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Abstract

The definition of the characteristic values of the soil param-

eters (according to EUROCODE 7) constitutes one of the most

critical tasks in geotechnical calculations. The methods and the

procedures related to the calculation of the characteristic val-

ues for the soil parameters with normal or lognormal distribu-

tion, related to four several cases (for statistical “known” or

“unknown” parameter and for average value or extreme value),

considering the cases when previous knowledges are or are not

available are summarized in this paper. The confidence level

concept is connected to the design value and the partial factor

concepts. In addition, some interesting cases are analysed (i.e.

the case of parameters that vary with depth, a case where the

characteristic value of the lower estimate of the mean is greater

than the upper estimate of the mean of the parameter value).
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1 Introduction

According to the Eurocode 7 [1], the characteristic values of

geotechnical parameters shall be defined according to the results

obtained from field and laboratory tests and derived values, with

attention to the following details:

• geological and other background information, as e.g. data

resulting from earlier construction works;

• variability of the values of the measured characteristic and

further significant information, e.g. based on already existing

knowledge;

• amount of the field and laboratory tests;

• type and quantity of samples;

• extension of the soil zone influencing the behavior of the

geotechnical structure in the investigated ultimate limit state;

• ability of the geotechnical structure to transfer loads from a

weak soil zone to a stronger one.

The standard also emphasizes that during the definition of the

characteristic values, the higher coefficient of variation of the

effective cohesion (c’) relating to the internal frictional angle

(tan φ’) shall be taken into consideration.

The overwhelming majority of parameters used in geotechni-

cal calculations follows a normal or lognormal distribution, and

I only discussed in the following sections the statistical method-

ology of parameters that can be characterized by the above two

types of distribution.

In the whole paper its used four cases for definition of char-

acteristic values: for statistical “known” (I.) or “unknown” pa-

rameter (II.) and for average value (A) or extreme value (B).

Specification of these cases are in Chapter 2.1.

2 The characteristic value

2.1 Characteristic value in case of a normal distribution of

the parameters

In case of a normal distribution, the characteristic values (Xk)

can be defined with statistical methods according to the follow-

ing relationship [1]:

Xk = Xm · (1± kn · νx ) (1)
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The interpretation of the characteristic values is illustrated in

Fig. 1. The factors figuring in the formula are:

• Xm is the expected value, which can unbiasly estimated by

the mean of the data;

• kn is a statistical parameter depending on the number of sam-

ples;

• νx is the coefficient of variation, assumed according to pre-

vious knowledges, i.e. supposed to be statistically “known”

(hereinafter referred to: Case I), or calculated from mea-

surement results, i.e. regarded statistically (previously) “un-

known” (hereinafter referred to: Case II).

The coefficient of variation is the quotient of the standard de-

viation (Sx ) and the average value:

νx =
Sx

Xm

(2)

The ± sign in the Eq. (1) expresses that the expression can be

used for both the lower and upper estimates, resulting in sym-

metric results obtained for the average value.

The extension of the soil zone determining the behavior of

the “geotechnical structure” at any ultimate limit state is gener-

ally much higher than the size of the soil sample or that of the

zone affected by the in situ test. Consequently, the value of the

dominant parameter is often identical with the average of the

values related to a surface or volume of the soil. It is advisable

to assume the characteristic value with a careful estimation of

this average value (hereinafter referred to: A, Fig. 3). In case

the behavior of the geotechnical structure is defined in the in-

vestigated ultimate limit state by the lowest or highest value of

the soil characteristic, it is advisable to assume the characteristic

value with a careful estimation of the lowest or highest possible

value of the zone determining the behavior (hereinafter referred

to: B, Fig. 3).

The standard “only” includes the following: “In case of ap-

plying statistical methods, it is appropriate to derive the charac-

teristic value in a way that the calculated probability of the unfa-

vorable value defining the investigated ultimate limit state be not

higher than 5%” (A). In this respect, “a careful estimate of the

average value means the average of a limited set of the geotech-

nical parameters is selected at a confidence level of 95%” (B).

