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Abstract
Optimization problems may include variables of different na-

tures. In structural optimization for example different vari-
ables representing cross-sectional, geometrical, topological and
grouping properties of the structure may be present. Having dif-
ferent interpretations, the effects of these variables on the ob-
jective function are not alike and their search spaces may rep-
resent different characteristics. Thus, it is helpful to take these
variables apart and to control each set separately.

Based on the above considerations, in this paper a multi set
charged system search (MSCSS) is introduced for the element
grouping of truss structures in a weight optimization process.
The results are compared to those obtained through predefined
grouping by different algorithms. The comparisons show the
efficiency and the effectiveness of the proposed algorithm. Al-
though this paper only considers size optimization of truss struc-
tures where sizing and grouping variables are present and re-
garded as variables of different natures, the algorithm can be
extended to cover the simultaneous shape and size optimization
and topology optimization of different types of structures.
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1 Introduction
Meta-heuristic algorithms are more suitable than conven-

tional methods for structural optimum design due to their capa-
bility of exploring and finding promising regions in the search
space in an affordable time [1]. The traditional engineering
optimization algorithms are based on nonlinear programming
methods that require substantial gradient information and usu-
ally seek to improve the solution in the neighborhood of a start-
ing point. Many real-world engineering optimization problems,
however, are very complex in nature and quite difficult to solve
using these algorithms [2]. However hybridization of the con-
ventional and meta-heuristic algorithms and combining suitable
features of both categories may result in competent search tech-
niques [3].

Charged System Search (CSS) is a population based meta-
heuristic algorithm which has been proposed recently by Kaveh
and Talatahari [4]. In the CSS each solution candidate is consid-
ered as a charged sphere called a Charged Particle (CP). The
electrical load of a CP is determined considering its fitness.
Each CP exerts an electrical force on all the others according
to the Coulomb and Gauss laws from electrostatics. Then the
new positions of all the CPs are calculated utilizing Newtonian
mechanics, based on the acceleration produced by the electrical
force, the previous velocity and the previous position of each
CP. Many different structural optimization problems have been
successfully solved by the CSS [4–7].

It is a common practice to group the members of a structure in
order to decrease the construction costs. Engineers group mem-
bers together based on their past experiences, personal prefer-
ences and fabrication requirements. This is ad hoc grouping [8].
But the problem of element grouping does not seem to be sim-
ple enough to be handled manually specially for more complex
structures. In recent years, some element grouping algorithms
have been proposed by different researchers, Krishnamoorthy et
al. [9] Togan and Dologlu [10, 11] Barbosa and Lemonge [12]
Barbosa et al. [13] and Walls and Elvin [8] among others.

The element grouping task is fulfilled here utilizing the idea
proposed by Barbosa et al. [13]. This method does not consider
any structural characteristic to group the members and hence is
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not restricted to a particular type of structures and is not misled
by inconvenient assumptions. In this method two sets of vari-
ables define the final cross-sectional configuration of the struc-
ture; the pointer variables assigning each member to a particular
group, and the type variables assigning a cross-sectional area to
each group.

In the original CSS, all of the variables are stored in a single
vector for each CP. This means that the moving strategies and
the control parameters are all the same for different variables.
Consequently, when a CP explores the search space, there is no
meaningful difference between the variables of different natures;
a pointer variable would be treated like a type variable for exam-
ple. It is clear that a similar change in a pointer variable does not
have the same effect as a type variable on the structure; a pointer
variable merely affects a single member, while a type variable
affects all the members of the corresponding group. Thus, treat-
ing the variables of different natures separately appears to be
of significant importance to let the algorithm to reveal its best
performance.

In this paper a multi set charged system search is introduced
for the element grouping of truss structures. Two sets of CPs are
considered. One of the CP sets contains the pointer variables and
the other contains the type variables. This offers the possibility
of controlling each of the variable sets properly.

The remainder of this paper is organized as follows: In section
2, weight optimization of truss structures is stated. CSS and
MSCSS are introduced briefly in section 3. Some numerical
examples are studied in section 4. The concluding remarks are
summarized in section 5.

