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Abstract

A comprehensive mathematical model of circulating fluidized

bed combustors was set up and verified by measurements car-

ried out on a 300 MW industrial boiler. The one-dimensional

cell model structure was used, and equations describing the dy-

namics of coal combustion, gas–gas reactions, fluid dynamics of

the suspension and heat transfer were implemented. Partition-

ing the combustion chamber into only nine cells according to

the geometrical characteristics of the technology plus an empir-

ical cyclone temperature model was found to fulfill both require-

ments regarding accuracy and low computational demand. The

later one is a key for its applicability in the area of controller de-

sign. Based on the available model, and considering the char-

acteristics of this technology differing definitely from those of

conventional combustors, a new optimum control strategy was

proposed, modeled and tested successfully.
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1 Introduction

The Fluidized Bed Combustion (FBC) technology reached its

mature for commercial applications in the early 1980s, and it be-

came the leading clean coal combustion technology in the 90s.

Throughout the decades of its history, its definite advantages be-

came evident in the cases of low grade and problematic solid

fuels. This attribute became very important by the early 2000s,

and it initiated a new success story of the technology in the ap-

plication area of sustainable energy production from biomass

and waste-derived fuels [1, 2].

In case of a Circulating Fluidized Bed Combustor (CFBC),

the combustion air is blown into the combustion chamber

through dozens of nozzles located on its bottom as shown in

Fig. 1. This air (the ’primary air’) keeps the inventory (typically

sand) in fluidized state, and the combustion of fuel particles

added takes place in this suspension. Solids exiting the com-

bustion chamber are segregated by one or more cyclones and

led back into the combustion chamber. Under these conditions

the combustion can take place at relatively low temperature (at

about 850 ˚C) where neither thermal, nor prompt NOx -building

can occur. Absorption of the sulfur dioxide released from some

coals during combustion is promoted by milled limestone added

to the suspension.

All stages of research, development and design of fluidized

bed combustors may be effectively supported by programmed

mathematical models describing not only some parts or subpro-

cesses of the combustor, but its entirety. The purpose of three-

dimensional (3D) FBC models [3–6] is to investigate spatial in-

homogenities in detail. Commercial CFD tools are used gen-

erally, which are very effective in solving also large scale and

complex problems, but in such cases the simulation of instation-

ary changes is out of their scopes and computational possibilities

nowadays. A valuable review article on the challenges and is-

sues can be found in [4]. The numerical demand will be dramat-

ically reduced when one horizontal direction of inhomogenities

will be considered only. This approach was widespreadly used

in the second half of the last decade [7, 8], and it supplies very

useful information regarding temperature profile and gas–solid

flow including the cluster formation of the solid phase along the
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walls on the basis of new ideas and improved computational pos-

sibilities of the recent age [9]. A further known direction of ef-

forts for lowering the computation time was the introduction of

the so called 1.5D modeling approach on the turn of the century

[10,11], in which case the a.m. dominant horizontal inhomogen-

ity was investigated only, on a simplified way. The next step is

the one-dimensional modeling [12–14], of course.

Detailed steady state investigation was the purpose of all

models discussed above, and because of it, they are not capa-

ble for simulating instationary changes within realistic com-

putational time frames. However, process dynamics may be

a very important issue in some cases. Designing the control

system is one area where models can be used very effectively,

but modeling also the instationary behaviors is essential in this

case. This is the explicit goal of some works [15, 16], where

the one-dimensional cell model structure was used. However,

the computational times of these models are not published. If a

programmed model requires long time for simulating some dy-

namic changes (e.g. model run time > simulated time), the use

of the model is limited for off-line simulations only. In the op-

posite case, however, (when the programmed model runs much

faster than reality) the model can be used on-line, for example,

as a predictor implemented inside the controller for supporting

its decisions. The known FBC models capable for this [17, 18]

are semi-empirical models, which do not contain the detailed

mathematical descriptions of the physical, chemical phenom-

ena of the system, they are based on a few revealing equations

parametrized by some measured values instead.