Definition of the values of the kn statistical parameter related

to a confidence level of 95% in the combinations of the above

cases [2]:

A-I. (average value, a statistically “known” parameter):

kn = t95%
∞

√
1

n
(3)

A-II. (average value, a statistically “unknown” parameter):

kn = t95%
n−1

√
1

n
(4)

Fig. 1. Illustrative graphic for the interpretation of the characteristic value

(normal distribution)

B-I. (extreme value, a “known” parameter):

kn = t95%
∞

√
1

n
+ 1 (5)

B-II. (extreme value, an “unknown” parameter):

kn = t95%
n−1

√
1

n
+ 1. (6)

Generally, a statistical parameter is regarded as “known”, if the

coefficient of variation or a real upper limit of this factor is al-

ready known, on the basis of previous data. (This definition

necessarily implies that also the type of distribution of the pa-

rameter is known).

Instead of applying the rules related to the procedure per-

formed according to the “unknown” coefficient of variation, it

is advisable to use in the practice the procedure performed ac-

cording to the “known” coefficient of variation, whereas the co-

efficient of variation is taken into consideration with a safe upper

estimate.
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Fig. 2. Student’s t values for 90; 95; 97,5 and 99% confidence levels

The (single limit type) t values of the t distribution accord-

ing to Student at the confidence levels of 90, 95 and 99% can
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be assumed according to the diagrams of Fig. 2. At an infinite

degree of freedom, the value of t at a confidence level of 95% is

as follows:

t95%
∞ ≈ 1, 645. (7)

Fig. 3 contains the values of kn: the two lower curves can be used

for the average value (probability level of 50%), and the two

upper curves for the extreme values (probability level of 5%).

Calculation of four points on the chart in Fig. 3 can see in Ap-

pendix A. In both cases, separate curves are related to the statis-

tically “known” and statistically “unknown” data sets. In case of

a statistically “known” and “unknown” coefficient of variation,

already a minor deviation becomes visible between the knvalues

above appr. 10 samples. This deviation can be experienced in

case of the extreme values above appr. 30 samples.

As a result obtained from his comparative investigations,

Schneider [3] suggested to assume the characteristic value (re-

ferring to the lower estimate of the average value, indicated with

A above) approximately at the value that is lower than the aver-

age value by half of the coefficient of variation:

Xk = Xm · (1− 0, 5 · νx ). (8)

The main advantage of this approach is that it can also be used

when there are no data available. This type of approach is be-

ing accepted and used in Switzerland since 1990, and in other

countries of Europe since 1997 [3].

In the practice of geotechnics, there are in certain cases no

sufficient data available for the determination of standard devi-

ation. In such cases, a consideration of the values indicated in

Tab. 1 is suggested [3–7] for the definition of the characteristic

values.

The characteristic value of the soil parameters is the basis of

the geotechnical calculation, especially well appliable for spe-

cial problems, e.g. slope stability analyses or flood dyke failure

probabilistic calculation [8].

2.2 Characteristic value in case of a lognormal distribution

of the parameters

If the distribution of the parameter (X ) follows a lognormal

pattern, the characteristic values (Xk) should be defined accord-

ing to [9] as follows:

Xk = e[Ym−k·nsy ], (9)

where Ym is the average of the ln(X i ) values:

Ym =
1

n

∑
ln(X i ). (10)

sy standard deviation of the lognormal distribution:

- if νx is known from previous data:

sy =

√
ln(ν2

x + 1) ≈ νx (11)

- if νx is not known from previous data:

sy =
1

n − 1

∑
(ln X i − Ym)

2 (12)

If νx is statistically known, the Ym average of the parameter with

lognormal distribution can also be calculated with the use of the

Xm average and the sy standard deviation:

Ym = ln(Xm)− 0, 5 · s2
y . (13)

2.3 Lower or upper estimate?

In the majority of geotechnical calculations, it is easy to de-

cide in advance which of the characteristic values shall be used:

the value defined by lower or by upper estimation, and the con-

sideration of which of them produces the most disadvantageous

situation: it represents the lowest value in case of resistance but

the highest one in case of effect. It is also possible however,

that a designing situation occurs, in which it cannot be decided

clearly in advance which one of the estimations shall be used,

and preliminary investigations are required for this purpose.

