity of a heave–pitch sec-

tion model on the derivatives was studied. The discussed errors

increase the uncertainties of determination of the zeros of the

derivatives. The imperfections appear as high relative errors in

several derivatives (H∗
1
, H∗

3
, A∗

2
and A∗

4
) in the precious range of

small reduced velocities, or in other ranges for A∗
1

and A∗
3
.

A wind tunnel test carried out on a pitch–pitch section model

yields newly defined derivatives, from which those defined to

the centre of gravity of the section are calculated. On this model

the impact of the supposed imperfections can be decreased for

some specific derivatives (H∗
2
, H∗

4
, A∗

1
and A∗

4
). The derivatives

H∗
3

and A∗
3

show to be practically insensible to the imperfec-

tions. The application of an adequate eccentricity of the forced

rotational points seems to moderate the effects of the rotational

imperfections on the derivatives H∗
1

and A∗
2
.
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Fig. 5. M43 derivatives: tick line = derivative fitted on measured data and

referred to as without imperfections, thin lines = studied derivatives supposing

imperfection λ = 0.05 on the proposed pitch-pitch model

(a) Relative error in derivative

A∗
1

(b) Relative error in derivative

A∗
2

Fig. 6.
∆A∗

i
(λ)

A∗
i

relative errors in the thin airfoil derivatives as a function of the

applied eccentricity and the imperfection factor λ. Light grey: without imper-

fection (λ = 0), mid-grey: λ = 0.05, black: λ = 0.10
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Fig. 7.
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i
(λ)
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i

relative errors in the M43 derivatives as a function of the applied eccentricity η and the imperfection factor λ = 0.05
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(a) Heave-pitch (h–α) model, B = 1 m, η = 0.1,

ν = −0.1

ε = ω0α
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(b) Pitch-pitch (γ–δ) model, µ = 30,

λγ = −λδ = −0.10

Fig. 8. Effect of the imperfection on the flutter speed. Common parameters:

thin airfoil, rα = 0.5

It seems that an optimum of the applied eccentricity for

derivatives A∗
1

and A∗
2

exists where these derivatives contain the

least error. The heave derivative A∗
4

contains an error of great

magnitude, but maybe less at the same value of eccentricity. The

relative errors in the derivatives H∗
1
, H∗

3
and H∗

4
for the aeroelas-

tic lift force tend to diminish by augmenting the eccentricity of

the rotation points. The inverse is concluded for the derivative

H∗
2
, where the error diminishes as the rotation points get closer

to each other.

The investigation of the effect of the imperfections on the

changes of the flutter speed showed the existence of an opti-

mal eccentricity of the pitch–pitch model. Unfortunately this

optimal eccentricity did not coincide with the quasi rotational

point at flutter and thus the eccentricity to be applied cannot be

preliminarily estimated by the latter to minimise the error of the

flutter speed.

The applicability of the presented set-up requires the further

investigation of the effects on the errors present in the wind tun-

nel tests.
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