2 Problem Statement
In a truss size optimization problem, the goal is to find a set of

optimal cross-sectional areas for the members which minimize
the weight of the structure. The magnitudes of the stresses in-
duced in the members together with the displacements of some
of the nodes of the structure are usually considered as the con-
straints. The connectivity information and the nodal coordinates
are kept unchanged during the optimization process. For a struc-
ture with a predefined element grouping, the problem can be
stated mathematically as follows:

FindX = [x1, x2, x3, . . ., xn]

to minimizeMer(X) = f (X) × fpenalty(X)

subjected toσi min ≤ σil ≤ σi max

δk min ≤ δkl ≤ δk max

i = 1, 2, . . ., nm

k = 1, 2, . . ., dc

l = 1, 2, . . ., lc

(1)

where X is the vector containing the design variables; in a
discrete optimum design problem the variables xi are restricted
to be selected from a list of available sections; n is the number

of variables (number of groups); Mer(X) is the merit function;
f (X) is the cost function, which is taken as the weight of the
structure; fpenalty(X) is the penalty function which results from
the violations of the constraints corresponding to the response
of the structure [14]; σil is the stress of the i th member under lth
loading condition and σimin and σimax are its lower and upper
bounds, respectively; δkl is the displacement of the kth degree
of freedom under the lth loading condition, δkmin and δkmax are
the corresponding lower and upper limits respectively; nm is
the number of members of the structure; dc is the number of
displacement constraints and lc is the number of loading condi-
tions.

The cost function is taken as the weight of the structure and
can be expressed as:

f (X) =

nm∑
i=1

ρi L i Ai (2)

where ρi is the material density of member i ; L i is the length
of member i ; and Ai is the cross-sectional area of member i .

The penalty function is defined as [4]:

fpenalty(X) = (1 + ε1v)ε2 , v =

q∑
i=1

vi (3)

where q is the number of constraints. If the i th constraint is
satisfied vi will be taken as zero, if not it will be taken as:

vi =

∣∣∣∣1 −

(
pi

p∗

i

)∣∣∣∣ (4)

where pi is the response of the structure and p∗

i is its bound. The
parameters ε1 and ε2 are selected considering the exploration
and the exploitation rate of the search space. The exploration
and exploitation rates are the tendency of the agents to explore
new areas of the search space and to use good solutions found
in the previous stages, respectively. In this paper ε1 is taken as
unity and the value of the ε2 varies linearly from 1.5 to 3 as the
optimization process proceeds.

3 The Optimization Algorithm
3.1 Original CSS
Recently an efficient optimization algorithm, known as the

Charged System Search, has been proposed by Kaveh and Ta-
latahari [4]. This algorithm is based on electrostatics and New-
tonian mechanics laws.

The Coulomb and Gauss laws provide the magnitude of the
electric field at a point inside and outside a charged insulating
solid sphere, respectively, as follows [15]:

Ei j =

{ keqi
a3 ri j ifri j < a

keqi
r2

i j
ifri j ≥ a (5)

where ke is a constant known as the Coulomb constant; ri j is the
separation of the centre of sphere and the selected point; qi is
the magnitude of the charge; and a is the radius of the charged
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sphere. Using the principle of superposition, the resulting elec-
tric force due to N charged spheres is equal to [4]:

F j = keq

N∑
i=1

(
qi

a3 ri j i1 +
qi

r2
i j

i2

)
ri − r j

‖ri − r j‖

i1 = 1, i2 = 0 ⇔ ri j < a

i1 = 0, i2 = 1 ⇔ ri j ≥ a

(6)

Also, according to Newtonian mechanics, we have [15]:

1r = rnew − rold (7)

v =
rnew − rold

1t
(8)

a′
=

vnew − vold

1t
(9)

where rold and rnew are the initial and final positions of the
particle, respectively; v is the velocity of the particle; and a′ is
the acceleration of the particle. Combining the above equations
and using Newton’s second law, the displacement of any object
as a function of time is obtained as [15]:

rnew =
1
2

F
M

1t2
+ vold1t + rold (10)

Where F is the resultant force vector acting on the particle;
M is the particles mass and 1t is the time interval.

