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Abstract

In this paper, a hybrid heuristic method is developed using the

harmony search (HS) and charged system search (CSS), called

HS-CSS. In this algorithm the use of HS improves the exploita-

tion property of the standard CSS. An energy formulation of the

force method is developed and the analysis, design and opti-

mization are performed simultaneously using the standard CSS

and HS-CSS. New goal functions are introduced for minimiza-

tion, and the CSS and the HS-CSS are employed for continu-

ous optimization. An efficient method is introduced using the

CSS and HS-CSS for designing structures having members of

prescribed stress ratios. Finally, the minimum weight design of

truss structures is formulated using the CSS and HS-CSS algo-

rithms and applied to some benchmark problems from literature.
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1 Introduction

In the last decade, many new natural evolutionary algorithms

have been developed for optimization of pin-connected struc-

tures, such as genetic algorithms (GAs) [1–5], particle swarm

optimizer (PSO) [6, 7], ant colony optimization (ACO) [8–10]

and harmony search (HS) [11–13], charged system search (CSS)

[14–16], and other metaheuristics [17–19]. These methods have

attracted a great deal of attention, because of their high potential

for modeling engineering problems in environments which have

been resistant to solution by classic techniques. They do not re-

quire gradient information and possess better global search abil-

ities than the conventional optimization algorithms [20]. Hav-

ing in common processes of natural evolution, these algorithms

share many similarities: each maintains a population of solu-

tions which are evolved through random alterations and selec-

tion. The differences between these procedures lie in the repre-

sentation technique utilized to encode the candidates, the type

of alterations used to create new solutions, and the mechanism

employed for selecting new patterns.

Compared to other population-based meta-heuristics, charged

system search has a number of advantages that is distinguished

from others. However, for improving exploitation (the fine

search around a local optimum), it is hybridized with HS that

utilized charged memory (CM) to speed up its convergence.

Recently simultaneous analysis and design of structures has

been performed using genetic [21–23] and ant colony algorithm

[24]. Here, the formulation is modified and optimization is per-

formed using charged system search to enable the efficient solu-

tion of larger truss structures.

The present paper is organized as follows: In Section 2,

we briefly introduce the CSS and HS. The new method, HS-

CSS, is presented in Section 3. In Section 4, charged system

search algorithm is employed for the analysis of truss and frame

structures. In Section 5, a methodology is proposed for design

of structures. Minimum weight design is formulated and per-

formed using meta-heuristics optimization in Section 6. For all

the above cases, the CSS and HS-CSS algorithm are found to be

powerful tools. The efficiency of the HS-CSS is investigated in

Section 7. Conclusions are derived in Section 8.
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2 Introduction to CSS and HS

In order to make the paper self-explanatory, before proposing

the HS-CSS algorithm for truss design optimization, the char-

acteristics of the CSS and the HS are briefly presented in the

following three sections:

2.1 The standard CSS

Recently an efficient optimization algorithm, known as the

charged system search, has been proposed by Kaveh and Talata-

hari [14]. This algorithm is based on the laws from electrostatics

and Newtonian mechanics.

The Coulomb and Gauss laws provide the magnitude of the

electric field at a point inside and outside a charged insulating

solid sphere, respectively, as follows [25]: Ei j = ke
qi

r2
i j

: ri j ≥ a

Ei j = ke
qi

a3 ri j : ri j < a
(1)

where ke is a constant known as the Coulomb constant; ri j is

the separation of the centre of sphere and the selected point; qi is

the magnitude of the charge; and “a” is the radius of the charged

sphere. Using the principle of superposition, the resulting elec-

tric force due to N charged spheres is equal to [14]:

Fi j =keq j

∑
i,i, j

 qi

a3
ri ji1 +

qi

r2
i j

.i2

 ri − r j∥∥∥ri − r j

∥∥∥ i1 = 1, i2 = 0⇔ ri j < a

i1 = 0, i2 = 1⇔ ri j ≥ a

(2)

Also, according to the Newtonian mechanics, we have [25]:

∆r = rnew − rold

v =
rnew−rold

tnew−told
=

rnew−rold

∆t

a =
vnew−vold

∆t

(3)

where rold and rnew are the initial and final positions of the par-

ticle, respectively; v is the velocity of the particle; and a is the

acceleration of the particle. Combining the above equations and

using the Newton’s second law, the displacement of any object

as a function of time is obtained as [25]:

rnew =
1

2

F

m
.∆t2 + vold.∆t + rold (4)

Inspired by the above electrostatic and Newtonian mechanics

laws, the pseudo-code of the CSS algorithm is presented as fol-

lows [14]:

2.1.1 Level 1: Initialization

Step 1. Initialize the parameters of the CSS algorithm. Initial-

ize an array of charged particles (CPs) with random positions.

The initial velocities of the CPs are taken as zero. Each CP has

a charge of magnitude (qi) defined by considering the quality of

its solution as:

qi =
f it(i) − f itworst

f itbest − f itworst

, i = 1, 2 . . . ,N (5)

where f itbest and f itworst are the best and the worst fitness of all

the particles; f it(i) represents the fitness of agent i. The sepa-

ration distance ri j between two charged particles is defined as:

ri j =

∥∥∥Xi − X j

∥∥∥∥∥∥(Xi + X j)/2 − Xbest

∥∥∥ + ε
(6)

where Xi and X j are the positions of the ith and jth CPs, respec-

tively; Xbest is the position of the best current CP; and ε is a

small positive to avoid singularities.

Step 2. CP ranking. Evaluate the values of the fitness function

for the CPs, compare with each other and sort them in increasing

order.

Step 3. CM creation. Store the number of the first CPs equal

to the size of the charged memory (CMS) and their related val-

ues of the fitness functions in the charged memory (CM).

2.1.2 Level 2: Search

Step 1. Attracting force determination. Determine the proba-

bility of moving each CP toward the others considering the fol-

lowing probability function:

pi j =

 1
f it(i)− f itbest

f it( j)− f it(i)
> rand ∨ f it( j) > f it(i)

0 otherwise
(7)

and calculate the attracting force vector for each CP as follows:

F j =qi

∑
i,i, j

 qi

a3
ri j.i1 +

qi

r2
i j

.i2

ari jPi j(Xi − X j)

〈 j = 1, 2, ...,N

i1 = 1, i2 = 0⇔ ri j < a

i1 = 0, i2 = 1⇔ ri j > a

(8)

where F j is the resultant force affecting the jth CP.

