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Abstract

This study investigates the potential use of the neuro-fuzzy

(NF) approach to model the rutting prediction by the aid of

repeated creep testing results for polypropylene modified as-

phalt mixtures. Marshall specimens, fabricated with M-03 type

polypropylene fibers at optimum bitumen content have been

tested in order to predict their rutting potential under differ-

ent load values and loading patterns at 50˚C. Throughout the

testing phase, it has been clearly shown that the addition of

polypropylene fibers results in improved Marshall stabilities and

decrease in the flow values, providing an eminent increase of

the service life of samples under repeated creep testing. The

performance of the accuracy of proposed neuro-fuzzy model is

observed to be quite satisfactory. In addition, to obtain the main

effects plot, a wide range of detailed two and three dimensional

parametric studies have been performed.
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Anadolu University, Civil Engineering Department, Eskişehir 26555, Turkey

1 Introduction

The creep test, for many years, has been used to estimate the

rutting potential of dense bituminous mixtures. This test is con-

ducted by applying a static or a repeated load to an asphalt spec-

imen and measuring the resulting permanent deformation. Ex-

tensive studies using the unconfined creep test (also known as

simple creep test or uniaxial creep test) as a basis of predicting

permanent deformation in dense bituminous mixtures has been

conducted up to date [1–7].

The loss of pavement serviceability is a common result from

rutting. Rutting is defined as the formation of the longitudi-

nal depressions under the wheel paths caused by the progressive

movement of materials under traffic loading in the asphalt pave-

ment layers or in the underlying base through consolidation or

plastic flow. Depending on the magnitude of the traffic load and

the relative strength of the pavement layers, rutting can occur

in the subgrade, base, or upper hot-mix asphalt layers. Recent

studies indicate that the rutting generally occurs in the top 75 to

100 mm of asphalt pavements [8–12].

Rutting can significantly reduce both structural and functional

performance of a pavement. Sometimes the rutting magnitude

may not be alarming for structural performance, but it is impor-

tant from the safety point of view [13]. Rutting can provide use-

ful information in selecting rehabilitation methods if it is quanti-

fied and categorized [14, 15]. In case of consolidation and shear

rutting, a thicker overlay can be used to improve serviceabil-

ity. In case of shear rutting, rehabilitation strategies can involve

milling or levelling with a new wearing course or recycling of

the surface course [14, 16].

To solve this rutting problem in flexible pavements (and other

problems such as fatigue and low temperature cracking), scien-

tists have developed some techniques and methodologies called

“asphalt (bitumen) modification”. The most popular bitumen

modification technique is polymer modification. To this end,

novel binders with improved rheological characteristics are con-

tinuously being developed [17–21]

Understanding the effects of repeated creep which leads to

the prediction of rutting potential of dense bituminous mixtures

is very important for the design of asphalt pavements. During a
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hot summer day, a heavy vehicle with a full load, travelling on a

climbing lane imposes a considerable distress on the pavement

structure. The repetition of heavier axle loads becomes more

pronounced with the increased amount of traffic. The loads from

the repeated traffic can create pronounced amounts of permanent

deformation or rutting. Even on straight road sections, because

of the slow speed and heavy loads of the trucks and trailers, sim-

ilar problems can be encountered. The pavement around traffic

lights and bus stops are also known to have similar problems.

Therefore, visible defects related to rutting are frequently found

on these types of road sections.

It can be found in the previous pioneering studies that the

creep test must be performed at relatively low stress levels (can-

not usually exceed 206.9 kPa (30 psi)) and low temperature

(cannot usually exceed 40˚C (104˚F)), otherwise the sample fails

prematurely [3,22,23]. The test conditions consist of a static ax-

ial stress, σ, of 100 kPa being applied to a specimen for a period

of 1 hour at a temperature of 40˚C. These test conditions were

standardized following a seminar in Zurich in 1977 [24]. This

test is inexpensive and easy to conduct but the ability of the test

to predict performance is extremely questionable [13]. In place

asphalt mixtures are sometimes prone to truck tire pressures of

more than 828 kPa (120 psi) and temperatures higher than 60˚C

(140˚F) [25]. Therefore, the conditions of static (and of course

repeated) creep testing do not closely simulate in-place condi-

tions and specifically speaking, there is not any “rule of the

thumb” for the testing standards for repeated creep testing via

universal testing machines that is being accepted by all of the

research counterparts all around the world.

On the other hand, no rational model to predict rutting has

been developed yet that would encompass all field variables.

There are some studies in the literature that is dealing with as-

phalt by utilising simulation methods or package computer soft-

ware [26, 27]. In this study, a neuro-fuzzy model has been pro-

posed to predict the strain accumulation (rutting potential) de-

veloped in the polypropylene modified Marshall specimens dur-

ing repeated load creep tests. The proposed study differs from

the previous researches that have been carried up to date in the

sense that, no studies have been carried out for the prediction

of the repeated creep test results by the aid (carried out in the

laboratory environment utilizing universal testing machine) of

neuro-fuzzy modelling and parametric studies.