Inspired by the above electrostatic and Newtonian mechan-
ics laws, the pseudo-code of the CSS algorithm is presented as
follows [6]:

Level 1: Initialization Step 1. Initialization. Initialize the
parameters of the CSS algorithm. Initialize an array of charged
particles (CPs) with random positions. The initial velocities of
the CPs are taken as zero. Each CP has a charge of magnitude
(qi ) defined considering the quality of its solution as:

qi =
f i t (i) − f i tworst

f i tbest − f i tworst
i = 1, 2, . . . N (11)

where f i tbest and f i tworst are the best and the worst fitness of
all the particles; f i t (i) represents the fitness of agent i . The
separation distance ri j between two charged particles is defined
as:

ri j =
‖X i − X j‖∥∥∥ (X i +X j)

2 − Xbest

∥∥∥+ ε
(12)

where X i and X j are the positions of the i th and j th CPs,
respectively; Xbest is the position of the best current CP; and ε

is a small positive to avoid singularities.
Step 2. CP ranking. Evaluate the values of the fitness function

for the CPs, compare with each other and sort them in increasing
order.

Step 3. CM creation. Store the number of the first CPs equal
to charged memory size (CMS) and their related values of the
fitness functions in the charged memory (CM).

Level 2: Search Step 1. Attracting force determination.
Determine the probability of moving each CP toward the oth-
ers considering the following probability function:

pi j =

{
1 f i t (i)− f i tbest

f i t ( j)− f i t (i) > rand ∨ f i t (i) > f i t ( j)
0 else

(13)

where rand is a random number uniformly distributed in the
range of (0,1).

Then calculate the attracting force vector for each CP as fol-
lows:

Fi j = q j
∑
i,i, j

(
qi

a3 ri j i1 +
qi

r2
i j

i2

)
pi j (X i − X j )

j = 1, 2, . . . , N

i1 = 1, i2 = 0 ⇔ ri j < a

i1 = 0, i2 = 1 ⇔ ri j ≥ a

(14)

where F j is the resultant force affecting the j th CP.
Step 2. Solution construction. Move each CP to the new po-

sition and find its velocity using the following equations:

X j,new = rand j1ka
F j

m j
1t2

+ rand j2kvV j,old1t + X j,old (15)

V j,new =
X j,new − X j,old

1t
(16)

where rand j1 and rand j2 are two random numbers uniformly
distributed in the range (1,0); m j is the mass of the CPs, which
is equal to q j in this paper. The mass concept may be useful
for developing a multi-objective CSS. 1t is the time step, and it
is set to 1. ka is the acceleration coefficient; kv is the velocity
coefficient to control the influence of the previous velocity. In
this paper kv and ka are taken as:

ka = c1(1 + i ter/ i termax), kv = c2(1 − i ter/ i termax) (17)

Where c1 and c2 are two constants to control the exploitation
and exploration of the algorithm; iter is the iteration number and
i termax is the maximum number of iterations.

Step 3. CP position correction. If each CP exits from the
allowable search space, correct its position using the HS-based
handling as described by Kaveh and Talatahari [4, 12].

Step 4. CP ranking. Evaluate and compare the values of the
fitness function for the new CPs; and sort them in an increasing
order.

Step 5. CM updating. If some new CP vectors are better
than the worst ones in the CM, in terms of their objective func-
tion values, include the better vectors in the CM and exclude the
worst ones from the CM.

Level 3: Controlling the terminating criterion Repeat the
search level steps until a terminating criterion is satisfied. The
terminating criterion is considered to be the number of itera-
tions.
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3.2 Multi set charged system search for element grouping
Here it is assumed that the element grouping is not predefined.

Aside from the members’ cross-sectional areas, the optimization
technique seeks for an optimal grouping for the elements of the
structure. In fact, the main advantage of MSCSS algorithm in
comparison to the original CSS is its ability to group the mem-
bers of the structure. MSCSS discards the predefined ad hoc
grouping and searches for an optimal one. The details are ex-
plained in the remainder of this section.