Step 2. Solution construction. Move each CP to the new po-

sition and find its velocity using the following equations:

X j,new = rand j1ka

F j1

m j

∆t2 + rand j2kvV j,old∆t + X j,old (9)

V j,new =
X j,new − X j,old

∆t
(10)

where rand j1 and rand j2 are two random numbers uniformly

distributed in the range (1,0); m j is the mass of the CPs, which

is equal to q j in this paper. The mass concept may be useful

for developing a multi-objective CSS. ∆t is the time step, and it

is set to 1. ka is the acceleration coefficient; kv is the velocity

coefficient to control the influence of the previous velocity. In

this paper kv and ka are taken as:

kv = c1(1 − iter/itermax) ka = c2(1 + iter/itermax) (11)

where c1 and c2 are two constants to control the exploitation

and exploration of the algorithm; iter is the iteration number and

itermax is the maximum number of iterations.

Step 3. CP position correction. If each CP exits from the

allowable search space, correct its position using the HS-based

handling as described by Kaveh and Talatahari [14, 26].
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Step 4. CP ranking. Evaluate and compare the values of the

fitness function for the new CPs; and sort them in an increasing

order.

Step 5. CM updating. If some new CP vectors are better

than the worst ones in the CM, in terms of their objective func-

tion values, include the better vectors in the CM and exclude the

worst ones from the CM.

2.1.3 Level 3: Controlling the terminating criterion

Repeat the search level steps until a terminating criterion is

satisfied.

The CSS algorithm is illustrated in Fig. 1.

2.2 Harmony search algorithm

Harmony search (HS) algorithm is based on natural musical

performance processes that occur when a musician searches for

a better state of harmony, such as during jazz improvisation [27].

The engineers seek for a global solution as determined by an

objective function, just like the musicians seek to find musically

pleasing harmony as determined by an aesthetic [11].

Fig. 2 shows the optimization procedure of the HS algorithm,

which consists of the following steps [11]:

Step 1: Initialize the algorithm parameters and optimization

operators. The HS algorithm includes a number of optimiza-

tion operators, such as the harmony memory (HM), the har-

mony memory size (HMS), the harmony memory considering

rate (HMCR), and the pitch adjusting rate (PAR). In the HS al-

gorithm, the HM stores the feasible vectors, which are all in the

feasible space. The harmony memory size determines the num-

ber of vectors to be stored.

Step 2: Improvise a new harmony from the HM. A new har-

mony vector is generated from the HM, based on memory con-

siderations, pitch adjustments, and randomization. The HMCR,

varying between 0 and 1, sets the rate of choosing a value in

the new vector from the historic values stored in the HM, and

(1-HMCR) sets the rate of randomly choosing one value from

the possible range of values. The pitch adjusting process is per-

formed only after a value is chosen from the HM. The value

(1-PAR) sets the rate of doing nothing. A PAR of 0.1 indicates

that the algorithm will choose a neighboring value with 10% ×

HMCR probability.

Step 3: Update the HM. In Step 3, if a new harmony vector

is better than the worst harmony in the HM, judged in terms of

the objective function value, the new harmony is included in the

HM and the existing worst harmony is excluded from the HM.

Step 4: Repeat Steps 2 and 3 until the terminating criterion is

satisfied. The computations are terminated when the terminating

criterion is fulfilled. Otherwise, Steps 2 and 3 are repeated.

3 A heuristic harmonic charged system search opti-

mization

The framework of heuristic harmony search and charged sys-

tem search optimization (HS-CSS) algorithm is illustrated in

Fig. 3. HS-CSS algorithm applies the CSS for global search,

while HS works as a local search.

The application of this method is identical to standard CSS.

However, after ranking the CPs in each iteration, the worst CP is

excluded from the CPs and a new CP from the CM with corre-

sponding objective function value and zero velocity is included.

The following pseudo-code summarizes the HS-CSS algorithm:

3.0.1 Level 1: Initialization

Step 1. Initialize the CSS algorithm parameters; Initialize an

array of Charged Particles with random positions and their asso-

ciated velocities.

Step 2. CP ranking. Evaluate the values of the fitness function

for the CPs, compare with each other and sort increasingly.

Step 3. CM creation. Store CMS number of the first CPs and

their related values of the objective function in the CM.

3.0.2 Level 2: Search

Step 1. Attracting force determination. Determine the prob-

ability of moving each CP toward others, and calculate the at-

tracting force vector for each CP.

Step 2. Solution construction. Move each CP to the new po-

sition and find the velocities.

Step 3. CP position correction. If each CP exits from the

allowable search space, correct its position.

Step 4. CP ranking. Evaluate and compare the values of the

objective function for the new CPs, and sort them increasingly.

Step 5. Exclude the worst CP from the CPs and include a new

CP from the CM, with corresponding objective function value

and zero velocity, and rank new CPs, again. At this stage, the

Harmony Search is introduced to the algorithm.

Step 6. CM updating. If some new CP vectors are better than

the worst ones in the CM, include the better vectors in the CM

and exclude the worst ones from the CM.

3.0.3 Level 3: Terminating criterion controlling

Repeat search level steps until a terminating criterion is ful-

filled.

4 Analysis by force method and charged system

search

Here, the main aim is to formulate the energy function of

a structure and minimize the latter using the charged system

search algorithm, while satisfying all stated compatibility condi-

tions. The formulation is based on the minimum complementary

work principle.

Suppose p = {p1 p2 . . . pn}
tis the vector of nodal forces,

q = {q1q2 . . . qγ(s)}
t contains γ(S ) redundant forces, and r =

{s1s2 . . . sm}
tcomprises of the internal forces of the members.

From equilibrium

{r} = [B0]{p} + [B1]{q} (12)
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Fig. 1. The flowchart of the CSS

 

Fig. 2. The flowchart of the HS

and

Uc =
1

2
rtFmr (13)

where [Fm] is the unassembled flexibility matrix of the structure.

Now {q} should be calculate such that Ucbecomes minimum.