The first part of this study reviews the available literature on

dense bituminous mixtures by the utilization of polypropylene

fibers was presented. Afterwards, short information on creep

(basically repeated) testing of dense bituminous mixtures is pre-

sented spanning in the last two decades about the actual load-

ing simulation efforts being undertaken in the laboratory envi-

ronment. Then, well-known application of neuro-fuzzy mod-

elling techniques in transportation and pavement engineering is

explored. Next, experimental program presenting the results of

the repeated creep tests has been explored in a detailed manner.

At this point, development and verification of the neuro-fuzzy

model is presented. In order to obtain the main effect plot, a

wide range of parametric studies have been performed by using

the neuro-fuzzy models. The analysis of these two and three

dimensional results is presented finally.

2 Polypropylene fiber modification of asphalt mixtures

Many valuable studies have been published about fiber mod-

ification of dense bituminous mixtures which can be found in a

detailed manner in the relevant literature until 2008 [28]. Tap-

kın has found that the addition of polypropylene fibers into the

asphalt concrete on a dry basis alters the behaviour of the mix-

ture in such a way that, Marshall stability values increase, flow

values decrease and the fatigue life increases significantly [29].

Tapkın et al. have also worked on the addition of polypropylene

fibers to the asphalt concrete on a wet basis, and have shown that

the most favourable and suitable polypropylene type was multi-

filament, 3 mm long (M-03 type) which increased the Marshall

stability values by 20% as well as the stiffness of the asphalt

concrete [28, 30–32]. Repeated load creep tests under differ-

ent loading patterns have also shown that the time to failure of

fiber modified asphalt specimens under repeated creep loading

at different loading patterns increased by 5-12 times versus ref-

erence specimens, which is a very significant improvement [33].

In another accompanying study, it was found that polypropy-

lene modification of bituminous binders developed the physical

and mechanical properties of the mixture and substantially im-

proved its resistance to permanent deformation. Polypropylene

modification also results in a saving of 30% in the amount of

bitumen, resulting in considerable cost savings [35]. There are

also a number of other studies in the literature on different appli-

cations of polypropylene fiber modification of asphalt concrete

in the last decade which deserve attention [34–42].

3 Creep testing and the relevant literature spanning the

last two decades

In this study, a completely different loading pattern, loading

stress level and testing temperature than the previous studies

have been adopted [32]. First of all, the testing temperature was

chosen as 50˚C to simulate actual in-situ conditions [28,30,31].

An axial stress, σ, of 500 kPa was applied to the specimens

until the specimen enters the tertiary creep region to nearly fail-

ure point to simulate the actual in-place conditions in a realistic

manner [32]. Also it has to be mentioned that, in today’s mod-

ern pavement engineering practices, there are also other bitumen

modifying agents other than polypropylene fibers which need to

be tested in actual stress levels in order to show the very pos-

itive contribution of these modifiers to the genuine mechanical

behaviour of modified dense bituminous mixtures.

Repeated creep tests have been performed in order to log the

accumulation mechanisms of the developing strains in the spec-

imen body, or in other words rutting potential. The creep de-

formation of standard Marshall specimens was measured as a

function of rectangular pulse counts or rather time. The load
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on the specimens was uniaxial and dynamic, which was repre-

senting the repeated application of axle loads. The dimensions

of asphalt specimens were approximately the same for nearly

all of the specimens. Therefore, a unity in the dimensions was

standardized. Prior to testing, the specimens were put into the

chamber for 24 hours in order to have the uniform temperature

distribution. All of the tests were carried at 50˚C. For controlled

temperature testing, the specimen’s skin and core temperature

were estimated by transducers inserted in a dummy specimen

and located near the specimen under test [33]. To understand the

behaviour of the asphalt specimens under different loading pat-

terns, different constant stress values were chosen. These values

were 100, 207 and 500 kPa. As polypropylene modification was

carried out, utilizing lower stress values like 100 and 207 kPa

was not feasible, since under such loading the tertiary creep re-

gion could not be observed within a reasonable period of time.

Therefore, in order to be able to differentiate between the ref-

erence and fiber-reinforced samples, a real destructive loading

level of 500 kPa (approximately 73 psi) was chosen as the stan-

dard stress value which is a main departure from the published

pioneering literature of the rule of thumbs about creep testing

[1–7]. This value very well represents the actual tire pressure

of a loaded truck. The specimen strain during the pulsed load-

ing stage of the test were measured in the same axis as the ap-

plied stress using two linear variable displacement transducers

(LVDTs). The applied force was open loop controlled and rect-

angular in shape [32]. Load periods were chosen as 500 ms for

all of the specimens and the rest periods were 500, 1000, 1500

and 2000 ms, respectively. Four specimens were tested for each

loading pattern.

Matthews and Monismith have performed unconfined creep

tests at temperatures 25˚C, 38˚C and 49˚C which is a main de-

parture from the published literature up to date in the testing

temperature manner and deserves attention [43]. In another

study by Mallick et al., in order to simulate the average pave-

ment temperature throughout the United States, 60˚C of test-

ing temperature was utilised [44]. Ramsamooj and Ramadan

had carried out creep tests at four stress levels under constant

stresses of 150, 400, 650 and 900 kPa [45]. This was again

an important deviation from the accustomed practices of creep

testing that deserves attention. Zhang et al. had utilised a ma-

terial test system to conduct repeated creep tests. A deviator

stress along with a confining stress was applied on a hot mix

asphalt (HMA) sample for 1 hour (3600 load cycles), with 0.1

second load duration and 0.9 second rest period intervals. After

the 3,600 load cycles, the load was removed and the rebound

was measured for 15 minutes. The strain observed at the end

of this period was reported as the permanent strain. The perma-

nent strain indicates the rutting potential of the mixtures [46].

