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Abstract

Reinforced concrete structural elements lacking appropriate

seismic detailing and built with plain reinforcing bars, and sub-

jected to cyclic loads like the ones induced by earthquakes, are

particularly sensitive to the bond-slip mechanism. Though, ex-

isting studies on the cyclic behavior of RC structures generally

refer to elements with deformed bars. As a result, the behavior

of elements with plain bars is not yet fully understood. In this

framework, the cyclic behavior of a two-span RC beam built

with plain reinforcing bars, collected from an ancient building

structure, was investigated. The support and loading conditions

observed in-situ were simulated in the test setup. The beam dis-

played a flexural failure and the damage was concentrated in

three short plastic hinges. The poor damage distribution evi-

dences the effects of the bar slippage mechanism on the beam

behavior.
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1 Introduction

A significant number of existing reinforced concrete (RC)

structures in Europe prior to the enforcement of the modern

seismic-oriented design philosophies. In fact, many were de-

signed to withstand only gravity loads. Also, they are gener-

ally reinforced with plain bars that exhibit poor bond and need

specific anchoring end details [14]. As a consequence of poor

reinforcement details and absence of any capacity design prin-

ciples, a significant lack of ductility at both the local and global

levels is expected for these structures resulting in inadequate

structural performance even under moderate seismic excitation

[17, 26]. Damages observed in recent severe earthquakes like,

for example, the 2008 Sichuan-China, the 2009 L’Aquila-Italy,

2010 Port-au-Prince-Haiti and 2010 Chile earthquakes confirm

the important source of risk that old RC structures represent the

society, in both human and economic terms.

The common causes of damage and collapse of RC structures

due to earthquakes are usually associated to the following ef-

fects/mechanisms [30]: (i) stirrups/hoops, confinement and duc-

tility; (ii) bond, anchorage and lap-splices and bond splitting;

(iii) inadequate shear capacity and failure; (iv) inadequate flex-

ural capacity and failure; (v) inadequate shear strength of the

joints; (vi) influence of the infill masonry on the seismic re-

sponse of structures; (vii) vertical and horizontal irregularities;

(viii) effect of higher modes; (ix) strong-beam weak-column

mechanism; and, (x) structural deficiencies due to architectural

requirements.

The sudden loss of concrete-steel bond is one of the sources

of brittle failure in RC elements, and is reported to have been the

cause of severe local damage and even collapse of many struc-

tures during earthquakes. Even if no anchorage failure occurs,

the hysteretic behavior of RC structures, namely when subjected

to alternate actions (like earthquakes), is highly dependent on

the interaction between steel and concrete [6].

Perfect bond between the steel reinforcing bars and the sur-

rounding concrete is usually assumed in the analyses of RC

structures, implying full compatibility between concrete and

steel strains. However, this assumption is only valid for early

loading stages and low strain levels. As the loads increases,

Cyclic behavior of a two-span RC beam built with plain reinforcing bars 212011 55 1

http://www.pp.bme.hu/ci


cracking and bond failure unavoidably occurs and relative slip

between the concrete and the reinforcing bars (bond-slip) takes

place in the structural elements. Consequently, different strains

are observed in the steel bars and in the surrounding concrete,

and the stress distribution is affected in both materials [30]. In

RC structural elements subjected to cyclic loading the concrete-

steel bond can deteriorate even before the stress state has at-

tained the yield stress of the steel and the stress strength of the

concrete [3, 30]. RC elements built with plain reinforcing bars

under cyclic loading are particularly sensitive to the bond-slip

mechanism.

Existing studies on the cyclic behavior of RC structures and

on bond behavior generally refer to elements with deformed

bars. Although some experiments have been devoted to assess

global performances of old-type structures, local aspects like the

concrete-steel bond were not exhaustively investigated. Conse-

quently, the influence of plain bars on the nonlinear response of

isolated elements and critical regions (like beam-column joints)

is not yet fully established [14].

In terms of experimental studies, many 50 years old and even

older experimental results on plain bars can be found, but they

are basically presented as reference data for deformed bars [14].

Recent experiments have been performed on RC structural el-

ements with plain reinforcing bars. Examples can be found

in Verderame et al. [31, 32] and Acun and Sucuoglu [2] (on

columns), Liu and Park [20], Pampanin et al. [26] and Be-

dirhanoglu et al. [4] (on beam-column joints), and Varum [30]

and Pinto et al. [27, 28] (on frame structures). Other experi-

ments are particularly focused on the analysis of bond behavior

(Fabbrocino et al. [15], Feldman and Bartlett [16], Xiao and

Falkner [35], Verderame et al. [33, 34]).