In this paper, a verified mathematical model will be presented

the programmed version of which is capable for being integrated

into an on-line controller due to its low computational time de-

mand.

The amount of information published about the control strate-

gies applied in industrial fluidized bed combustors is definitely

very limited. Some unpublished supplier information is avail-

able, and only a few studies give details on control methods re-

ally applied in power plants [12, 15, 19]. All these structures

are built up from the classical SISO (single input, single output)

control blocks and they are based on the known solutions of the

traditional combustion control methods. Although the control

theory offers a very wide variety of advanced control methods

for numerous process types, the applications of such methods in

the power industry is far below the possibilities and the level of

use in another industry branch, the chemical industry [20–22].

In this paper, a new control method will be presented, which

considers the special characteristics of the FBC technique, and

which is based on the programmed version of the verified math-

ematical model. The proposed structure is a multivariable opti-

mum control, and its possible variants both upstairs and down-

stairs are outlined as well.

2 Mathematical model

A comprehensive mathematical model for the simulation of

both the steady state and dynamic behaviors of circulating flu-

idized bed combustors will be presented. This model was de-

veloped with the special purpose of delivering an effective tool

for model based control design. Because of this aspect, the gen-

eration of a numerically highly effective model was a crucial

issue. As a result of this approach, the model to be presented

was permanently undertaken to a critical evaluation regarding

all the phenomena to be built in, which in turn resulted a model

built up optimally according to the given preconditions. As the

model fulfills them, and as it was successfully verified on mea-

sured data as described in the next section, the set of phenomena

built in can be considered as the optimal set describing the real

process.

The one-dimensional cell model structure is used, because

this approach was found to be very effective regarding compu-

tational time on the one hand, and it may consider the dominant

spatial inhomogenity on the other hand. According to this, the

combustion chamber is divided into cells along its vertical axes,

and these cells are considered as spatially homogeneous ones.

Due to the flexible structure of the model, the distribution of the

furnace into cells can be chosen freely, the actually used distri-

bution is shown on Fig. 1.

Fig. 1. Layout of the Circulating Fluidized Bed Combustor and its partition-

ing into cells according to the model concept.

The model is built up of mathematical equations, which can

be divided into two major groups: the balance equations and

constitutive relationships.

Balance equations (also called conservation lows; see Tab. 1)

of dynamic systems describe the conservation of mass or energy.

Most of them are formulated and solved in this model locally for

each individual cell, while others globally, for the whole com-

bustion chamber. Solid mass balances (for total solids and for

discrete char size classes) belong to the later group, because the
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resulting actual total mass will be distributed among the cells

according to the constitutive equation describing the solid dis-

tribution along the combustor height. A similar mass balance of

solids is formulated for each cell in order to obtain the internal

solid refluxes crossing the borders between the cells. In spite

of the bidirectional solid flow within the combustion chamber,

the gas flow is considered as a pure upwards one with no reflux.

According to this, the balance of the total gas in the cells is sim-

pler, however, the changes due to production and consumption

of chemical reactions must be considered as well. In the actual

state of the model development, five flue gas components is con-

sidered (O2, CO, CO2, NO, NH3), the concentrations of which

is calculated according to another balance equation. A key point

in simulating fluidized bed combustors is to determine the tem-

perature profile in the combustion chamber, although some pub-

lished models handle it as an input variable. The cell internal

temperature (which is considered as the solid temperature) can

be calculated by solving the energy balance, which takes into

account all the heat flows and internal sources. This balance is

formulated for each cell as well, that’s why also the temperature

profile can be achieved along the vertical axis.