The target air void content for mixtures tested by the confined

repeated load test was 4.0% ± 0.5% in accordance with earlier

studies. The test temperature was 60˚C. Test loading consisted

of a 138-kPa (20-psi) confining pressure and an 827-kPa (120-

psi) normal pressure [44]. Tashman et al. had carried out triaxial

confined static creep test in determining the model parameters

related to their studies. Both strength and creep tests were con-

ducted at a temperature of 54.4˚C (130˚F) [47]. This is again a

significant departure from the routine testing protocol of 40˚C

temperature [24]. A static constant load had been applied until

“tertiary flow” occurred. The test had been stopped at the initi-

ation of the tertiary creep zone in order to avoid damaging the

linear variable differential transformer (LVDT); thus the experi-

mental tertiary creep pattern could not have been recorded natu-

rally [47]. Chen et al. had investigated the mechanical responses

and modeling of rutting in flexible pavements [48]. Goh and You

have revised the repeated creep testing ambient temperature in

a different manner than only utilising 40˚C [49]. Vardanega et

al. have used a very similar ambient temperature and loading

pattern to Tapkın et al. [32] in the studies that they have car-

ried out (namely 50˚C and 0.5 (also 1.5) second loading and 1.5

(also 0.4) second unloading) depending on the argument which

is also verified by the experience of QDMR (Queensland De-

partment of Main Roads) [50]. Chen et al. investigated the uti-

lization of recycled brick powder as alternative filler in asphalt

mixture. They had carried out static and dynamic creep tests us-

ing Universal Testing Machine (UTM) to apply constant stress

to asphalt specimens. Their specimens were 100 mm in diame-

ter and 100 mm in height. These specimens were tested at 60˚C

with a constant stress of 100 kPa for 3600 seconds and unloaded

for the recovery of deformations for 5400 seconds. Also dy-

namic creep tests were applied with the same axial stress level

and same temperature [51]. Also in some studies, in the last

five years that was utilising the “standard” procedure depicted

in Zurich [24] the testing temperature had been chosen as 30˚C

which was again a departure from this technique [52–54].

4 Neuro-fuzzy applications carried out in pavement

and transportation engineering applications in the last

five years

Among the limited researches in the field, below, the reader

may find some of the important studies.

The study by Filippo et al. presents a procedure for rank-

ing environmentally valid highway restoration by priority, using

a fuzzy multi-criteria model that supports decisions on which

road segments require these works and services. This is a mat-

ter of much concern for the Brazilian Government, due to rising

awareness of soil degradation and the depletion of plant cover,

as accident rates and transport costs rise steadily [55]. In the

dissertation by Chen, the main aim was to develop enhanced

LCCA (Life-Cycle Cost Analysis) models using soft comput-

ing (mainly fuzzy logic) techniques. The proposed models used

available “real world” information to forecast life-cycle costs

of competing maintenance and rehabilitation strategies and sup-

port infrastructure management decisions. A critical review of

available soft computing techniques and their applications in in-

frastructure management suggested that these techniques pro-
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vide appealing alternatives for supporting many of the infras-

tructure management functions [56]. The paper by Quek et al.

describes the application of a specific class of neuro-fuzzy sys-

tem known as the Pseudo Outer-Product Fuzzy-Neural Network

using Truth-Value-Restriction method for modelling traffic be-

haviour. This approach has been shown to perform better on

such problems than similar architectures [57]. The study carried

out by Bianchini and Bandini proposes a neuro-fuzzy model to

predict the performance of flexible pavements using the param-

eters routinely collected by agencies to characterize the condi-

tion of an existing pavement. These parameters are generally

obtained by performing falling weight deflectometer tests and

monitoring the development of distresses on the pavement sur-

face. The proposed hybrid model for predicting pavement per-

formance was characterized by multilayer, feedforward neural

networks that led the reasoning process of the “IF-THEN” fuzzy

rules. The results of the neuro-fuzzy model were found to be

superior to those of the linear regression model in terms of ac-

curacy in the approximation [58].

5 Experimental analyses

Throughout the study, continuous aggregate gradation has

been used to fit the gradation limits for wearing course Type

2 set by General Directorate of Turkish Highways [59]. The ag-

gregate was calcareous type crushed stone obtained from a local

quarry and 50/70 penetration bitumen was obtained from a local

refinery were used for preparation of the Marshall specimens.

Physical properties of the bitumen samples are given in Table 1.

The physical properties of coarse and fine aggregates are given

in Tables 2 and 3. The apparent specific gravity of filler is 2790

kg/m3.