Substituting {r} from Eq. (12) in Eq. (13) leads to

Uc =
1

2

 p

q

 [H]
[

p q
]

where H = [B0B1]t[Fm][B0B1]

(14)
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Fig. 3. The flowchart of the HS-CSS

Decomposing the matrix [H] into four submatrices [Hpp], [Hpq],

[Hqp], and [Hqq], we obtain Ucas

Uc =
1

2
({p}t[Hpp]{p} + {p}t[Hpq]{q}

+ {q}t[Hqp]{p} + {q}t[Hqq]{q})

(15)

where

[Hpp] = Bt
0FmB0, [Hpq] = Bt

0FmB1

[Hqp] = Bt
1FmB0, [Hqq] = Bt

1FmB1

(16)

In the classical method, the derivative of Uc with respect to {q}

is found and equated to zero, leading to

∂Uc

∂q
= 0⇒ [Hqp]{p} + [Hqq]{q} = 0

⇒ {q} = −[Hqq]−1[Hqp]{p}

(17)

Since [H] is symmetric, therefore [Hqp]t = [Hpq], Refs. [21,24].

In the present approach, finding the inverse of [Hqq] is not

required. Instead, Uc from Eq. (14) is minimized by meta-

heuristic algorithms.

Previously, it has been stated that the first term of Uc in Eq.

(15) is constant and the second and third terms are identical. It

can easily be shown that the third and fourth terms of Uc are

symmetric and therefore, the second and fourth terms can be

omitted and the goal function can be obtained as:

Fu = {q}t[Hqp]{p} (18)

Since Eq. (17) holds only in a specific point of search space, and

in any other point one cannot omit the second and fourth terms,

therefore we use a new goal function as

Fu = Uc = {p}t[Hpq]{q} + {q}t[Hqp]{p} + {q}t[Hqq]{q} (19)

In order to introduce another goal function consider the left-

hand side of the Eq. (17) that is a zero vector, and should be

changed to a scalar. The best is to find its norm. If this norm is

zero, all the entries should be zero. Therefore, the goal function

can be written as

Fu = norm([Hqp]{p} + [Hqq]{q}) (20)

In Eqs. (19) and (20), {p}, [H] and its submatrices are constant;

therefore the charged system search algorithms finds the results

for {q} by minimizing the complementary energy function.

The general complementary energy function (Eq. (13)) can

also be used as the goal function of minimization. In this case,

there will be no need to calculate the [H] matrix and its sub-

matrices. In order to minimize Fu, charged system search algo-

rithms are employed.

As the first example, consider a simple truss as shown in

Fig. 4. Here, Fu should be formed in terms of three unknowns.

Results are provided in Table 1.

Tab. 1. Result of the 11-bar planar truss

Redundant forces Magnitude of forces

GA CACO Present Work

[21] [24] CSS HS-CSS

1 4.6001 4.6846 4.6956 4.06309

2 −3.7476 −3.6360 -3.7275 -3.7794

3 9.8745 8.2832 8.2373 8.1356

Min (Uc) - - 842.0496 842.0191

No. of analyses 1400 1500 800 400

The number of charged particles for this example are selected

as 20. The variation of Fu versus the number of iterations is

shown in Fig. 5.
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(b)(a)

 Fig. 5. Variation of Fu versus the number of iterations: (a) for CSS (b) for HS-CSS

 

Fig. 6. A simple truss with pre-selected stress ratios

 

Fig. 4. A simple truss and the selected basic structure: (a) a planar truss; and

(b) the selected basic structure

As it can be seen, using the CSS after 40 iterations, conver-

gence is achieved but in the HS-CSS this number is only 20.

However, in both the CSS and HS-CSS, we have a good results

in comparison to the former results.

5 Charged system search for design with different

member stress ratios

Consider the truss shown in Fig. 6. We want to design this

truss with the constraints shown in Table 2. A basic structure

similar to the one shown in Fig. 4(b) is selected, where redun-

dants consist of two internal forces and one external reaction, de-

noted by q1, q2 and q3. The complementary energy of the struc-

ture should be minimized for the analysis by the force method. If

the cross sections Ai (i = 1, · · · ,m) are known, then the analysis

can be performed using the charged system search as described

in the previous section. Since the main aim is to design, one can

obtain cross-sections A corresponding to the selected values of

q (for each charged particle).

Uc can be calculated as

Uc =
1

2
{r}t[Fm]{r} where {r} = [ B0 B1 ][ p q ]t (21)

For a truss member Fm = L/(EA) and for each selected charged

particle q, one can obtain {r} from Eq. (21), and each {r} corre-

sponds to a set of cross-sectional areas A, the entries of which

appear in the denominator of [Fm]. Therefore, Fm is a function

of L, E, q and C (i.e. A is eliminated). Uc will then be a function

of q and C only. The pre-selected entries for C may be imposed

at this stage (the case ci =1 for all members, needs to be inves-

tigated). The role of C in finding A in terms of q has thus been

shown, and Uc can easily be minimized by the charged system

search. For simplicity in design, the cross-sections are selected

as hollow squares with mean length as h, as shown in Fig. 7.

Ucshould be minimized in which [Fm] is a function of the

unknowns q, C, L and E as

Fm =
L

EA
=

L

E f (r, L,C)
= g(q,C, L, E) (22)

Min Uc =
1

2E

[
p q

]t [
B0 B1

]t
[g(q,C, L, E)]

·
[

B0 B1

] [
p q

] (23)

Table 2 contains all the information needed for this example.

The magnitudes of Ai will be determined considering the se-

lected values for ci and design constraints (buckling,. . . ).

A standard CSS based on the above formulation is applied to

the present example and results are presented in Table 3. The
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results obtained from GA and CACO are also provided in this

table for comparison.

For this example, 20 charged particles have been created. The

convergence is achieved after 30 iterations.

It can be observed that the weight of the truss in Case 2

is reduced compared to Case 1 because of higher magnitudes

of member stress ratios. The present method results in lower

weight and smaller number of iterations compared to GA and

CACO. Results show that all the pre-selected ci values are at-

tained, and the convergence of the analysis/design process is

guaranteed.

6 Optimal design using the CSS and HS-CSS

Optimality criteria method (OCM) is one of the earliest op-

timization methods [28]. Fully stressed design (FSD) is a kind

of OCM which leads to correct optimal for statically determi-

nate structures under a single load condition. In the FSD all

the members are supposed to be subjected to their maximal al-

lowable stresses. To achieve such a design for an indeterminate

structure with fixed geometry is not always possible. Even by

changing the geometry, a FSD may not be achieved.