Constitutive equations supply the needed values for the bal-

ance equations discussed above by describing the necessary

physical or chemical phenomena (Tab. 2). Drying and de-

volatilization are considered to happen immediately after a fuel

particle enters the hot combustion chamber. The char combus-

tion kinetics is calculated by means of the Arrhenius formula-

tion using the kinetic data of Field [23]. The ’shrinking particle’

model was implemented in a discretized manner, in which case

the whole set of fuel particles is distributed into a number of

discrete classes of diameters. The use of 3 such classes was

found to be satisfactory, the selected class limit diameters are

120, 400 and 780 µm for the investigated case. The proceeding

of the combustion process of a single particle can also be con-

sidered as its discrete steps from upper diameter classes down to

lower ones. In case of the chemical reactions one must proceed

with the greatest care. A large number of chemical reactions is

published together with reaction rates, but only a few of them

practically occur under the actual conditions. After a careful se-

lection, a number of such reactions were built in into the model,

together with their temperature-dependent Arrhenius-type reac-

tion rates and catalyst effects.

As shown on Fig. 1, the modeled construction of CFBC is not

equipped with any external fluidized bed heat exchanger, thus,

the segregated solids coming from the cyclone are directly fed

back into the lower part of the combustion chamber. Because of

this strong thermal link between the related points of the com-

bustor, its mathematical description is of an evident importance.

Because no appropriate reference could be used for the investi-

gated case, the set of available on-site measured data were used

for setting up the required relationship between cyclone inlet

and outlet temperatures. A double linear description was found

to be satisfactory (relative error < 1%), where both parameters

of the linear relationship were found to be linear functions of

the fluidizing air flow V̇A. (See Fig. 2; p1= -0.0097 s/m3; p2=

1.472; p3= 10.07 K·s/m3; p4= -465.1 K.)

The model for fluid dynamics is based on the calculations

of bed voidage and solid mass fluxes in the combustion cham-

ber according to [24]. The heat transfer coefficient α between

bed inventory and heat exchanger surfaces was the most sig-

nificant parameter to find throughout the process of fitting the

model to the measured data. Its final value was found to be

67.5 W/(m2
·K) for wall heating surfaces and 195 W/(m2

·K) for

submerged heat exchangers, which values lie definitely within

the ranges numerous authors and handbooks give for the inves-

tigated case [25, 26].

The programmed version of the mathematical model de-

scribed above was generated in order to make it capable for

numerical investigations and simulation runs. The Matlab-

Simulink c© environment was used, and certain considerations

were taken in order to optimize its accuracy versus computa-

tional demand. It was recognized, for example, that keeping

the overall solid mass balance on its unchanged initial value re-

sults a significant decrease in computational time, while its ef-

fect on the accuracy is negligible throughout the whole set of the

available measured data. The time demand of the programmed

mathematical model appears to be far below the simulated time,

it runs one to two orders of magnitude faster than the simulated

reality on a commercial office computer.

Tab. 1. The set of balance equations included in the mathematical model

•Globally formulated balances (for the combustion chamber):

•Solid mass:
dms

dt
=

∑
bordercross

ṁs

•Char mass:
dṁC, j

dt
=

∑
bordercross

ṁC, j +
∑

reaction

ṁC, j +
∑

shrinking

ṁC, j

•Locally formulated balances (separately for each cell):

•Solid mass:
dmS,i

dt
=

∑
bordercross

ṁS,i

•Flue gas:
dNi

dt
=

∑
bordercross

Ṅi +

∑
reaction

Ṅi

•Flue gas components:
dNi,k

dt
=

∑
bordercross

Ṅi,k +
∑

reaction

Ṅi,k

•Energy: cS · mS ·
dϑS,i

dt

∑
bordercross

Ḣi +

∑
reaction

Q̇i +

∑
transfer

Q̇i

3 Model verification

Experiments were conducted on a 300 MW fluidized bed

combustor of an industrial power plant in Europe by the ex-

perts of the University of Oulu, Finland. The investigated fa-

cility is equipped with two cyclones, return lag and no external

heat exchanger, it is 30.5 m high with a horizontal cross section

of 19.7 m x 6.75 m. The lower conical part is thermally insu-

lated, while evaporators and superheaters are placed in the upper

part as shown on Fig. 1, which scheme also indicates some fur-

Mathematical modeling and model-based optimum control 52011 55 1



Tab. 2. The set of constitutive equations included in the mathematical

model. (Each of them will be formulated for each cell, however the indices

’i’ referring to them will be omitted here.)