Tab. 1. Physical properties of the reference bitumen

Property Test Value Standard

Penetration at 25˚C, 1/10 mm 55.4 ASTM D 5-97

Penetration Index -1.2 -

Ductility at 25˚C, cm > 100 ASTM D 113-99

Loss on heating, % 0.057 ASTM D 6-80

Specific gravity at 25˚C, kg/m3 1022 ASTM D 70-76

Softening point, ˚C 48.0 ASTM D 36-95

Flash point, ˚C 327 ASTM D 92-02

Fire point, ˚C 376 ASTM D 92-02

Tab. 2. Physical properties of coarse aggregates

Property Test Value Standard

Bulk specific gravity, kg/m3 2703 ASTM C 127-04

Apparent specific gravity, kg/m3 2730 ASTM C 127-04

Water absorption, % 0.385 ASTM C 127-04

Aggregate gradation for the bituminous mixtures tested in the

laboratory has been selected as an average of the wearing course

type 2 gradation limits given by General Directorate of High-

ways of Turkey which is stated in the Highway Technical Spec-

Tab. 3. Physical properties of fine aggregates

Property Test Value Standard

Bulk specific gravity, kg/m3 2610 ASTM C 128-04

Apparent specific gravity, kg/m3 2754 ASTM C 128-04

Water absorption, % 1.994 ASTM C 128-04

ifications [59]. The mixture gradation and gradation limits are

given in Table 4.

Tab. 4. Type 2 wearing course gradation [59]

Sieve size, mm Gradation limits, % Passing, % Retained, %

12.7 100 100 0

9.52 80-100 90 10

4.76 55-72 63.5 26.5

2.00 36-53 44.5 19.0

0.42 16-28 22 22.5

0.177 8-16 12 10.0

0.074 4-10 7 5

Pan - - 7

In the wet basis modification procedure of the asphalt con-

crete specimens, standard 50/70 penetration bitumen was mod-

ified by utilising polypropylene fibers. The fibers were pre-

mixed with bitumen using a standard mixer at 500 revolutions

per minute for two hours. The mixing temperature was around

165-170˚C [60]. For the sake of testing reasons, the reference

bitumen samples were also subjected to the same temperature to

equalise the oxidative and aging effects of two hours of heat

effect utilised in polypropylene modification. Three types of

polypropylene fibers: M-03, M-09 and waste fibers were used in

research. For M-03 type fibers, fiber contents of 3%�, 4.5%�and

6%�by weight of aggregate were premixed with bitumen and

were used for the preparation of standard Marshall specimens

[32]. For M-09 type and waste fibers only 3%�fiber content was

utilized as it was extremely difficult and cumbersome to mix

fibers with greater lengths with bitumen using standard mix-

ers other than high shear ones. According to the workability

criteria, M-03 type fibers were found to be the best modifiers

and, due to the consistency of the Marshall test results, 3%�fiber

content was determined as the optimal addition amount. With

these amounts, polypropylene fibers melt in bitumen and bitu-

men forms a continuous phase for polypropylene particles. The

physical properties of the polypropylene fiber based bitumen

samples with 3%�fiber content are given in Table 5.

The performance characteristics, such as penetration, penetra-

tion index, ductility, loss on heating, specific gravity, and soft-

ening point of the fiber modified bitumen samples were greatly

improved as compared to reference specimens given in Table 1.

Therefore, the addition of 3%�of M-03 type fibers clearly shows

the decrease in temperature susceptibility of the reference bitu-

men (as shown by the eminent increase in the penetration index

of polypropylene modified bitumen samples) providing the most

significant effect on the properties of resultant asphalt concrete
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Tab. 5. Physical properties of the polypropylene modified bitumen samples

Property Test Value Standard

Penetration at 25˚C, 1/10 mm 45.5 ASTM D 5-97

Penetration Index -0.8 -

Ductility at 25˚C, cm > 100 ASTM D 113-99

Loss on heating, % 0.025 ASTM D 6-80

Specific gravity at 25˚C, kg/m3 1015 ASTM D 70-76

Softening point, ˚C 52.05 ASTM D 36-95

Flash point, ˚C 292 ASTM D 92-02

Fire point, ˚C 345 ASTM D 92-02

mixtures as an increase in the stiffness values. To determine the

optimum bitumen content, the bitumen contents corresponding

to the mixtures with maximal stability and unit weight, 4% air

voids and 70% voids filled with asphalt, were found and aver-

aged according to the limits given by the General Directorate of

Highways of Turkey [59]. These optimum bitumen contents are

represented in Fig. 1.

Fig. 1. Optimum bitumen content values

Based on the performed experiments, the optimum bitumen

content varies depending on the type and dosage of fibers. How-

ever, the optimal polypropylene amount, the type, the homo-

geneity in the preparation of the Marshall specimens, the ease in

the addition of the polypropylene fibers, the ease in the fabrica-

tion of the specimens and the fluctuations of the observed phys-

ical and mechanical properties are also very important. For ex-

ample, specimens prepared with higher dosages of M-03 fibers,

mixtures made with M-09 and waste fibers resulted in increased

value of optimal bitumen contents. M-09 and waste fibers also

had very little workability. The addition of these fibers into

bitumen is difficult and results in very viscous modified bitu-

men samples that do not allow the fabrication of stable Marshall

specimens. The fluctuations in the stability and flow values and

Marshall Quotient values do support the above mentioned ob-

servations. Based on these results, M-03 polypropylene fibers at

a dosage of 3%�by the weight of aggregates were selected as op-

timal polypropylene addition amount. Also, it can be seen that

the optimum bitumen contents for reference and specimens with

3%�of M-03 fibers are 4.81% and 4.97%, respectively (Fig. 1).