 

Fig. 7. A hollow square cross-section

Here, a CSS formulation of the FSD is presented without us-

ing direct analyses in the process of optimization. For this pur-

pose, a truss type of structure is considered and the strain energy

is written as

U c =
∑ p2L

EA
=

∑ γp2LA

γEA2
=

1

γE

∑
σ2

i Wi (24)

For constant E and γ, the minimum weight can be achieved only

when the stresses in all the members are the same, and the cor-

responding term moves out of summation. One may ignore the

constraint of the weight, and look for a structure which is fully

stressed. The method of the previous section can be applied to

perform this design.

As an example, consider the structure shown in Fig. 8 selected

from Ref. [28]. Here we have a member size constraint that is

provided in Table 4. This constraint leads to a design for which

not all the members are fully stressed.

As an example, consider the structure shown in Fig. 8. The

member size constraint provided in Table 4, leads to a design for

which not all the members are fully stressed.

In this example, the internal forces in members 7 and 9 are

taken as redundant forces, forming the initial charged particles

 

Fig. 8. A simple truss and the selected basic structure: (a) A planar truss; (b)

The selected basic structure

of the CSS. The fitness function for Case 2 and Case 1 is the

complementary energy as introduced before. Tables 5, 6, 7 con-

tain the results of this example which are obtained using the

present algorithms, ACO and GA for three cases.

In Case 3, we want to design a FS structure with the least

possible weight, therefore the problem becomes more involved,

since different cases may arise with the condition of FS, and one

naturally wants the one with the smallest weight.

Choosing a function in the form of Fu = W + αUc does not

help, since the penalty functions are commonly selected as

f = A + αB (25)

for which ultimately f converges to A, and B approaches to zero.

Therefore, α is often selected as a big number. The main diffi-

culty arises when for α, the minimum value of f does not cor-

respond to the minimum Uc. In this case, W is minimum while

the corresponding Ucis not minimum, i.e. the analysis of the

structure is not completed yet. Small α will not guarantee the

Ucto be minimal, and a big α will not lead to a minimum W.

Therefore, a new formulation is required.

In a formulation, we alter the second term of Eq. (25) such

that its minimum value becomes zero. Then one can use a for-

mulation similar to the common penalty function.

In this method, one does not need U, and optimization can be

performed employing only Uc, where Uccan be written in the

form of Eq. (15). For the analysis, q should be selected such

that Eq. (20) becomes zero. In this case, we can write

F(q, A) = W(1 + αnorm([Hqp]{p} + [Hqq]{q}) (26)

Here, the input is {q}, and having {q} from Eq. (18), the magni-

tude of F can be calculated and its minimum for a large value of

α will correspond to minimum W. If a structure contains other

constraints, then these should be normalized and added to the

above function with a penalty coefficient. Therefore, the final

formulation of the problem for the two cases of discrete and

continuous cross sections are as follows:

Find q, A : A ∈ {S dorS c}

MinF(q, A) = W(A)(1 + αnorm([Hqp]{p} + [Hqq]{q})

+
nc∑

m=1

Max[0, gm(A)]

(27)
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Tab. 2. Design data for the 11-bar planar truss

Design Variables

Redundants and size variables A1; A2; A3; A4; A5; A6; A7; A8; A9; A10; A11(andq1; q2; q3)

Material property and constraint data

Elastic modulus is assumed to be constant.

Density of the material: ρ = 0.00277 kg/cm3 = 0.1 lb/in3

A = 0.4h2, r =
√

0.4A, thickness=0.1h

Constraints data

Stress Ratio

Case 1 C ={0.9, 0.8, 0.85, 0.8, 0.9, 0.85, 0.95, 0.9, 0.8, 0.9, 0.95}

Case 2 Ci = 1; i = 1, . . . , 11

For tensile members

A > F
0.6Fy

, L
r
< 300; r =

√
0.4A

For compressive members

A > F
Fa
, Fa =

(1−0.5β2)Fy

1.67+0.375+0.125β3 ; β =
L
√

Fy

6440
, L

r
< 200;

Stress constraints

σi < 234.43MPa; i = 1, 2, ...., 11

Tab. 3. Results for the 11-bar planar truss (Cases 1–2)

Case 1

Present work (CSS).

q={70.98 , -45.333, 265.12}tkN

r ={ 208.33 , 193.32 , -38.757 , 36.26 , 31.152 , -42.592 , -64.085 , 64.595 , -81.35 , 70.98, -45.33}t kN

A={16.45 , 17.18 , 7.43 , 4.44 , 4.44 , 8.17 , 15.625 , 6.94 , 16.58 , 6.94 , 15.63} cm2

W=1337.12 N

ACO Algorithm [21]

A={17.46 , 17.46 , 5.63 , 4.44 , 4.44 , 5.63 , 15.63 , 6.94 , 6.75 , 6.94 , 15.63} cm2

W=1238.17 N

Genetic Algorithm [18]

A={4.44 , 6.66 , 19.85 , 4.44 , 14.03 , 6.37 , 6.94 , 16.70 , 22.43 , 6.94 , 15.63} cm2

W=1347.30 N

Case 2

Present work (CSS).

q={73.307 , -49.675 , 245.46}tkN

r ={186.814 , 186.505 , -40.38 , 39.74 , 34.93 , -43.98 , -50.06 , 67.3 , -84.364 , 73.307 , -49.675}t kN

A={13.28 , 13.26 , 6.585 , 4.44 , 4.44 , 7.173 , 15.625 , 6.94 , 13.76 , 6.94 , 15.63} cm2

W=1222.74 N

ACO Algorithm [24]

A={18.85 , 14.46 , 5.63 , 4.44 , 4.44 , 5.63 , 15.63 , 6.94 , 5.63 , 6.94 , 15.63} cm2

W=1206.65 N

Genetic Algorithm [21]

A={4.44 , 5.48 , 16.75 , 4.44 , 12.66 , 5.63 6.94 ,14.84 17.80 , 6.94 , 15.63} cm2 W=1225.3 N

Tab. 4. Design data of a 10-bar planar truss

Design Variables

Size variables A1; A2; A3; A4; A5; A6; A7; A8; A9; A10 (and q1; q2)

Material property and constraint data

Elastic modulus: E=6.895e7 MPa =1e7 psi.