•Drying and devolatilization of the fuel particles: ṁDD = −ṁF,in · (γHOH + γV )

•Char combustion kinetics: ṁCC, j AC, j ·
pO2

1
Kdiff, j

+
1

Kkin, j

•Char shrinking through combustion: ṁstep, j = ṁCC, j ·
d3

j−1

d3
j
−d3

j−1

•Homogeneous chemical reactions: Ṅr = k · ck1
· ck2
· ccatal,r

•Cyclone thermal characteristics: ϑc,out = (p1 · V̇air + p2) · ϑC,in + (p3 · V̇air + p4)

•Solids distribution along the vertical axis: ε(h) =

{
εD if 0 < h ≤ hD

ε∞ + (εD − ε∞) · e
−a·(hmax−hD) if hD < h < hmax

}
•Vertical upwards solids flow: ṁS,up(h) = ṁ∞ + (ṁD − ṁ∞) · e

−a·(h−hmax)

•Heat transfer towards the water-steam cycle: Q̇ = α · Aw · (ϑS − ϑw)

Fig. 2. Cyclone outlet temperatures ϑC,out versus cyclone inlet temperature

ϑC,in at different flow rates of total combustion air V̇A (significant effect) and

fuel feed (no effect).

ther design data. It is fuelled by peat (8.55 MJ/kg, 53% water,

25% carbon, 1.7% ash, 0.1% sulfur; 31.6% volatile), its thermal

efficiency is above 90%, and it generates 356 t/h 45 bar steam.

About half of the available measured data was used for fitting

the model, while the rest for checking the correspondence. In

the first step of fitting the model to the investigated real boiler,

the model parameters were set according to the real plant data.

This period of data mining in the boiler documentation and ver-

bal communications was followed by a systematic search for

optimal values of free or undefined parameters of the system.

The most significant phenomena involved in this period are heat

transfer as mentioned above and fluid dynamics.

During final model verification, the extended input data series

of the experiments were introduced to the programmed model

as well, and its responses were compared to those of the experi-

ments.

Three inputs were systematically varied during the experi-

ments: fuel feed rate and primary and secondary air flows as

shown on the upper part of Fig. 3. Throughout these system-

atic changes, a definitely wide range was scanned within the

allowed load limits of the actual plant. Simulated and measured

time functions of a few selected output variables are drawn on

the same diagram, which allows an easy comparison.

A three-minute wide filter with uniform weighting coeffi-

cients was applied on the measured time functions for better

visibility. The variance of the noises burdening the original mea-

sured data sets were not negligible in some cases, for CO, e.g.,

it was about ±8 ppm, which lies within the range of the average

differences between measurements and model calculations.

Besides plotting time functions of the modeled variables, the

cell model structure allows also the investigation of the spatial

changes of those variables at selected time points. The next fig-

ure gives an interesting example on this (Fig. 4). The selected

time points were indicated by vertical bars on the time functions

of Fig. 3. These results indicating the dominant spatial inho-

mogenities within the combustion chamber are of high impor-

tance because of their significant roles in the development of the

flue gas final emission levels. Minimizing the emissions is a key

research issue today, especially in case of problematic, waste-

derived fuels, which efforts can be efficiently supported by this

type of combustion models. Similarly, the separate introduction

of the combustion air on the primary- and secondary levels is a

technological tool for this, the results of which can be observed

(or even further investigated and enhanced) on the basis of this

modeling approach.