For the next step of experiments, these two values were taken

as 5% for the sake of ease in preparation of the reference and

modified asphalt specimens [32].

5.1 Repeated creep tests performed

The reference specimens utilised in the dynamic creep testing

were prepared with 5% bitumen content. The fiber-reinforced

(M-03 type with dosage of 3%�by the weight of aggregate) spec-

imens were also prepared with 5% bitumen content. In the re-

peated creep test the accumulated axial strain, the resilient axial

strain, peak vertical stress, resilient modulus and creep stiffness

were calculated by Feeley [61]. The repeated creep test results

are visualized through Figs. 2–5. These sets of graphs present

the log of accumulated strains developed in the asphalt speci-

men bodies versus pulse counts. These graphs show the general

trend of the four similar (in lieu of proximity of air void values

concept) specimens under the specified loading and temperature

conditions [33]. For the sake of uniformity reasons, the con-

stant stress had been taken as 500 kPa and the test temperature

was 50˚C for all the experiments. In all of the Figs. (2–5), the

pulse count axis limits have been chosen as 0 - 40000 and the

accumulated strain axis limits has been chosen as 0 – 80000.

Fig. 2. Accumulated strain values for control and M-03 type polypropylene

fiber modified samples (500 ms load – 500 ms rest)

Fig. 3. Accumulated strain values for control and M-03 type polypropylene

fiber modified samples (500 ms load – 1000 ms rest)

As can be seen from Figs. 2 to 5, the service life of fiber-

reinforced specimens (5 % optimum bitumen content, 3%�of

M-03 type fibers) are respectively longer than the control spec-

imens under the same testing conditions. This is a very sig-

nificant difference showing the positive effect of polypropylene

fibers. As can be seen from all figures, the control specimens are

entering to the tertiary stage of creep only at around 2000 pulse
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Fig. 4. Accumulated strain values for control and M-03 type polypropylene

fiber modified samples (500 ms load – 1500 ms rest)

Fig. 5. Accumulated strain values for control and M-03 type polypropylene

fiber modified samples (500 ms load – 2000 ms rest)

counts; this loading rate corresponds to the primary creep stage

for the polypropylene fiber modified specimens. Fiber modified

specimens reach the tertiary creep stage only at the much higher

pulse counts. At the end of the repeated creep tests, the control

specimens have a total collapse, while the modified specimens

did not show any sign of failure (so, the fiber modified speci-

mens would have had even a longer service life if the tests were

continued). Therefore it can be easily concluded that polypropy-

lene modification substantially increases the service lives of as-

phalt specimens under repeated loading. Rutting problems are

not encountered in the polypropylene modified specimens un-

til late pulse counts. This is valid for all of the loading patterns

covered in this study. But the question is: can these accumulated

strain values be estimated by some means so that the rutting po-

tential of asphalt mixes can be predicted in an accurate manner?

This study tries to find a solution to this problem from this point

forward.

6 Background on fuzzy-logic

Over the last decade, fuzzy logic, which was invented by Lotfi

Zadeh, has been applied to a wide range of fields covering engi-

neering, process control, image processing, pattern recognition

and classification, management, economics and decision mak-

ing [62,63]. Fuzzy systems can be defined as rule-based systems

that are constructed from a collection of linguistic rules which

can represent any system with accuracy, i.e., they work as uni-

versal approximators. The rule-based system of fuzzy logic the-

ory uses linguistic variables as its antecedents and consequents

where antecedents express an inference or the inequality, which

should be satisfied and consequents are those, which we can in-

fer, and is the output if the antecedent inequality is satisfied. The

fuzzy rule-based system is actually an IF–THEN rule-based sys-

tem, given by, IF antecedent, THEN consequent [64].

Fuzzy logic operations are based on fuzzy sets where the input

data may be defined as fuzzy sets or a single element with a

membership value of unity. The membership values (µ1 and µ2)

are found from the intersections of the data sets with the fuzzy

sets as shown in Fig. 6 which illustrates the graphical method of

finding membership values in the case of a single input [65].

A fuzzy set contains elements which have varying degrees of

membership in the set, unlike the classical or crisp sets where

a member either belongs to that set or does not (0 or 1). How-

ever a fuzzy set allows a member to have a varying degree of

membership and this partial degree membership can be mapped

into a function or a universe of membership values [66]. The

implementation of fuzzy logic considers the following steps:

1. Fuzzification which requires conversion of classical data

or crisp data into fuzzy data or membership functions (MFs); 2.

Fuzzy inference process which connects membership functions

with the fuzzy rules to derive the fuzzy output; 3. Defuzzifica-

tion which computes each associated output [66].