If reports on the behavior of RC elements with plain reinforc-

ing bars are limited, this is particularly evident when it comes to

RC beams. Recent studies on the behavior of RC beams refer,

in general, to elements built with deformed bars. For example:

i) Kovács and Farkas [29] conducted a series of tests in labo-

ratory on a lightly reinforced concrete beam, aiming to study

the continuous monitoring of concrete bridges during their de-

sign life; ii) Draskóczy [12] tested a series of 24 reinforced con-

crete beams with the main objective of developing the variable

strut inclination method used for shear design of RC beams by

Eurocode 2; iii) Koris and Bódis [18] presented a method for

the calculation of flexural resistance of pre-cast RC beams as

a function of time and relative ambient humidity, with the ob-

jective of determining the decrease of load carrying capacity in

time due to slow deformations and aging of materials and cal-

culating the probability of failure of the structure by means of

varying the load carrying capacity and external loads. Among

the very scarce number of existing work about the cyclic behav-

ior of beams built with plain bars, a recent work by Marefat et

al. [22] can be referred as an example. In the work developed

by the authors, three types of beam specimens were tested under

alternate cyclic loading: (i) substandard specimens, with defi-

cient seismic detailing and reinforced by plain bars; (ii) spec-

imens designed in accordance with ACI318-99, but reinforced

by plain bars; and, (iii) standard specimens reinforced by de-

formed bars. Among other conclusions, the tests showed that

the substandard specimens sustained relatively large slip of lon-

gitudinal bars, limited lateral displacement capacity and loss of

nominal yield strength. The standard specimens with plain bars

and deformed bars presented a similar behavior, but larger slip

and smaller yield strength was verified in the elements with plain

bars.

In terms of analytical and numerical models for describing the

concrete-steel bond behavior, the existing models that establish

the bond stress-slip relationship, like the ones described in Ref.

5, were mainly developed for specimens with deformed bars.

The model adopted by CEB-FIP Model Code 90 [8] for describ-

ing the bond behavior of deformed bars is based on the bond

stress-slip relationship proposed by Eligehausen et al. [13]. In

order to adjust the model for plain reinforcing bars, CEB-217 [7]

gives a proposal for the model parameters to be used in this sit-

uation. Recently, Verderame et al. [34] proposed a bond stress-

slip relationship and corresponding hysteretic rules, based on

the results from monotonic and cyclic pullout test described in

[33]. According to the authors, the analytical model proposed is

able to represent the interaction mechanisms between plain re-

inforcing bars and the surrounding concrete, as confirmed in the

confrontation with the experimental results.

Considerable research work has been developed with the ob-

jective of including the bond-slip effects in the analysis of RC el-

ements. Reference to recent numerical work on this subject can

be found in [19]. Among the available numerical tools for per-

forming structural analysis, only a few (for example, CASTEM

[24], OpenSees [25] and ATENA [11]) allow taking into account

the bond-slip mechanism.

In this paper is described the cyclic test of a RC beam, col-

lected from an ancient structure, built with plain reinforcing

bars. The beam was subjected to unidirectional cyclic loads un-

til collapse, considering symmetrical geometrical and loading

conditions. The support and loading conditions observed in-situ

were simulated in the test setup. The test set-up is described

and the main experimental results are presented namely in terms

of force-deflection diagrams, deformed shape and damage evo-

lution, energy dissipation and beam rotation at supports. The

beam displayed a flexural failure and the damage was concen-

trated in three short plastic hinges. The poor damage distribution

evidences the effects of the bar slippage mechanism on the beam

behavior. The experimental results will contribute to enlarge the

existing database on the cyclic behavior of RC elements with

plain reinforcing bars. Also, the results obtained with this test

will allow to upgrade and calibrate numerical models for the ad-

equate simulation of the cyclic behavior of this type of elements

(see [23]).
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Fig. 1. Geometrical characteristics of the RC beam: a) identification of spans and support conditions; b) cross-section.
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 Fig. 2. Steel reinforcement: a) beam cross-section; b) top longitudinal steel bars; c) bottom longitudinal steel bars; d) U-stirrups.