As an example, let us analyze the behavior of a U-shaped re-

inforced concrete structure built into granular soil, visualized in

Fig. 4, from the aspect of uplift (UPL ultimate limit state). The

Vdst hydrostatic uplift force and the Gsz weight of the structure

that are only necessary for the investigation of uplift do not play

any role in the below analysis concerning soil characteristics.

The characteristic value of the frictional force arising on the lat-

eral wall A-B of the structure, pointing downwards, and affect-

ing both lateral walls (being the product of the force pressing the

surfaces together and of the frictional coefficient) amounts to:

Tk = 2 · E ·a,k tgδk (14)

Characteristic value of the active earth pressure:

Ea,k =
H2
· γk

2
· Ka (15)

Active earth pressure factor in Eq. (15):

Ka = tg2
(
45◦ −

ϕk

2

)
(16)

The maximum of the friction angle of the wall equals to the 2/3

of the internal angle [1]:

δk =
2

3
· ϕk (17)

The Tkfrictional force, substituting of Eq. (15), (16) and (17) is:

Tk = H2
· γk · tg

2
(
45◦ −

ϕk

2

)
· tg

(
2

3
· ϕk

)
(18)

H2
· γk can be regarded to be constant because the height (H )

is taken at a nominal value into consideration, and the (γk) co-

efficient of variation of the weight density is considered in the

practice as 0 (Tab. 1). Let us introduce the factor β for the prod-

uct of the variable members of the Eq. (18):

β = tg2
(
45◦ −

ϕk

2

)
· tg

(
2

3
· ϕk

)
(19)

Thus, the investigation of changes of the Tk frictional force in

function of the φk frictional is simplified into the analysis of
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Fig. 3. Values of coefficient kn (statistical coefficients for determining the 5 and 50 % fractile with 95 % confidence)

Tab. 1. Characteristic range and suggestible value of coefficient of variation (compiled from the data of [3–7])

Type of soil parameter Notation
Characteristic range Suggestible value

of coefficient of variation of coefficient of variation

Effective friction angle tan φ’ 0,04-0,30 0,1

Effective cohesion c’ 0,3-0,6 0,4

Undrained strength cu 0,2-0,4 0,3

Oedometer modulus Es 0,2-0,7 0,4

Weight density γ 0,01-0,1 0,05*

*The weight density is generally taken at its characteristic value into consideration (ν=0).

coefficient β. A plotting of the β(φk) curve shows that it is in-

creasing strictly monotonously in case of low internal frictional

angles, reaching its maximum value at φk=27,3˚, then decreas-

ing above it strictly monotonously (Fig. 5). All this means that

this preliminary investigation has to be performed in order to de-

cide whether the lower or upper estimation should be used, i.e.

actually which of the + marks should be taken into consideration

in Eq. (1).

3 Definition of the expected value and coefficient of

variation

As it turned out above, only two parameters (the expected

value and the coefficient of variation) are necessary to define the

Xk characteristic value. Schneider [3] distinguishes three, basi-

cally differing possibilities providing a basis for the estimation

or calculation of the Xm and νx values:

• there are no test results available, only previous (a priori)

Fig. 4. Investigation of the uplift of a U-shaped reinforced concrete structure

built into granular soil
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Fig. 5. Alteration of coefficient β in function of the internal frictional angle

knowledges concerning the parameter,

• there is an ample quantity of numerical test results available,

• the “combination” of the above two possibilities: beside test

results, also previous knowledges (a priori) information is

available; e.g. a compression modulus defined by means of

compression test can be combined with the results obtained

from a pressure sounding (CPT), beat sounding (DP), or a

lapidometric test (DMT) [10].

a,) There are no test results available (n = 0):

Xm =
Xmin . + 4Xmode + Xmax

6
(20)

νx =
6 · (Xmax − Xmin)

Xmin + 4Xmode + Xmax

, (21)

where Xmin is the estimated minimum value, Xmode the value

of highest probability, and Xmax the estimated maximum value.