6.1 Neuro-fuzzy systems

Fuzzy systems can also be connected with neural networks

to form neuro-fuzzy systems which exhibit advantages of both

approaches. Neuro-fuzzy systems combine the natural language

description of fuzzy systems and the learning properties of neu-

ral networks. Various neuro fuzzy systems have been developed

that are known in literature under short names. ANFIS devel-

oped by Jang et al. [Adaptive Network-based Fuzzy Inference

System] is one of these neuro-fuzzy systems which allow the

fuzzy systems to learn the parameters using adaptive backprop-

agation learning algorithm [63,67]. Mainly three types of fuzzy

inference systems have been widely employed in various appli-

cations: Mamdani, Sugeno and Tsukamoto fuzzy models. The

differences between these three fuzzy inference systems are due

to the consequents of their fuzzy rules, and thus their aggrega-

tion and defuzzification procedures differ accordingly [67]. In

this study, the Sugeno FIS is used where each rule is defined as

a linear combination of input variables. The corresponding fi-

nal output of the fuzzy model is simply the weighted average of

each rule’s output. A Sugeno FIS consisting of two input vari-

ables x and y, for example, a one output variable f will lead to

two fuzzy rules:

Rule 1: If x is A1, y is B1 then f1 = p1x + q1y + r1

Rule 2: If x is A2, y is B2 then f2 = p2x + q2y + r2

where pi, qi, and ri are the consequent parameters of ith rule.

Ai, Bi and Ci are the linguistic labels which are represented by

fuzzy sets shown in Fig. 7.

Per. Pol. Civil Eng.258 Serkan Tapkın / Abdulkadir Çevik / Ün Uşar



Fig. 6. Initial and final membership functions

Fig. 7. The Sugeno fuzzy model (Jang et al.)

6.2 Solution of a sample problem with ANFIS

To illustrate how ANFIS works for function approximation,

let’s suppose one is given a sampling of the numerical values

from the simple function below:

yi = a3 + b2 (1)

where a and b are independent variables chosen over ran-

domly points in the real interval. In this case, a sample of data

in the form of 17 pairs (a, b, yi) is given where yi is the value of

the independent variable in the given interval {1, 9} and yi is

the output of the function given in equation 1 and presented in

Table 6. The aim is to construct the ANFIS model fitting those

values within the minimum error for equation 1 by using the

simplest ANFIS model that is available where the numbers of

rules are 2 for each variable and the type of output membership

function is constant.

Initial and final membership values of rules for each input are

given in Fig. 6. Suppose one will find the output for input values

of 1 and 9. The inference diagram of the proposed ANFIS model

is given in Fig. 8 for input values of 1 and 9 with corresponding

values of output membership which is chosen as constant. For

the first input which is 1 the value of the membership function

is observed to be 1 shown on the left side of Fig. 8. For the

second input which is 9 the value of the membership function is

observed to be 1 again shown on the left side of Fig. 8. Thus the

final output will be: 82 × 1 = 82.

The exact result for a = 1 and b = 9 from equation 1 will be

y = 13 + 92 = 82 (2)

7 Numerical Application

The main focus of this study is to explore an application of

neuro-fuzzy modelling for the rutting prediction by the aid of

repeated creep testing results for polypropylene modified dense

bituminous mixtures. Therefore an extensive laboratory test-

ing and data analysis phase has been performed throughout the

study. The details of the experimental database including the

ranges of parameters are given in Table 7.

Tab. 6. Data pairs for equation (1)

a b yi

1 3 10

3 4 43

5 1 126

2 6 44

7 8 407

8 7 561

1 2 5

9 4 745

2 5 33

7 8 407

1 1 2

9 9 810

1 9 82

9 1 730

1 3 10

3 4 43

1 1 2

7.1 Results of neuro-fuzzy modelling

The input variables in the developed neuro-fuzzy model uses

the physical properties of standard Marshall specimens such as

polypropylene type, specimen height, unit weight, voids in min-

eral aggregate, voids filled with asphalt, air voids and repeated

creep test properties such as rest period and pulse counts in or-

der to predict the rutting potential of the fabricated specimens.

It should be noted that the proposed neuro-fuzzy modelling is

valid for the ranges of training set given in Table 7 and sim-

ilar and specific type of aggregate sources, bitumen, polymer

modification techniques, aggregate gradation, mix proportion-

ing, modification technique and laboratory conditions. Statisti-

cal parameters of test and training sets of neuro-fuzzy formula-

tions are presented in Table 8. The accuracy of the proposed NF

models in terms of correlation coefficients (R2) and coefficient

of variation (COV) can be considered to be quite satisfactory.