2 Cyclic Test of a RC Beam built with Plain Reinforcing

Bars

This section addresses the cyclic test of a RC beam built with

plain reinforcing bars, that was collected from the Santa Joana

Museum (an aggregate of ancient constructions, part of the cul-

tural and historical heritage of the city of Aveiro, in Portugal),

in 2007, during the partial demolition of one its buildings. Ma-

terials properties, test set-up and main experimental results are

presented and discussed. At the existing building, the two-span

beam was part of the roof’s support structure and was loaded by

one vertical element at each middle-span section. The support

and loading conditions observed in-situ were simulated in the

test setup.

2.1 General geometrical characteristics and support condi-

tions

The RC beam is characterized by a rectangular 0.18x0.22 m2

cross-section (Fig. 1 a) and a total span of 8 m. The beam sup-

port conditions considered for the experimental test are illus-

trated in Fig. 1 b.

2.2 Materials

2.2.1 Concrete

No information about the concrete mechanical properties

was available. In order to estimate the concrete’s compressive

strength, four cylindrical concrete samples were extracted from

the beam after the test and subjected to compression testing. Ac-

cording to the ASTM C42/C42M standard [1], if the length-to-

diameter ratio of the sample is between 1.75 and 1.00, the cor-

responding concrete strength must be multiplied by a correction

factor. Thus, the strength values computed for each concrete

sample were multiplied by the appropriate correction factor. A

mean strength ( fcm) equal to 19 MPa and standard deviation

(1) equal to 1.32 were obtained. The characteristic compres-

sive strength ( fck) estimated is equal to 16.8 MPa. According

to the Eurocode 2 (EC2 [9]) classification, the concrete class is

C16/20.

Concrete grade limitations are presented by Eurocode 8 (EC8

[10]) for primary seismic elements considering different duc-

tility classes. Structures with low capacity to dissipate energy

belong to the low ductility class. Medium and high ductility

classes (DCM and DCH, respectively) correspond to structures

designed, dimensioned and detailed according to specific earth-

quake resistant provisions. According to EC8, for DCM and

DCH structures, a concrete class lower than C16/20 and C20/25,

respectively, shall not be used. This requirement is fulfilled by

the beam under study only for DCM structures.

2.2.2 Steel reinforcement

No information was available about the steel mechanical

properties and reinforcing bars detailing and since it was not

possible to obtain steel bars samples, tensile strength tests were

not performed. From the observations made at the museum, only

plain reinforcing bars were used in the construction of the beam.

Measurements made with a rebar detector before the experimen-

tal test and the posterior demolition of the beam, allowed identi-
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fying the number, diameter and position of the reinforcing bars

(Fig. 2).

Regarding the longitudinal steel reinforcement: (i) the num-

ber, diameter and position of the reinforcing bars is constant

along the beam span; (ii) the bottom reinforcement is consti-

tuted by two bars of 10 mm diameter and two bars of 12 mm

diameter, corresponding to a cross-sectional area (Asl,bot ) and

longitudinal reinforcement ratio (ρl,bot ) equal to 3.83 cm2 and

1.16%, respectively; (iii) the top reinforcement is constituted by

two bars of 12 mm diameter, corresponding to a cross-sectional

area (Asl,top) and reinforcement ratio (ρl,top) equal to 2.26 cm2

and 0.68%, respectively; (iv) the total area of longitudinal rein-

forcement (Asl) and total longitudinal reinforcement ratio (ρl)

are equal to 6.09 cm2 and 1.84%, respectively; (v) the mean dis-

tance between bottom bars (sl,bot ) is equal to 25.33 mm and the

distance between top bars (sl,top) is equal to 96 mm.

Regarding the shear reinforcement: (i) is constituted by U-

shaped 8 mm diameter stirrups; (ii) the shear reinforcement ra-

tio (ρw) is equal to 0.31%; (iii) the cross-sectional area-distance

between stirrups ratio (Asw/sw) is equal to 5.59 cm2/m; (iv) the

longitudinal distance between stirrups (sw) is roughly constant

along the beam span and equal to 180 mm; (v) the angle (α) be-

tween the stirrups and the longitudinal reinforcing bars is equal

to 90o. The use of U-stirrups as transverse reinforcement reflects

the lack of concern of old design standards regarding the impor-

tance of concrete confinement. Referring to the design practice

at the time in which the beam was constructed, transverse rein-

forcement was designed only for shear resistance purposes.

The mean value registered for the concrete cover (c) is equal

to 22 mm.