Density of the material: ρ = 0.00277 kg/cm3= 0.1 lb/in3

For all members: Ai ≥ 0.645 cm2 (0.1 in2) ; i=1,. . . ,10

Stress constraints

(a) FSD

Case 1: |σi | ≤172.375 MPa (25 ksi); i=1,. . . ,10

Case 2: |σi | ≤172.375 MPa (25 ksi); i=1,. . . ,8,10 and |σ9 | ≤344.75MPa (50 ksi);

(b) Weight minimization

Case 3: |σi | ≤172.375 MPa (25 ksi); i=1,. . . ,8,10 and |σ9 | ≤344.75MPa (50 ksi);
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Tab. 5. Results for the 10-bar planar truss (Cases 1 (FSD))

Present Work (CSS)

q ={636.39, 624.09}t kN={143.066, 140.301}t kips

r ={884.44, 3.514, -894.8, -441.26, -1.646, 3.558, 636.39, -621.73, 624.09, -4.97}t kN

A={51.313 , 0.645 , 51.91 , 25.60 , 0.645 , 0.645 , 36.92 , 36.07 , 36.20 , 0.645} cm2

A={7.953 , 0.1 , 8.046 , 3.98 , 0.1 , 0.1 , 5.722 , 5.59 , 5.61 , 0.1} in2

W= 7.1 kN (1596.46 lb)

Present Work (HS-CSS)

q={645.4, 615.37}t KN={145.09, 138.34}t kips

r ={878.11, 9.7, -901.18, -435.13, -1.839, 9.7, 645.4, -612.74, 615.37, -13.701}t kN

={197.41, 2.18, -202.59, -97.82, -0.413, 2.18, 145.09, -137.75, 138.134, -3.08}t kips

A={50.943 , 0.645 , 52.282 , 25.24 , 0.645 , 0.645 , 37.443 , 35.548 , 35.70 , 0.795} cm2

A={7.896 , 0.1 , 8.1038 , 3.913 , 0.1 , 0.1 , 5.8 , 5.51 , 5.53 , 0.123} in2

W= 7.08 kN (1591.7 lb)

ACO Algorithm [24]

A={ 51.42 , 0.64 , 51.80 , 25.55 , 0.64 , 0.64 , 36.77 , 36.19 , 36.19 , 0.64} cm2

A={7.97 , 0.1 , 8.03 , 3.96 , 0.1 , 0.1 , 5.70 , 5.61 , 5.61 , 0.13} in2

W= 7.11 kN (1595.88 lb)

Genetic Algorithm[21]

A={ 51.16 , 0.64 , 52.06, 25.35 , 0.64 , 0.64 , 37.16 , 35.81 , 35.81 , 0.84} cm2

A={7.93 , 0.1 , 8.07 , 3.93 , 0.1 , 0.1 , 5.76 , 5.55 , 5.55 , 0.13} in2

W= 7.09 kN (1593.5 lb)

Tab. 6. Results for the 10-bar planar truss (Cases 2 (FSD))

Present Work (CSS)

q ={1258.09, 0.045}t KN={282.83 , 0.01}t kips

r ={ 444.86, 444.77, -1334.42, -0.045, 0.00, 444.77, 1258.1, -0.045, 0.045, 628.98}t kN

A={ 25.83 , 25.78 , 77.40 , 0.64 , 0.64 , 25.78 , 72.96 , 0.64 , 0.64 , 36.46} cm2

A={4.00 , 3.99 , 11.99 , 0.1 , 0.1 , 3.99 , 11.31 , 0.1 , 0.1 , 5.65} in2

W= 7.76 kN (1745.3 lb)

Present Work (HS-CSS)

q={1212.8, 45.59}t kips

r ={476.89, 412.57, -1302.4, -32.25, 0.18, 412.57, 1212.8, -45.327, 45.59, -583.47}t KN

r ={107.21, 92.75, -292.79, -7.25, 0.04, 92.75, 272.65, -10.19, 10.25, -131.17}t kips

A={ 27.67 , 23.93 , 75.56 , 1.87 , 0.64 , 23.93 , 70.36 , 2.63 , 1.32 , 3.385} cm2

A={4.288 , 3.71 , 11.71 , 0.29 , 0.1 , 3.71 , 10.91 , 0.408 , 0.205 , 5.247} in2

W=7.61 kN (1710.7 lb)

ACO Algorithm [24]

A={ 26.06 , 25.35 , 77.16 , 0.64 , 0.64 , 25.35 , 72.64 , 0.64 , 0.64 , 35.87} cm2

A={4.04 , 3.93 , 11.96 , 0.1 , 0.1 , 3.93 , 11.26 , 0.1 , 0.1 , 5.56} in2

W=7.71 kN (1732.68 lb)

Genetic Algorithm [21]

A={ 26.58 , 25.03 , 76.64 , 0.77 , 0.64 , 25.03 , 71.87 , 1.1 , 0.64 , 35.35} cm2

A={4.12 , 3.88 , 11.88 , 0.12 , 0.1 , 3.88 , 11.14 , 0.17 , 0.1 , 5.48} in2

W=7.66 kN (1723.5 lb)

where S d and S c are the discrete and continuous cross sections,

respectively. gm(A) corresponds to violations of constraints,

which include stress constraints, displacement constraints and

buckling constraints. Their magnitudes can be written in the

form of the absolute value of existing value to permissible value

minus one.

From Tables 5, 6, 7, it is noticeable that if in a structure the

maximum allowable stresses of all members are equal, then FSD

leads in a minimum weight design. Otherwise, we have to add

a penalty function (that contains the weight of the structure) to

the goal function for the purpose of minimization using the CSS

and HS-CSS algorithms.

7 Numerical Examples

In this section, four truss structures are optimized utilizing the

CSS and the new algorithm. The final results are then compared

to the solutions of other advanced heuristic methods to demon-

strate the efficiency of this work. For the both CSS and HS-CSS

algorithm, a population of 20 CPs is used for all the examples.