4 Control strategy

A new combustion control strategy for fluidized bed com-

bustors will be presented in this section. The basic goal of

combustion control is always identical, regardless of the actual

combustion technique or control strategy, namely, setting the air

flow rate so that optimal combustion conditions can be assured

among the actual fuel feed, fuel composition and other circum-

stances. Despite this strong similarity, significant differences

appear between the FBCs and other combustion technologies,

since in case of Fluidized Bed Combustion,
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Fig. 3. Comparison of predicted and experimental data. Identical input time

series (upper three diagrams) were applied to both the programmed mathemati-

cal model and industrial facility (dashed and continuous lines, respectively).

• the combustion air must assure not only optimal combustion,

but also appropriate fluidization;

• the combustion air must be set with respect to the actual fuel

inventory, not to the actual fuel feed rate;

• the air distribution between primary and secondary air is a

supplementary task of high importance.

The proposed approach in setting up the control strategy fol-

lows the traditional way of formulating a cost function ([27],

also called: target function) to be minimized, but the signifi-

cant differences listed above will be considered as well. While

the traditional combustion control has one control variable only

(the air flow), the new one is two-dimensional, since the optimal

flow rates of both primary and secondary air must be controlled.

While the traditional combustion control considers a few losses

only (basically: incomplete combustion loss because of too low

air flow and heat loss by exhaust gas because of too high air

flow), the new one must consider also some others of significant

influences. The list of aspects we propose to build in into the

new cost function is the following:

• Satisfactory fluidization must be assured in the lower section

of the combustion chamber (below the secondary air inlet).

• Satisfactory fluidization must be assured in the upper section

of the combustion chamber (above the secondary air inlet).

• The characteristic bed temperature must not be too high.

• Total CO emission must not be too high (or: it must not ex-

ceed its threshold).

• Total NO emission must not be too high (or: it must not ex-

ceed its threshold).

This list of terms was found to be sufficient in practical cases.

Limiting the bed temperature also from below was found to be

unnecessary for example, because other terms of the list assure

that this deviation can not happen. As a mathematical represen-

tation of this set of terms, exponential functions are proposed

because of their easy handling both numerically and analyti-

cally, and also because of their abilities for being parametrized

so that different limiting shapes can be realized from a nearly

linear manner up to a practically sharp threshold. According to

this, the proposed form of the cost function K (which is to be

minimized by the combustion control) is the following:

K = exp
(
a1 · V̇P + b1

)
+ exp

(
a2 ·

(
V̇P + V̇S

)
+ b2

)
+ exp (a3 · ϑ + b3)

+ exp
(
a4 · CCO ·

(
V̇P + V̇S

)
+ b4

)
+ exp

(
a5 · CNO ·

(
V̇P + V̇S

)
+ b5

)
.

(1)

The proposed control concept allows other cost functions as

well, of course. Its parameters should be set according to the

actual local needs dictated by the technology (temperature, flu-

idization, e.g.), economical circumstances (prices of losses, e.g.)

and authority prescriptions (emission limits, e.g.). In the actual

case, the next set of parameters was found to be the best, and

this one was used throughout the further investigations:

a1 = -0,24 s/m3; a2 = -0,11 s/m3; a3 = 0,018 1/K; a4 =

0,15 s/(m3
·ppm); a5 = 0,015 s/(m3

·ppm)

b1 = 5,4; b2 = 7,91; b3 = -19,4; b4 = -3; b5 = -3.