The estimation of the values (Xmin, Xmode and Xmax) can be

based on personal experience or judgment, documented local

or regional experience as well as published tables with typical

values.

All this means that Xmin and Xmaxmay deviate from the ex-

pected value by a threefold of the standard deviation.

As an alternative possibility, a deviation of the values of Xmin

and Xmax by a twofold standard deviation from the expected

value can be assumed (Bond and Harris, 2008); in this case:

νx =
1, 5 · (Xmax − Xmin)

Xmin + 4Xmode + Xmax

. (22)

b,) There are only test results available:

In this case, both the expected value and the coefficient of

variation can be specified according to generally known statisti-

cal relationships.

c,) „combination”: both the test results and the a priori infor-

mation are available

On the basis of the Bayes theory and according to the sugges-

tion of Tang [11], the available test results and a priori informa-

tion can be combined in the below described way. The results

thus obtained are more reliable than those obtained in the cases

a.) or b.)

The a priori values estimated in item a.) are: Xm1, νx1 and

Sx1 = Xm1 · νx1

The results obtained from the tests are: Xm2, Sx2 and νx2

Xm2 =

∑
X i

n
; (23)

Sx2 =

√∑
(X i –−Xm2)2

n − 1
; (24)

υx2 =
Sx2

Xm2

. (25)

The combined results are:

Xm3 =

Xm2 +
Xm1

n

(
Sx2

Sx1

)2

1+ 1
n

(
Sx2

Sx1

)2
; (26)

Sx3 =

√√√√√ S2
x2

n +

(
Sx2

Sx1

)2
; (27)

νx3 =
Sx3

Xm3

. (28)

At the same time, it should be emphasized as a main condi-

tion that only the statistical processing of “suitable” results can

lead to a suitable end result: both the erroneous measurement

results and the unreliable a priori data or those defined with

non-unambiguous conditions shall be neglected (Rétháti, 1988.)

Their filtering out may in certain cases become a harder engi-

neering task than the statistical processing or the dimensioning

of the structure (the remark “especially carefully” of the stan-

dard refers to this point).

4 Parameters that vary with depth

In some cases, the soil parameters (X ) are in a definitive

correlation with the subsurface depth (z) (e.g. the compres-

sion modulus grows in certain cases linearly with the increase

of depth). Such correlations can be investigated by means of

multi-variate statistics and calculated with the use of the below

relationships [2].

In the depth zi the value of soil parameter is X i , the number

of data is n.

The characteristic value of a parameter X that varies linearly

with depth below the ground surface (z) is:

Xk = Xm + b · (z − mz)± εn, (29)

where Xm is the expected value; mz is the average of the depths

z, and εn is the so called standard error.
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Tab. 2. Partial factors of the soil parameters (γM ), with the summary of Tables A2., A4., A16. and NA2. of standard MSZ EN 1997-1:2006 [1]

Type of soil parameter Notation

Ultimate limit state

EQU

STR and GEO

UPL Slopesb

Value group

M1 M2

Effective internal friction anglea γφ’ 1,25 1,0 1,25 1,25 1,35

Effective cohesion γc’ 1,25 1,0 1,25 1,25 1,35

Undrained strength γcu 1,4 1,0 1,4 1,4 1,50

Unconfined compressive strength γqu 1,4 1,0 1,4 1,50

Weight density γγ 1,0 1,0 1,0 1,0

Resistance of the drawn piles γst 1,4

Anchorage resistance γa 1,4

aThis factor is to be used for tanφ’. b For the analysis of the general stability of slopes and any other structure.