Barbosa et al. [13] have proposed a genetic algorithm encod-
ing for cardinality constraints in which two sets of variables are
utilized to introduce a particular solution. The first set of vari-
ables is called the pointer variables which associate each mem-
ber of the structure to a group. The second set is called the type
variables which assign a particular cross-sectional area to each
group. All of the variables, defining a solution candidate, are
listed into a string (chromosome) which takes part in the opti-
mization process as an individual.

A similar idea is used here with some modifications for the
element grouping task. A pointer variable only determines a sin-
gle member’s condition. When the value of a pointer variable is
changed, a member leaves a group and joins another. On the
contrary, a type variable determines the cross-sectional area of a
group of members. Therefore, it is clear that these two kinds of
variables, when experiencing similar changes, affect the struc-
ture’s configuration and behavior in different manners.

It should be noted that the work done in this paper is different
in nature form that of Barbosa and Lemonge [12] and Barbosa
et al [13] and the results are not comparable. In these references
the problem of element grouping is not considered; they employ
an ad hoc grouping and then try to reduce the number of vari-
ables to satisfy the additional "cardinality constraints".

Like any other meta-heuristic algorithm, successful applica-
tion of the Charged System Search is strongly influenced by
properly setting its parameters. A universally optimal param-
eter values set for a given meta-heuristic does not exist [16].
A proper combination of the parameters depends on the char-
acteristics of the certain problem under consideration and the
variables involved.

In order to take the different natures of the variables into ac-
count and to make it possible to use different parameter sets for
each variable type a multi set charged system search is intro-
duced here. Two different sets of CPs are considered. Each of
the CPs of the first set is a vector representing the pointer vari-
ables of a solution candidate. For each CP in the first set there
exists an associated CP in the second set which is a vector rep-
resenting the type variables of the same solution candidate. The
two CPs in a pair share a fitness value which is used for quality
evaluation. Each of the CP sets explores its own search space
independently. Figure 1 shows an example of a pair of CPs rep-
resenting a solution candidate in a ten-bar truss example with
a set of 32 discrete available sections. The members are to be

grouped in four groups. A pair like this determines a solution
candidate. The pointer variable CP has as many variables as the
number of members of the structure. The value of each of these
variables determines the group which the corresponding mem-
ber belongs to. The type variable CP has as many variables as
the number of groups of the structure. The value of each of these
variables determines the cross-sectional area of the correspond-
ing group (or a number which is associated with a particular
section in a list when considering discrete variable problems).

Fig. 1. A pair of CPs representing a solution candidate in the MSCSS

The difference between the two charged particle sets is im-
posed through using different values for the particle size and the
parameters c1 and c2 to control the exploration and exploitation
rates effectively. These parameters are determined by try and
error here although they can also be determined adaptively. For
the sake of simplicity the parameter c1is assumed to be equal to
unity for both CP sets in all examples; the parameter c2 for the
pointer variables’ CP set is assumed to be twice that of the type
variables’ CP set. This assumption is also proven to be useful
through a try and error process. All of other aspects of MSCSS
are similar to those of the original CSS.

4 Design Examples
Four examples are studied in this section and the results are

compared to the previously obtained results. Except for the first
example, a ten-bar truss, in which the results of the grouped
structures are compared to the previously obtained ungrouped
structures, the remaining comparisons are carried out between
the results of the MSCSS and those obtained through ad hoc
grouping.

4.1 A Ten-bar Truss
Figure 2 shows a ten-bar truss which has been investigated

without element grouping by Wu and Chow [17], Rajeev and
Krishnamoorthy [18], Ringertz [19] and Li et al. [20] among
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others. The material density is 0.1 lb/in3 (2767.990 kg/m3) and
the modulus of elasticity is 10,000 ksi (68,950 MPa). The mem-
bers are subjected to stress limitations of 25 ksi (172.375 MPa).
All nodes in both directions are subjected to displacement lim-
itations of 2.0 in (5.08 cm). Nodes 2 and 4 are subjected to a
downward load of P = 105 lbs (445 kN).