5 Controller design and test

The task formulated in the previous section (to minimize the

cost function) should be realized by an appropriately designed

controller. Furthermore, we believe that better control perfor-

mance can be reached on the basis of better knowledge of the

process to be controlled. While in case of the traditional PID

controller the whole information about the process is repre-

sented by only three numbers, advanced control theories use

more detailed models. It is advisable in the actual case to ben-

efit the existence of a validated mathematical model, of course,

however, the control task is not the most general one. The mini-

mum of a calculated variable should be found in this case, not a
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Fig. 4. Spatial inhomogenities in the combustion chamber at different loads

(Line types: continuous: t=5 min; dashed: t=110 min; dashdotted: t=175 min)

(Markers: +: simulated; O: measured)

given set-point of the controlled variable should be followed, as

generally. Different approaches can be followed while design-

ing a controller configuration to solve the model-based optimum

control problem outlined above, some of them are listed here:

• Off-line optimum seeking algorithms can be run on the pro-

grammed model and cost function while simulating a high

variety of operating conditions. The found optimal settings

can than be stored in a real time (on-line) controller.

• An on-line optimum seeking algorithm can be realized in the

real time controller.

• The above closed loop optimum seeking controller can be

supported by initial guesses coming from either the off-line

optimum search (first bullet above) or learned previous results

of the on-line search (second bullet).

• Further model-based on-line optimum seeking procedures

can be developed based on the results of the advanced con-

trol theory.

The second approach will be discussed here in detail, since

this one can be considered as a basis for further enhancements

either up or down.

The idea of the proposed control structure is simple, it traces

back the optimum control task to an ordinary control task. Ac-

cording to this, the gradient of the actual value of the cost func-

tion should be controlled to zero (Fig. 5).

All process variables of the fluidized bed combustor involved

in the cost function will be continuously measured, of course.

Their actual values will be forwarded to the block that calcu-

lates the actual scalar value of the cost function, the minimum

of which should be found and set by the remaining elements of

the control structure. Its gradient should be estimated in the next

block. The space of search is two-dimensional spanned by the

manipulated variables V̇Pand V̇S , but in practice it often seems

to be better handleable to use another space defined by the coor-

dinate transformation V̇A = V̇P + V̇S, r = V̇P/V̇A, where V̇A is

total air and r is air distribution.

In the gradient estimator, a known identification method will

be used first. A two-dimensional, discrete-time ARX model will

be identified on-line, which standard method delivers the model

parameters in the following form:

A (q) ·1y (t) = B1 (q) ·1u1 (t)+ B2 (q) ·1u2 (t)+e (t) , (2)

where q is the time shift operator, y(t) is the process output

(which is the K value in the actual case), and 1u1 and 1u2 are

the process inputs (V̇P and V̇S in the actual case). This procedure

needs to know also the perturbation signal, which will be defined

and added to the inputs by the controller block. The results of

the identification procedure are in this case the coefficients of

the polynomials A(q), B1(q), and B2(q). The final output of

this block (the gradient estimates) can be calculated according

to

∂K

∂ V̇A

=
B1 (q)

A (q)
|q=1, (3)

∂K

∂r
=

B2 (q)

A (q)
|q=1. (4)

The controller block in the proposed control structure (Fig. 5)

can be any traditional controller. The set-point is zero, and the

process variable to be controlled is the estimated gradient deliv-

ered by the block described above. In the actual, first implemen-

tation of the scheme, a rather simple, conservative control law

was built in: the (two-dimensional) controller step is always pro-

portional to the negative gradient [28] received. A flat sawtooth

signal of very low amplitude compared to the effective outputs

added to a random binary signal (of low amplitude as well) was

chosen as perturbation signal needed for the ARX identifica-

tion. It is generated within the control block, it is added to the

calculated control output, and it is forwarded extra to the ARX
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Fig. 5. The proposed structure of combustion control using Extremum Control developed for Fluidized Bed Combustors.

identifier located in the gradient estimator block. The load sig-

nal of the block is introduced to the controller block for further

developments only, as an additional information for learning the

optimum values once found.

The control strategy was realized in the simulation environ-

ment Matlab-Simulink c©. The model described above was used

throughout the simulations tests, and also for plotting the sur-

face of the cost function over the V̇A − r space. (The surface of

this function is not visible for the on-line controller, of course.)