The effect of the previous velocity and the resultant force affect-

ing a CP can be decreased or increase based on the values of the

kv and ka (Eq. (11)), where ci is set to 0.8.
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Tab. 7. Results for the 10-bar planar truss (Cases 3 (weight minimization))

Present Work (CSS)

q={637.5, 612.74}t KN ={143.315 , 137.756}t kips

r ={883.68, 11.52, -895.61, -433.26, 5.58, 11.52, 637.5, -620.62, 612.74, -16.28}t KN

={198.66, 2.59, -201.34, -97.4, 1.254, 2.59, 143.315, -139.52, 137.75, -3.66}t kips

A={51.267 , 0.67 , 51.96 , 25.14 , 0.645 , 0.67 , 36.98 , 36.00 , 17.75 , 0.945} cm2

A={7.946 , 0.103 , 8.053 , 3.896 , 0.1 , 0.103 , 5.732 , 5.581 , 2.755 , 0.147} in2

W=6.456 kN (1451.05 lb)

Present Work (HS-CSS)

q={637.21, 137.83}t KN ={143.25 , 137.83}t kips

r ={883.91, 11.3, -895.38, -433.52, 5.56, 11.3, 637.21, -620.97, 613.1, -15.97}t KN

r ={ 198.71 , 2.54 , -201.29 , -97.46 , 1.25 , 2.54 , 143.25 , -139.6 , 137.83 , -3.59}t kips

A={51.28 , 0.65 , 51.94 , 25.15 , 0.645 , 0.65 , 36.96 , 36.02 , 17.78 , 0.925} cm2

A={7.95 , 0.101 , 8.05 , 3.896 , 0.1 , 0.101 , 5.73 , 5.58 , 2.75 , 0.143} in2

W=6.45 kN (1450.9 lb)

ACO Algorithm [24]

A={ 51.22 , 0.71 , 51.93 , 25.10 , 0.64 , 0.71 , 36.97 , 35.93 , 17.74 , 0.97} cm2

A={7.94 , 0.11 , 8.05 , 3.89 , 0.1 , 0.11 , 5.73 , 5.57 , 2.75 , 0.15} in2

W=6.46 kN (1450.15 lb)

Genetic Algorithm [21]

A={ 50.26 , 1.68 , 53.03 , 24.58 , 0.64 , 1.54 , 38.52 , 35.48 , 23.16 , 2.19} cm2

A={7.79 , 0.26 , 8.22 , 3.81 , 0.1 , 0.24 , 5.97 , 5.5 , 3.59 , 0.34} in2

W=6.75 kN (1519.2 lb)

In order to investigate the effect of the initial solution on the

final result and because of the stochastic nature of the algorithm,

each example is independently solved several times. The initial

population in each of these runs is generated in a random manner

according to Rule 2. The algorithms are coded in Matlab.

7.1 A ten-bar planar truss

Optimal design of 10-bar truss, as shown in Fig. 8, is consid-

ered. Table 4 contains the necessary information. In this section,

a displacement constraint is added (Table 8).

In this example, two cases are considered, the first is for dis-

crete and the second corresponds to continuous sections. In both

of these A and q are design variables.

However, in the discrete case, we used a code for sections.

In both cases the displacements and stresses are included. Us-

ing the formulation of the previous section and minimizing Eq.

(27), we obtained the results for discrete sections as shown in

Table 9. Fig. 9 provides a comparison of the convergence rates

of different results.

The best result is related to the CSS and HS-CSS, however,

HS-CSS is converged at iteration 395 but the standard CSS at

iteration 463. Furthermore, HS-CSS at iteration 96 is resulted in

5494.163, which is near to the previous results.

Also for the continuous case, Table 10 and Fig. 10 are pro-

vided.

As it can be seen, here the best result is related to the HS-

CSS algorithm which has a tiny superiority in comparison to

GA (Kaveh and Rahami [21]).

 
Fig. 9. Comparison of the convergence rates between the CSS and HS-CSS

algorithms for the 10-bar planar truss structure (discrete)

 
Fig. 10. Comparison of the convergence rates between the CSS and HS-CSS

algorithms for the 10-bar planar truss structure (continuous)

Per. Pol. Civil Eng.206 Ali Kaveh / Omid Khadem Hosseini



Tab. 8. Design data for the 10-bar planar truss

Design Variables

Material property and constraint data

Elastic modulus: E= 6.895e7 MPa =1e7 psi.

Density of the material: ρ = 0.00277 kg/cm3= 0.1 lb/in3

Stress constraint |σi | ≤ 172.375 MPa (25 ksi); i = 1, . . . , 10

Displacement constraint in all directions of the co-ordinate system |∆i | ≤ 5.08cm(2in); i = 1, · · · , 8

List of the available profiles

Case 1: (Discrete sections)

Ai = {10.4516, 11.6129, 12.8387, 13.7419, 15.3548, 16.9032, 16.9677, 18.5806,

18.9032, 19.9354, 20.1935, 21.8064, 22.3871, 22.9032, 23.4193, 24.7741, 24.9677,

25.0322, 26.9677, 27.2258, 28.9677, 29.6128, 30.9677, 32.0645, 33.0322, 37.0322,

46.5806, 51.4193, 74.1934, 87.0966, 89.6772, 91.6127, 99.9998, 103.2256, 109.0320,

121.2901, 128.3868, 141.9352, 147.7416, 170.9674, 193.5480, 216.1286}cm2

Ai = {1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55,

3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5,

13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5}in2

Case 2: (Continuous sections)

0.0645 ≤ Ai ≤ 225.8960cm2(0.1 ≤ Ai ≤ 35in2); i = 1, . . . , 10

Tab. 9. Optimal design comparison for the 10-bar planar truss (discrete)

Element group Discrete sections

Shih

[29]
Rajeev [30]

Kaveh and

Rahami[21]

Kaveh and

Hassani[24]
CSS HS-CSS

A1 33.5 33.5 33.5 33.5 33.50 33.50

A2 1.62 1.62 1.62 1.62 1.62 1.62

A3 22.90 22.90 22.90 22.90 22.90 22.90

A4 15.50 15.50 14.2 14.2 13.90 13.90

A5 1.62 1.62 1.62 1.62 1.62 1.62

A6 1.62 1.62 1.62 1.62 1.62 1.62

A7 7.97 14.20 7.97 11.5 7.97 7.97

A8 22.00 19.90 22.90 22.00 22.90 22.90

A9 22.00 19.90 22.00 19.90 22.00 22.00

A10 1.62 2.62 1.62 1.62 1.62 1.62

Best weight: kN (lb)
24.4271

(5491.71)

24.9704

(5613.84)

24.4228

(5490.738)

24.5702

(5517.72)

24.3747

(5479.93)

24.3747

(5479.93)

No. of analyses - - - - 9260 7900

7.2 A 25-bar spatial truss

The topology of a 25-bar spatial truss structure is shown in

Fig. 11. In this example, designs are performed for a multiple

loading case. The material density is 2767.990kg/m3 (0.1 lb/in3)

and the modulus of elasticity is 68,950 MPa (10,000 ksi).