Prior to NF modelling, the experimental results are divided

into randomly selected training and testing sets among the ex-
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Fig. 8. Fuzzy inference diagram

Fig. 9. Initial and final membership values for strain accumulation

Tab. 7. Ranges of experimental database used throughout the study

Polypropylene

type

Specimen

height

(mm)

Calculated

unit weight

(kg/m3)

V.M.A. (%) V f (%) Va (%)
Rest period

(ms)
Pulse count

Accumulated

strain (µε)

Maximum 3.00 60.00 2469.54 16.41 77.79 4.86 2000.00 39104.00 69937.00

Minimum 0.00 58.00 2419.80 14.69 68.24 2.90 500.00 2.00 459.70

Mean 1.45 58.80 2445.68 15.53 72.75 3.84 1217.86 5732.18 21681.79

Std. dev. 1.50 0.81 17.00 0.60 3.52 0.67 563.29 7052.19 11984.52
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Tab. 8. Statistical parameters of the proposed ANFIS model

Testing Set Train Set Total Set

MSE 13044066 11914117 12818076

MAPE 10.45896 10.64586 10.49634

R2 0.907773 0.916093 0.909244

Mean 0.998492 1.001151 0.999023

COV 0.160876 0.155399 0.15976

perimental database with 80% and 20%, respectively. All neuro-

fuzzy modelling are performed by MATLAB Fuzzy Logic Tool-

box [64]. The neuro-fuzzy model is constructed with training

sets and the accuracy is verified by testing sets which the neuro-

fuzzy model faces for the first time. To illustrate the effective-

ness of the neuro-fuzzy approach, the simplest ANFIS model

is selected. The proposed ANFIS models use triangular, gaus-

sian and generalized bell-shaped input membership functions

with minimum number of rules which is 2. The output mem-

bership function is chosen as the simplest one available which

is a constant value. These conditions will lead to the simplest

available NF model. The initial and final membership functions

for inputs are presented in Fig. 9. The input variables in Fig. 9

(namely input 1 to input 8) stand for the physical properties of

standard Marshall specimens such as polypropylene type, speci-

men height, unit weight, voids in mineral aggregate, voids filled

with asphalt, air voids and repeated creep test properties such

as rest period and pulse counts respectively in order to predict

the rutting potential of the fabricated specimens. Features of the

proposed ANFIS model are given in Table 9 [68]. The perfor-

mances of proposed NF models are presented in Fig. 10. The

reader can visualise the superior performance of the NF models

in Fig. 10 easily.

8 Parametric studies

The main effect plot is an important graphical tool to visu-

alise the independent impact of each variable utilised in the car-

ried analyses on accumulated strain values. This tool allows the

reader to visualise a better and much simpler snapshot of the

overall significance of variable effects on the outputs and will

provide a general panorama. In the main effects plot, the mean

output is plotted at each factor level which is later connected

by a straight line. The slope of the line for each variable is the

degree of its effect on the output. In order to obtain the main

effects plot, a wide range of detailed parametric studies have

been performed by utilising the proposed neuro-fuzzy model.

The mean values of all variables are used to observe the general

trend of each variable. The evaluation of separate interaction ef-

fects plot between any two variables is also presented by using

the mean values of all variables. The main effects plot will also

help further researchers willing to perform studies on rutting po-

tential without carrying out destructive tests for similar and spe-

cific type of aggregate sources, bitumen, polymer modification

techniques, aggregate gradation, mix proportioning, modifica-

tion technique and laboratory conditions.

In Part 8.1, two-dimensional parametric analysis graphs that

have been obtained at the end of parametric studies have been

presented. The following part 8.2 is further presenting the three-

dimensional parametric analysis results.

8.1 Two-dimensional parametric analysis results

In Fig. 11 and the rest of the figures, the y-axes represent

the accumulated strain values in µε (PolType 1 stands for M-03

type polypropylene fiber modified asphalt specimens). Also in

all of the corresponding parametric plots, creep stands for ac-

cumulated strain values. Finally P stands for pulse counts, UW

stands for unit weight, VF stands for voids filled with asphalt,

Va stands for air voids, L stands for rest period, VMA stands for

voids in mineral aggregate.

Fig. 10. Performance of neuro-fuzzy model versus test results for strain ac-

cumulation

Fig. 11. Interaction plot for polypropylene type versus pulse counts

In Fig. 11, the reader can visualise the very positive effect

of polypropylene modification with the visible decrease in the

strain accumulation values by increasing pulse counts (P).

In Fig. 12, as the unit weight (UW) of the specimens de-

creases (that is showing the effect of polypropylene modifica-

tion) the strain accumulation decreases with increasing pulse

counts as can be clearly expected.
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Tab. 9. Features of the proposed ANFIS model

Type SUGENO

Aggregation Method Maximum

Defuzzification Method Weighted Average

Input Membership Function Type Triangular, Gaussian, Generalized bell-shaped

Output Membership Function Type Constant

Fig. 12. Interaction plot for unit weight versus pulse counts

Fig. 13. Interaction plot for voids filled with asphalt versus pulse counts

Fig. 14. Interaction plot for air voids versus pulse counts

In Fig. 13, as the voids filled with asphalt (VF) values of the

specimens decrease (that is showing the effect of polypropylene

Fig. 15. Interaction plot for pulse width with asphalt versus pulse counts

Fig. 16. Interaction plot for unit weight versus pulse width

modification) the strain accumulation decreases with increasing

pulse counts again. This is quite clear from the interaction plot.

In Fig. 14, the changing pattern of strain accumulation can

be visualised by the decrease in air void values and increase in

pulse counts.

Fig. 15 stands for the rest period change patterns. For exam-

ple, for 7000 pulse counts, the reader may realise that the 500

ms load – 500 ms rest loading pattern ends in a very destruc-

tive strain accumulation value when compared to 500 ms load –

2000 ms rest loading pattern. This is expected from the materi-

als engineering point of view.