The values recommended by EC2 [9]and EC8 [10] for the

main parameters of the steel reinforcement detailing in RC

beams were estimated and are presented in Tab. 1, where: (i)

As,min is the minimum cross-sectional area of the longitudinal

reinforcement in the tension zone (within the critical regions of

the beam, for EC8); (ii) As,max is the maximum cross-sectional

area of longitudinal reinforcement (either in the tension or the

compression zones); (iii) ρmin is the minimum longitudinal re-

inforcement ratio of the tension zone; (iv) ρmax is the maxi-

mum longitudinal reinforcement ratio of the tension zone within

the critical regions of the beam; (v) smin is the minimum dis-

tance between longitudinal reinforcing bars; (vi) ρw,min is the

minimum shear reinforcement ratio; (vii) sw,max is the maxi-

mum longitudinal spacing between shear reinforcing bars; (viii)

sw,max,cri t is the maximum longitudinal spacing between shear

reinforcing bars within the critical regions of the beam; and, (ix)

dbw is the minimum hoop diameter. A medium ductility class

(DCM) was considered for calculating the EC8 values.

The computation of the EC2 and EC8 values was made con-

sidering the cross-section geometrical characteristics and ma-

terials properties shown in Tab. 2, where: (i) b, h and d are

the cross-section width, depth and effective depth, respectively;

(ii) Ac is the concrete cross-sectional area; (iii) fc and fct are

Tab. 1. Recommendations by EC2 [9] and EC8 [10] for the steel reinforce-

ment in RC beams.

Longitudinal reinforcement Shear reinforcement

EC2

As,min (cm2) 0.43 ρw,min (%) 0.14

As,max (cm2) 15.60 sw,max (mm) 138

smin (mm) 30

EC8

As,min (cm2) 1.92 dbw (mm) 6

ρmin (%) 0.36 ρw,min (%) 0.14

ρmax (%) 2.48 sw,max (mm) 138

sw,max,cri t (mm) 55

the concrete compressive strength and tensile strength, respec-

tively; (iv) fy and εsy are the steel reinforcement yield strength

and steel strain at yield, respectively; and, (v) µ8 is the cur-

vature ductility factor. Mean values were considered for the

materials properties. The concrete compressive strength corre-

sponds to the mean strength obtained in the compression tests.

The concrete tensile strength is between the tensile strength of

the C12/15 and C16/20 concrete classes. The S235 steel class

was considered, given its very common use in old RC building

structures.

Tab. 2. Parameters adopted for the computation of the EC2 [9] and EC8 [10]

values in Tab. 1.

Parameter Value

Cross-section

b (mm) 180

h (mm) 220

d (mm) 184

Ac (cm2) 396

Materials properties

fc (MPa) 17

fct (MPa) 1.7

fy (MPa) 235

εsy (%) 0.12

Ductility factor µ8 6.2

From the comparison between the values estimated for the

beam under study and the values computed according to EC2,

the following conclusions can be drawn: (i) the amounts of lon-

gitudinal and shear reinforcement are in accordance with the

EC2 rules; (ii) the requirement concerning the minimum dis-

tance between longitudinal bars is verified only in the case of

the top bars; and, (iii) the requirement concerning the maximum

longitudinal spacing between the shear reinforcing bars is not

met.

From the comparison with the EC8 values: (i) outside critical

regions, the longitudinal and shear reinforcement ratios require-

ments are fulfilled, but not the maximum longitudinal spacing

between the shear reinforcing bars; (ii) within the critical re-
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gions, the minimum amount of longitudinal reinforcement is in

accordance with the requirements, the maximum ratio of lon-

gitudinal reinforcement is exceeded and the requirement about

the maximum longitudinal spacing between shear reinforcing

bars is not satisfied. Also, with exception of closed stirrups and

cross-ties, EC8 only allows the use of ribbed bars as reinforcing

steel in critical regions of primary seismic elements. In the beam

under study only plain reinforcing bars are present.

2.3 Test set-up

2.3.1 Loading system

In Fig. 3 is illustrated the test set-up adopted for the experi-

mental test. Two hydraulic servo-actuators were placed bellow

the reaction-floor for inducing the vertical forces (F) at the mid-

span sections of the beam’s left and right spans (left mid-span

and right mid-span, respectively) The transmission of loads from

the servo-actuators to the beam was made resorting to four X-

shaped steel elements, two at the top of the beam and two under-

neath the reaction-floor. The top steel elements were connected

to the bottom elements by 20 mm threaded steel bars. The ten-

sioning of the steel bars allowed the transmission of loads to the

beam.