The structural members of this truss are arranged into eight

groups, where all members in a group share the same material

and cross-sectional properties, which are as follow:

(1) A1, (2) A2 –A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6)

A14–A17, (7) A18–A21, and (8) A22–A25.

Table 11 contains the data for the design of this truss and the

results for two cases.

Tables 12 and 13 list the optimal values of the eight size vari-

ables obtained by this research, and compares them with other

existing results.

In the discrete case, both CSS and HS-CSS converged to the

same weight. However, in the HS-CSS, this convergence oc-

 

Fig. 11. A 25-bar space truss
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Tab. 10. Optimal design comparison for the 10-bar planar truss (continuous)

Element group Continuous sections

Kaveh and

Rahami [21]

Schmit and

Farshi [31]

Schmit and

Miura [32]

Schmit and

Miura [32]
Venkayya [33]

Gellatly and

Berke [34]

A1 30.67 33.43 30.67 30.57 30.42 31.35

A2 0.1 0.1 0.1 0.37 0.13 0.1

A3 22.87 24.26 23.76 23.97 23.41 20.03

A4 15.34 14.26 14.59 14.73 14.91 15.6

A5 0.1 0.1 0.1 0.1 0.1 0.14

A6 0.46 0.1 0.1 0.36 0.1 0.24

A7 7.48 8.39 8.59 8.55 8.7 8.35

A8 20.96 20.74 21.07 21.11 21.08 22.21

A9 21.7 19.69 20.96 20.77 21.08 22.06

A10 0.1 0.1 0.1 0.32 0.19 0.1

Best weight:kN (lb)
22.5153

(5061.9)

22.6359

(5089)

22.5818

(5076.85)

22.7173

(5107.3)

22.6176

(5084.9)

22.7382

(5112.00)

No. of analyses - - - - - -

Dobbs and

Nelson [35]
Rozzo [36]

Khan and

Willmert [37]

Kaveh and

Hassani [24]
CSS HS-CSS

A1 30.5 30.73 30.98 30.86 32.86 31.085

A2 0.1 0.1 0.1 0.1 0.102 0.10118

A3 23.29 23.93 24.17 23.55 24.303 23.297

A4 15.43 14.73 14.81 15.01 14.224 15.174

A5 0.1 0.1 0.1 0.1 0.105 0.1

A6 0.21 0.1 0.41 0.22 0.11 0.535

A7 7.65 8.54 7.547 7.63 10.04 7.487

A8 20.98 20.95 21.05 21.65 20.1 21.13

A9 21.82 21.84 20.94 21.32 22.85 20.98

A10 0.1 0.1 0.1 0.1 33.74 0.1

Best weight: kN (lb)
22.5958

(5080.0)

22.581

(5076.66)

22.5379

(5066.98)

2268.99

(5095.46)

22.614

(5084.11)

22.5118

(5061.12)

No. of analyses - - - - 7660 8420

Tab. 11. Data for design of 25-bar spatial truss

Design Variables

Size variables: A1; A2; A3; A4; A5; A6; A7; A8; q1; q2; q3; q4; q5; q6; q7

Material property and constraint data

Elastic modulus: E=6.895e7 MPa =1e7 psi.

Density of the material: ρ = 0.00277 kg/cm3= 0.1 lb/in3

Stress constraint |σi | ≤ 275.80MPa(40ksi); i = 1, . . . , 25

Displacement constraint in the directions of X and Y in the co-ordinate system |∆i | ≤ 0.8890cm(0.35in); i = 1, 2

List of the available profiles

Case 1: (Discrete sections)

Ai = {0.1, 0.5 ∗ I(I = 1, 2, · · · , 76), 39.81, 40}in2

Ai = {0.6452, 3.2258 ∗ I(I = 1, 2, . . . , 76), 256.8382, 258.0640}cm2

Case 2: (Continuous sections)

Ai ≥ 0.6452cm2(0.1in2); i = 1, . . . , 8

Loading Data

Node Px: kN (kip) Py: kN (kip) Pz: kN (kip)

1 4.448 (1) -44.48 (-10) -44.48 (-10)

2 0 -44.48 (-10) -44.48 (-10)

3 2.224 (0.5) 0 0

6 2.6688 (0.6) 0 0

curred after only 467 iterations, but in the case of CSS this hap-

pened in 915 iterations (Fig. 12).

Also in the continuous case, although CSS has a better re-

sult, however, convergence in the HS-CSS occurred much ear-

lier (Fig. 13).
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Tab. 12. Optimal design comparison for the 25-bar spatial truss (discrete sections)

Element group Optimal cross-sectional areas (in2)

Rajeev [29] Erbatur [38]
Kaveh and

Kalatjari [39]

Kaveh and

Rahami [21]

Kaveh and

Hassani [24]
Present Work

CSS HS-CSS

1 A1 0.10 0.10 0.10 0.10 0.10 0.10 0.10

2 A2–A5 1.80 1.20 0.10 0.50 0.50 0.50 0.50

3 A6–A9 2.30 3.20 3.50 3.00 3.50 3.00 3.00

4 A10–A11 0.20 0.10 0.10 0.10 0.10 0.10 0.10

5 A12–A13 0.10 1.10 2.0 2.00 2.00 2.00 2.00

6 A14–A17 0.80 0.90 1.00 1.00 1.00 1.00 1.00

7 A18–A21 1.80 0.40 0.10 0.10 0.1 0.10 0.10

8 A22–A25 3.00 3.40 4.00 4.00 3.50 4.00 4.00

Best weight: kN (lb)
2.428

(546.01)

2.196

(493.80)

2.136

(480.23)

2.134

(479.775)

2.11

(474.42)

2.134

(479.775)