Fig. 6 shows the paths of some simulated searches started from

different initial guesses far from the optimum. The results are

satisfactory, the controller succeeded in shifting the fluidized

bed combustion system close to its optimum in all cases.

Fig. 6. Trajectories of the Extremum Control from different starting points.

Based on the current results, further tests of the new con-

trol strategy are planned after implementing it on an industrial-

sized fluidized bed combustor. The model-based control devel-

opment allows also a number of further investigations. The op-

timal primary- and secondary air flows as functions of the actual

boiler load were calculated for example, and the resulted func-

tions were rather similar to the ones found experimentally to be

the best [12, 15]. Further research will focus on the application

of the programmed mathematical model in other model-based

control procedures offered by the advanced control theory ac-

cording to the bulleted list at the beginning of this section.

6 Conclusions

Several models of fluidized bed combustors are known, how-

ever, only a few of them deal with the instationary characteristics

of the process. In case of control design, such a dynamic process

model must fulfill two requirements, it must be accurate and fast

running at the same time.

The mathematical model presented in this paper fulfills both

of them. Its accuracy was verified against measurements, and

its computational time demand is far below the simulated time.

The built in equations describing the set of phenomena found

to be adequate for both above purposes are coal combustion,

gas–gas reactions, fluid dynamics of the suspension, and heat

transfer, plus an empirical cyclone temperature model. Mass

and heat balance equations were formulated for different solids

and gas components. The one-dimensional cell model structure

was used. The combustion chamber was divided into nine cells

on such a way that they follow all the significant geometrical

changes and characteristics of the technology.

The FBC technology differs basically from other combus-

tor types, one example is the double role of air flow: combus-

tion and fluidization. In spite of such differences, most known

control strategies use the traditional approach also in this case.

In this paper, the task of combustion control is formulated by

means of a cost function. A general form of this equation

was proposed the exponential terms of which define sufficiently

the optimal operating point within the two-dimensional space

spanned by the two air flows. The parameters of these terms

should be set according to the actual local circumstances such as

supplier prescriptions and financial ambiance. A control struc-

ture was also proposed for finding the minimum of this cost

function on-line. This structure was programmed, and it was

joined to the verified mathematical FBC model. The tests of this
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control strategy pointed out its proper operation.

Further research will focus on the development and test of

some other control concepts, where the existing, very effective

mathematical model will be used by the controller as an on-line

predictor. The mathematical model described in this paper was

verified by means of measurements, while the control strategy

was tested on the verified model by means of simulations only.

Both control strategies (the one described and tested in this pa-

per, and the next one under development) are planned to be im-

plemented and tested on an industrial sized fluidized bed com-

bustor.

Nomenclature

A m2 surface, cross-section

a 1/m decay constant for fall off of solid density

c mol/m3 molar gas concentration

h m height (above the air distributor)

Ḣ W enthalpy flow

ṁ kg/s mass flow

N mol amount of substance

p1···4 coefficients of the empirical cyclone model

pO2
Pa partial pressure of oxygen

Q̇ W heat flow

V̇ m3/s volume flow

t s time

α W/(m2
·K) heat transfer coefficient

γHOH kg/kg water in fuel

γV kg/kg volatile in fuel

ϑ K temperature

ε m3/m3 volume fraction of solids

Subscripts

bordercross material or energy flow crossing the borders of the

investigated cell

C char; cyclone

CC char combustion

D dense phase

DD drying and devolatilization

F fuel

i cell (volume element in the cell model)

j class of particle sizes in the shrinking particle model

k gas component (k ∈ O2, CO, CO2, NO, NH3)

catal catalyst

r chemical reaction identifier

reaction material production or consumption due to chemical

reactions

rec recirculating solid flow

S solid

shrinking material flow from or to a particle size class

syph syphone air

transfer heat flow via heat transfer

V volatile

W wall
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