2.3.2 Instrumentation

The monitoring of vertical displacements was made resorting

to draw wire displacement transducers. For evaluating the beam

rotation at the left, right and middle support sections, dial indi-

cators were used. In Fig. 4 is illustrated the location of the dis-

placement transducers and dial indicators. Transducers placed

at the left and right mid-span sections were used to monitor the

deflection of each span. The remaining transducers were placed

for capturing the deformed shape of the beam.

2.3.3 Loading history

The beam was loaded by two vertical forces (F), symmet-

rically positioned at the left and right mid-span sections, ac-

cording to the loading history shown in Fig. 5. The cyclic test

was made under force-controlled conditions. The forces are al-

ways descending describing series of three loading-unloading

cycles of increasing amplitude, until a maximum force of 25 kN,

when it was observed the beam collapse. The self-weight of the

beam, which is roughly equal to 1/4-1/3 of the maximum load

achieved, is not considered in Fig. 5.

Cyclic behavior of a two-span RC beam built with plain reinforcing bars 252011 55 1



2.4 Experimental results

2.4.1 Deflections evolution

In Fig. 6 is shown the evolution of the left and right spans

deflection (dl and dr , respectively), recorded by the transducers

located at the left and right mid-span sections. A similar de-

flection is displayed by the two spans approximately for the first

four load amplitudes. Then, the left span deflection begins to

increase with higher rate. The maximum deflection registered

for the left and right spans is equal to 0.12 m and 0.03 m (about

25% of the left span deflection), respectively.

2.4.2 Force-deflection diagrams

In Fig. 7 are shown the force-deflection diagrams plotted for

the left and right mid-span sections. As it can be observed, the

two spans show similar stiffness but a slightly higher resistant

capacity is displayed by the right span.
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2.4.3 Evolution of damages and deformed shape

In Fig. 8 is shown the location of the three plastic hinges

formed during the test, with indication of the corresponding
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length and occurrence sequence. The first hinge (PH1) was de-

veloped at the middle support, the second hinge (PH2) at the left

mid-span section, and the third hinge (PH3) at the right mid-span

section. The length estimated for each hinge, corresponding to

the length of the zone with more significant damage, is equal to:

0.05 m for PH1, 0.14 m for PH2 and 0.15 m for PH3.

The observed crack pattern suggests that flexural failure oc-

curred. Cracks were concentrated around the plastic hinges

region, what can be considered evidence of the occurrence of

slippage between the longitudinal reinforcing bars and the sur-

rounding concrete. Bond-slip affects the stress transference be-

tween the two materials and, consequently, the crack propaga-

tion. Cracks do not spread along the element’s span. Instead,

their width increases significantly during the test. As a con-

sequence, poor bond influences also the length of the plastic

hinges by reducing its value.

The use of large dimension aggregates in the concrete com-

position intensified the severe concrete crushing observed at the

plastic hinges location.

The general evolution of the beam deformed shape is illus-

trated in Fig. 9. The deformed shape of the beam remains

roughly symmetrical until the development of cracks at the two

mid-span sections.

2.4.4 Failure mode

Based only on the crack pattern observed, the occurrence of

flexural failure is suggested. To verify that shear failure did

not occur, the beam shear strength was computed and compared

with the estimated value for the maximum shear achieved in the

experimental test.

In Fig. 10 are shown the shear and bending moment diagrams

corresponding to the maximum load registered in the test (equal

to 25 kN), computed considering a linear elastic analysis. The

maximum values estimated for the shear and bending moment

are equal to 17 kN and 17 kNm, respectively. Since the com-

Per. Pol. Civil Eng.26 Catarina Fernandes / José Melo / Humberto Varum / Aníbal Costa



 

   

 

 

 

PH

(L    = 0.14 m)

left span

PH - plastic hinge

L     - plastic hinge length

PH,2

2
PH

(L    = 0.05 m)
PH,1

1
PH

(L    = 0.15 m)
PH,3

3

i

PH,i

right span

 

 
Fig. 8. Plastic hinges location and length.