2.134

(479.775)

No. of analyses - - - - - 18300 9340

Tab. 13. Optimal design comparison for the twenty-five-bar spatial truss (continuous sections)

Element group Optimal cross-sectional areas (in2)

Kaveh and

Rahami [21]

Kaveh and

Hassani [24]
Present Work

CSS HS-CSS

1 A1 0.10 0.10 0.10 0.10

2 A2–A5 0.10 0.72 0.104 0.12

3 A6–A9 3.7598 3.34 3.56 3.528

4 A10–A11 0.10 0.10 0.10 0.10

5 A12–A13 1.8552 1.82 1.879 1.871

6 A14–A17 0.7755 0.67 0.796 0.791

7 A18–A21 0.1408 0.32 0.161 0.152

8 A22–A25 3.846 3.47 3.938 3.97

Best weight: kN (lb) 2.08 (467.6293) 2.076 (466.8) 2.078 (467.31) 2.08 (467.69)

No. of analyses - - 38640 15320

Tab. 14. Loading conditions for the 72-bar spatial truss

Case Node Fx kN (kip) Fy kN (kip) Fz kN (kip)

1 17 0.0 0.0 −22.25 (-5.0)

18 0.0 0.0 −22.25 (-5.0)

19 0.0 0.0 −22.25 (-5.0)

20 0.0 0.0 −22.25 (-5.0)

2 17 22.25 (5.0) 22.25 (5.0) −22.25 (-5.0)

7.3 A 72-bar spatial truss with continuous sections

For the 72-bar spatial truss structure shown in Fig. 14, the

material density is 2767.990 kg/m3 (0.1 lb/in3) and the modulus

of elasticity is 68,950 MPa (10,000 ksi). The members are sub-

jected to the stress limits of ±172.375 MPa (±25 ksi). The nodes

are subjected to the displacement limits of ±0.635 cm (±0.25

in). The 72 structural members of this spatial truss are catego-

rized as 16 groups using the symmetry:

(1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–

A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10)

A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–

A66(15), A67– A70, and (16) A71–A72

The values and directions of the two load cases applied to the

72-bar spatial truss are listed in Table 14.

The results are summarized in Table 15. Also in Fig. 15, a

comparison is performed between the convergence rates of the

HS-CSS and CSS algorithms.

The HS-CSS algorithm can find the best design among the

other existing studies. The best weight of the HS-CSS algo-

rithm is 168.26 kg (370.96 lb), while it is 168.49 kg (371.47 lb)

for the Standard CSS. The standard CSS algorithm gets the opti-

mal solution after 14800 analyses, while it takes 13840 analyses

for the HS-CSS. However, both CSS and HS-CSS have a good

application in comparison to those of the previously reported

methods in the literature. For example, new results are 2.1 per-

cent lighter than those attained by the HBB-BC (the least weight
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Tab. 15. Optimal design comparison for the 72-bar spatial truss

Element group Optimal cross-sectional areas (in2)

GA ACO PSO BB–BC HBB–BC Present work

[40] [41] [42] [43] [40] CSS HS-CSS

1 A1–A4 1.755 1.948 1.7427 1.8577 1.9042 1.8135 1.8624

2 A5–A12 0.505 0.508 0.5185 0.5059 0.5162 0.5219 0.5173

3 A13–A16 0.105 0.101 0.1000 0.1000 0.1000 0.1047 0.1004

4 A17–A18 0.155 0.102 0.1000 0.1000 0.1000 0.1015 0.1002

5 A19–A22 1.155 1.303 1.3079 1.2476 1.2582 1.1831 1.1371

6 A23–A30 0.585 0.511 0.5193 0.5269 0.5035 0.5259 0.4925

7 A31–A34 0.100 0.101 0.1000 0.1000 0.1000 0.1003 0.1005

8 A35–A36 0.100 0.100 0.1000 0.1012 0.1000 0.1 0.1002

9 A37–A40 0.460 0.561 0.5142 0.5209 0.5178 0.4845 0.4758

10 A41–A48 0.530 0.492 0.5464 0.5172 0.5214 0.5069 0.5337

11 A49–A52 0.120 0.100 0.1000 0.1004 0.1000 0.1006 0.1014

12 A53–A54 0.165 0.107 0.1095 0.1005 0.1007 0.1115 0.1076

13 A55–A58 0.155 0.156 0.1615 0.1565 0.1566 0.1013 0.1002

14 A59–A66 0.535 0.550 0.5092 0.5507 0.5421 0.5097 1.8624

15 A67–A70 0.480 0.390 0.4967 0.3922 0.4132 0.3692 0.5173

16 A71–A72 0.520 0.592 0.5619 0.5922 0.5756 0.6051 0.1004

Weight (kN) (lb) 1.716 (385.76) 1.691 (380.24) 1.698 (381.91) 1.689 (379.85) 1.688 (379.66) 1.652 (371.47) 1.650 (370.96)

No. of analyses N/A 18,500 N/A 19,621 13,200 14800 13840

 
Fig. 12. Convergence rate comparison between the CSS and HS-CSS algo-

rithms for the 25-bar spatial truss (discrete sections)

 
Fig. 13. Convergence rate comparison between the CSS and HS-CSS algo-

rithms for the 25-bar spatial truss (continuous sections)

in the previous results).

 

Fig. 14. A 72-bar spatial truss

 
Fig. 15. Convergence rate comparison between the CSS and HS-CSS algo-

rithms for the 72-bar spatial truss (continuous sections)
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8 Concluding remarks

In this article, a new heuristic algorithm is introduced by hy-

bridizing CSS and HS algorithms (HS-CSS). Then, formulations

are presented for the analysis, design and optimization of struc-

tures for use in the new algorithm. These methods employ ba-

sic ideas from energy and complementary energy and utilize the

CSS and the presented algorithm and a comparative study is then

performed. The CSS and HS-CSS perform analysis of structures

without using classical methods which require the direct solu-

tion of the equations. Design is performed providing prescribed

stress ratios for the members, and as a special case an efficient

approach is suggested for fully stressed design. Formulation in

terms of energy concepts permits the efficient application of the

CSS and HS-CSS in optimization. The examples studied in this

paper for analysis, design and optimization illustrate the capa-

bility and the accuracy of the present applications and also pre-

sented heuristic algorithm.
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