For Eq. (29) parameter b is given by:

b =

n∑
i=1

(X i − Xm)(zi − mz)

n∑
i=1

(zi − mz)2
. (30)

For the 5% fractiles (for the estimation of the extreme value),

the error εn is given by:

εn = t95%
n−2 · se ·

√√√√√(1+ 1

n
)+

(z − mz)2

n∑
i=1

[
(zi − mz)2

] . (31)

And for the 50% fractiles (for the estimation of the average

value) by:

εn = t95%
n−2 · se ·

√√√√√1

n
+

(z − mz)2

n∑
i=1

[
(zi − mz)2

] . (32)

The value of the so-called standard error is:

se =

√√√√√ n∑
i=1

[
(X i − Xm)− b · (zi − mz)

]2
n − 2

, (33)

And t95%
n−2 is Student’s t-value for (n-2) degrees of freedom at the

50% confidence level.

5 The design value

The design values (Xd) of the geotechnical parameters should

either be calculated from the characteristic values [1]:

Xd =
Xk

γM

, (34)

where γM is the partial factor, or directly estimated (in this case,

it is appropriate to regard the values of partial factors suggested

in the national enclosures to be authoritative from the aspect of

required safety level). For the case of the various ultimate limit

states of the load bearing capacity [1], the partial factors should

be assumed according to Tab. 2.

The above relationships can be used as a basis for count-

ing back the global confidence level resulting from the design

value depending on the partial factors, in case of a characteris-

tic value (lower extreme value) defined at a confidence level of

95%. Tab. 3 and Fig. 6 show this relationship for the case of

a sample quantity of n = 30 and of statistically “known” pa-

rameters. Calculation of one point on the chart in Fig. 6 and in

the Tab. 3 can see in Appendix B. The confidence level counted

back for the design value in case of partial factors situated be-

tween 1,25–1,5 and vx < 0, 29 will be higher than 97,5%, in

case of vx < 0, 18 will exceed 99%, and in case of vx < 0, 1

will exceed 99,9%.

Fig. 6. Global confidence level under consideration of the partial factor and

the coefficient of variation (lower extreme value; quantity of samples: n=30;

statistically “known” parameters)

6 Conclusions

In geotechnical calculations the definition of soil characteris-

tics represents one of the most critical part of the task, therefore

especial care should be taken during the evaluation of the param-
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Tab. 3. Numerical values of the results obtained from Fig. 5.

partial factor (γM )

1.25 1.35 1.4 1.5

c
o
e
ffi

c
ie

n
t
o
f
v
a
ri

a
ti
o
n

0.05 99.9996 99.99998 99.99999 99.99999

0.10 99.9 99.97 99.98 99.99

0.20 98.7 99.2 99.3 99.6

0.25 98.0 98.6 98.7 99.0

0.30 97.4 97.9 98.1 98.4

0.40 96.3 96.7 96.8 97.1

eters. This aspect has been further emphasized with the intro-

duction of the unified European regulation system (Eurocode).

The methods and procedures was summarized related to the sta-

tistical evaluation of the soil parameters, compared the calcu-

lation of the characteristic value for the cases of parameters of

normal and lognormal distributions, and the mean and the ex-

treme values of the soil parameters are equally considered. The

analysis of parameters that vary linearly with depth allows for

the extension of statistical calculations operating with multivari-

ables. The comparison of previous knowledges and measure-

ment results plays an important role in geotechnical engineering

practice: the possibility of their combination with the described

method was presented. Through an uplift analysis performed

with a U-shaped reinforced concrete structure, it was demon-

strated that it is not clear in each case without the execution of

preliminary tests whether the characteristic value is to be inter-

preted as a lower or upper estimate of the parameter. Finally, the

global confidence levels were calculated related to the design

values derived from the characteristic value by dividing them

with a partial factor. It was found that the confidence level

counted back to the design value, in case of a sample quan-

tity of n = 30 referring to the extreme value, of statistically

“known” parameters, exceeds 97,5% if vx < 0, 29, exceeds 99%

if vx < 0, 18, and exceeds 99,9% if vx < 0, 1.
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A Calculation of coefficient kn for n=10 number of the

samples (as in Fig. 3)

Confidence level: cl = 0, 95 (95%)

Probability : p = 2 · (1− cl) = 2 · (1− 0, 95) = 0, 1

The values of statistical parameter kn (defined in Chapter 2):