 

 

 

 

initial cracking at middle support
extension of cracking at middle support
first cracks at the left and right mid-span sections (both spans with a 9 mm deflection)
displacements at the left and right mid-span sections equal to 27 mm and 16 mm, respectively
displacements at the left and right mid-span sections equal to 38 mm and 20 mm, respectively
displacements at the left and right mid-span sections equal to 52 mm and 21 mm, respectively

left support middle support right support

Fig. 9. Evolution of the beam deformed shape.

 

 

 

 

 

-8.00
-17.00

8.00
17.00

(kN)

25 25

(kN)

15.75

-17.00

15.75

(kN·m)

 
(a) (b) (c) 

 Fig. 10. Maximum acting loads: a) loads; b) shear diagram; c) bending moment diagram.

putation was made considering a linear elastic behavior, these

values do not correspond to the real maximum shear and bend-

ing moment of the beam. Though, they can be used to estimate

the beginning of cracking and to calculate an upper-bound limit

of the shear in the beam, confirming that the shear resistance is

not exceeded during the test.

The shear resistance was computed according to EC2 [9] con-

sidering the materials properties shown in Tab. 2. The shear

strength was computed taking into account the shear reinforce-

ment present in the beam, and it was estimated a value equal to

61.3 kN. Since this value is superior to the estimated maximum

shear (17 kN), shear failure did not occur.

2.4.5 Energy dissipation evolution

In Fig. 11 is shown the energy dissipation evolution computed

from the experimental results.

2.4.6 Evolution of the beam rotation at supports

From readings of the dial indicators made during the exper-

imental test for different load amplitudes, it was estimated the

beam rotation at the two external supports. The rotation at the

middle support was not estimated since the (D3, D4 and D5) dial

indicators readings were affected by the development of plastic

hinge PH1. Since very small bending deformations were ex-

pected at the two external supports, confirmed by the absence

of damage observed at these points, the corresponding support

rotations were computed considering the beam extent instru-

mented as a rigid body. The loading force-rotation (absolute
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values) relationships are displayed in Fig. 12. Rotations at the

two supports were initially very similar until significant differ-

ences between the left and right mid-span displacements began

to be observed. The estimated values for the maximum rotation

at the left and right supports (θ l and θr , respectively) are equal

to 0.018 rad and 0.011 rad, respectively. The maximum rotation

at the right support is about 62% of the maximum rotation at the

left support.
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Fig. 12. Imposed force versus rotation (absolute values) diagrams for the

left and right supports.

3 Conclusions

The behavior of a two-span RC beam built with plain rein-

forcing bars, collected from an ancient building structure, and

subjected to unidirectional cyclic loads, was investigated. Sym-

metrical geometrical and loading conditions were considered in

the experimental test.

Compression tests of cylindrical concrete samples, extracted

from the beam after the experimental test, were made to esti-

mate the concrete strength. The results indicate that the con-

crete class is C16/20 according to the EC2 classification. The

beam reinforcement detailing was compared with the require-

ments given by EC2 and EC8. The EC2 requirements are not

fulfilled in terms of minimum distance between the longitudinal

bottom bars and maximum spacing between the shear reinforc-

ing elements. The EC8 requirements are not fulfilled in terms of

maximum spacing between the shear reinforcing elements, both

outside and within the critical regions, as well as in terms of

maximum longitudinal reinforcement ratio the critical regions.

The use of plain reinforcing bars and the concrete class are not

also in accordance with the EC8 requirements.

The beam displayed a flexural failure and three short plastic

hinges were developed. Cracks were concentrated in the plas-

tic hinges, evidencing the occurrence of slippage between the

reinforcing bars and the surrounding concrete.

Although similar stiffness was displayed by the two spans,

higher resistant capacity was shown by the right span. The left

span exhibited higher deflection. Maximum deflection of the

right span was estimated to be 25% of the one registered for the

left span. The maximum rotation at the right support of the beam

was estimated to be about 62% of the corresponding for the left

support. Non-perfect symmetry of the beam in terms of span

length, materials properties or reinforcement detailing, justifies

the differences experimentally observed between the global be-

havior of the two spans, namely in terms of damage evolution,

deflection, rotation and collapse moment.

The influence of the plain bar slippage in the global response

of the tested beam proves to be a key factor. Therefore, for a pre-

cise performance assessment of existing RC building structures,

the bond-slip mechanism cannot be disregarded. The results ob-

tained with this test will allow to upgrade and calibrate numeri-

cal models for the adequate simulation of the cyclic behavior of

existing RC structures built with plain reinforcing bars.
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