Fig. 16 is another interpretation of Fig. 15. This time unit

weight values come into the scene and with the decrease of these

values, that means with polypropylene modification, and in-

crease in rest periods, strain accumulation obviously decreases.

In Fig. 17, the air void values increase coupled with the in-
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Fig. 17. Interaction plot for air voids versus pulse width

Fig. 18. Interaction plot for voids filled with asphalt versus air voids

crease in rest period patterns of the loading results in an accept-

able strain accumulation decrease.

The decrease in VF (voids filled with asphalt) values which is

a clear indication of polypropylene fiber modification together

with the air voids increase is, this time, generating the decrease

in strain accumulation.

A similar argument to the above discussions is valid in

Fig. 19. Lighter specimens occurring because of the polypropy-

lene modification arm in arm with lesser voids filled with asphalt

values end up in a more desirable rheological behaviour.

Up to an acceptable point which is 16% in this case, the in-

crease in the VMA (voids in mineral aggregate) values corre-

sponding to polypropylene modification decreases the strain ac-

cumulation coupled with lighter specimens. From this point on,

the increase in VMA values corresponds to a slight increase in

strain accumulation as can be clearly expected for all patterns.

8.2 Three-dimensional parametric analysis results

At this point, some of the very representative three-

dimensional plots are presented to show the various interactions

between different testing parameters.

In Fig. 21, from the three dimensional interaction plot, the

reader can visualise clearly that the increase in air voids coupled

with the increase in pulse counts have ended up with a lesser

strain accumulation.

Similar arguments are valid for Fig. 22. That means lighter

specimens with longer rest periods have ended up with a lesser

accumulated strain which is really desirable.

Fig. 19. Interaction plot for unit weight versus voids filled with asphalt

Fig. 20. Interaction plot for unit weight versus voids in mineral aggregate

Fig. 21. Surface plot for strain accumulation versus pulse count and air voids

Higher air voids together with longer rest periods which

is representing the effect of polypropylene modification plus

slower speeds of the traffic (longer rest periods) end up with

a more desirable pavement behaviour with considerably lesser

strain accumulation.
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Fig. 22. Surface plot for strain accumulation versus pulse count and unit

weight

Fig. 23. Surface plot for strain accumulation versus pulse width and air

voids

Fig. 24 shows the very positive effect of polypropylene mod-

ification together with lesser voids filled with asphalt values.

In Fig. 25 the general snapshot of the parametric study of

mean effects of accumulated strain analysis can be visualized

in a compact manner.

Fig. 24. Surface plot for strain accumulation versus voids filled with asphalt

and polypropylene type

The reader must not lose sight of that the obtained results at

the end of this and similar kind of studies is valid only for spe-

Fig. 25. Whole trends for the parametric study of main effects of accumu-

lated strain (rutting potential) analysis

cific types of aggregate sources, bitumen, polymer modification

techniques, aggregate gradation, mix proportioning, modifica-

tion technique and laboratory conditions. Therefore it is not pos-

sible to generalise the findings that have been obtained through-

out these studies for another specific case.

9 Conclusions

Wet basis M-03 type polypropylene fiber modification of

dense bituminous mixtures is an efficient way to alter the me-

chanical properties and in this study, Marshall specimens, which

are tested under repeated load creep loading by the use of UTM

5-P, have shown a considerable improvement in their service

lives (5-12 times longer lives) by the aid of this modification.

In addition to this fact, a novel approach for the prediction of

mechanical properties such as accumulated strain development

(rutting potential) at the end of repeated load creep tests carried

out by UTM-5P utilizing neuro-fuzzy modelling has been pro-

posed. The rutting potential can be explored by this means in

a perfect manner as a main departure from the other published

studies in this field. A very wide range of experimental stud-

ies covering the mechanical properties of asphalt concrete have

been carried to obtain an experimental database which can be

used for neuro-fuzzy training. To illustrate the applicability and

effectiveness of neuro-fuzzy model, six physical properties of

standard Marshall specimens such as polypropylene type, speci-

men height, unit weight, voids in mineral aggregate, voids filled

with asphalt, air voids and two repeated creep test properties

such as rest period and pulse counts were modelled in order to

predict the rutting potential of asphalt specimens. As a result,

neuro-fuzzy models have been proposed for strain accumulation

values. The reader should bear in mind that the proposed model

and parametric studies are valid for the ranges of the experi-

mental database used for modelling. The reader must also not

lose sight of that the obtained results at the end of this and sim-

ilar kind of studies is valid only for specific types of aggregate

sources, bitumen, polymer modification techniques, aggregate

gradation, mix proportioning, modification technique and labo-
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ratory conditions. Therefore it is not possible to generalise the

findings that have been obtained throughout these studies for an-

other specific case. To obtain the main effects of each variable

on accumulated strain, a wide range of parametric studies has

been performed by using the neuro-fuzzy model. As a result,

the proposed neuro-fuzzy model and formulation of the avail-

able accumulated strain development of Marshall specimens is

quite accurate, fast and practical for use by other researchers

studying in experimental pavement engineering field.
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