Case A-I. (average value, a statistically “known” parameter)

(Eq. 3):

kn = t95%
∞

√
1

n
= 1, 645 ·

√
1

10
= 0, 520

Case A-II. (average value, a statistically “unknown” parameter)

(Eq. 4):

kn = t95%
n−1

√
1

n
= 1, 833 ·

√
1

10
= 0, 580

Case B-I. (extreme value, a “known” parameter) (Eq. 5):

kn = t95%
∞

√
1

n
+ 1 = 1, 645 ·

√
1

10
+ 1 = 1, 725

Case B-II. (extreme value, an “unknown” parameter) (Eq. 6):

kn = t95%
n−1

√
1

n
+ 1 = 1, 833 ·

√
1

10
+ 1 = 1, 923.

The values of Student distribution can be calculated by MS-

Excel program.

At an infinite degrees of freedom (df=∞), the value of t (by

Students’ t distribution) at a confidence level of 95 % is as fol-

lows (or by Eq. 7):

t95%
∞ =TINV(p;df)=TINV(0,1;∞) ≈1,645.

At df=n-1=9 degrees of freedom, the value of t at a confi-

dence level of 95 % (see on the chart of Fig. 2):

t95%
n−1 =TINV(p;df)=TINV(0,1; 9)≈1,833.

TINV (in Hungarian version: INVERZ.T) is a function in MS-

Excel and calculates the inverse of the two-tailed Student’s t

distribution, which is a continuous probability distribution that

is frequently used for testing hypotheses on small sample data

sets.

The format of the function is: TINV(probability; degrees of

freedom)=TINV(p;df)

Where the function arguments are:

- probability (p): the probability (between 0 and 1) for which

you want to evaluate the inverse of the Student’s t distribution.

- degrees of freedom (df): the number of degrees of freedom

(must be ≥ 1).
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B Calculation of global confidence level for vx=0,25 co-

efficient of variation and γM = 1, 35 partial factor (as in

Fig. 6 and Tab. 3.)

number of samples: n = 30;

partial factor: γM = 1, 35

coefficient of variation: vx = 0, 25

type: lower extreme value; statistically “known” parameters

(case B-I.)

The value of statistical parameter kn in case B-I. (t95%
∞ ≈

1, 645 by Eq. 7):

kn = t95%
∞

√
1

n
+ 1 = 1, 645 ·

√
1

30
+ 1 = 1, 697

The characteristic value for case B-I. (as in Chapter 2) (Eq. 1):

Xk = Xm · (1−kn ·νx ) = Xm · (1−1, 697 ·0, 25) = Xm ·0, 576

The design value of the parameter (by Eq. 34):

Xd =
Xk

γM
=

Xm ·(1−kn ·νx )
γM

=
Xm ·0,576

1,35
= Xm · 0, 426 or the

same:
Xd

Xm
= 0, 426

The design value by the „new” kn* value from Eq. (1):

Xd = Xm · (1− k∗n · νx ) or the same:
Xd

Xm
= (1− k∗n · νx )

So the so-called „new” kn* value:

k∗n =

(
1−

Xd

Xm

)
/νx = (1− 0, 426) /0, 25 = 2, 294

Probability:

p=TDIST(k∗n ;n;2)=TDIST(2,294;30;2)=0,028949

And the global confidence level:

cl = 100 · (1− p/2) = 100 · (1− 0, 028949/2) ≈ 98, 6%

TDIST (in Hungarian version: T.ELOSZLÁS) is a function in

MS-Excel and calculates the Student’s t distribution, which is

a continuous probability distribution that is frequently used for

testing hypotheses on small sample data sets.

The format of the function is: TDIST(X ; degrees of freedom;

tails)

Where the function arguments are:

− X : the value at which you want to evaluate the Student’s t

distribution.

− degrees of freedom (d f ): the number of degrees of freedom

(must be ≥ 1)

− tails: the number of distribution tails to return. (This must

be either: 1 - to return a one-tailed distribution; 2 - to return a

two-tailed distribution).
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