Fig. 2. A ten-bar truss

Here, the goal is to group the members of the structure into
4 groups while minimizing its weight. Two optimization cases
are considered. For case 1, the discrete variables are selected
from the set D={1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88,
2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18,
4.22, 4.49, 4.59, 4.80, 4.97,5.12, 5.74, 7.22, 7.97, 11.50, 13.50,
13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90,
26.50, 30.00, 33.50} (in2) or {10.46, 11.62, 12.85, 13.75, 15.37,
16.91, 16.98, 18.59, 18.92, 19.95 20.21, 21.82, 22.40, 22.92,
23.44, 24.79, 24.99, 25.05, 26.99, 27.24, 28.99, 29.63, 30.99,
32.09, 33.06 , 359.86, 46.61, 51.46, 74.25, 87.16, 89.74, 91.68,
100.07, 103.30, 109.11, 121.37, 128.48, 142.03, 147.84, 171.09,
193.68, 216.28} (cm2). For case 2, the discrete variables are
selected from the set D = {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5,
11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0,
16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5,
22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0,
27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5}(in2)or{0.65,
3.23, 6.46, 9.68, 12.91, 16.14, 19.37, 22.60, 25.82, 29.05, 32.28,
35.51, 38.74, 41.96, 45.19, 48.42, 51.65, 54.88, 58.10, 61.33,
64.56, 67.79, 71.02, 74.25, 77.47, 80.70, 83.93, 87.16, 90.39,
93.61, 96.84, 100.07, 103.30, 106.53, 109.75, 112.98, 116.21,
119.44, 122.67, 125.89, 129.12, 132.35, 135.58, 138.81, 142.03,
145.26, 148.49, 151.72, 154.95, 158.17, 161.40, 164.63, 167.86,
171.09, 174.31177.54, 180.77, 184.00, 187.23, 190.45, 193.68,
196.91, 200.14, 203.37} (cm2).

Table 1 and 2 represent a comparison between the results ob-
tained by different researchers. It is found that Wu’s results do
not satisfy the constraints of this problem [20]. The results ob-
tained by MSCSS are only 0.6 and 2.2 percents heavier than the
best ungrouped results in cases 1 and 2 respectively, while only
using four different sections.

Figures 3 and 4 show the convergence curve of the best results

Tab. 1. Comparison of optimal designs for the 10-bar planar truss structure
(case 1)

Variables (in2)
Wu and

Chow [17]

Rajeev and

Krish-

namoorthy

[18]

Li et al. [20]
MSCSS in2

(cm2)

A1 26.50 33.50 30.00
30.00

(193.68)

A2 1.62 1.62 1.62
1.62

(10.46)

A3 16.00 22.00 22.90
22.00

(142.03)

A4 14.20 15.50 13.50
22.00

(142.03)

A5 1.80 1.62 1.62
1.62

(10.46)

A6 1.62 1.62 1.62
1.62

(10.46)

A7 5.12 14.20 7.97
7.97

(51.46)

A8 16.00 19.90 26.50
22.00

(142.03)

A9 18.80 19.90 22.00
22.00

(142.03)

A10 2.38 2.62 1.80
1.62

(10.46)

Weight(lb) 4376.20 5613.84 5531.98
5567.3

(2525.2 kg)

Fig. 3. Convergence curve of the best result obtained for the 10-bar truss by
the MSCSS (case 1)

obtained by the MSCSS for cases 1 and 2, respectively.
Table 3 represents the values of the parameters used in the

optimization of the ten-bar truss.
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Tab. 2. Comparison of optimal designs for the 10-bar planar truss structure
(case 2).

Variables (in2)
Wu and

Chow [17]

Ringertz

[19]
Li et al. [20]

MSCSS

in2 (cm2)

A1 30.50 30.50 31.50
31.50

(203.36)

A2 0.50 0.10 0.10 0.10 (0.65)

A3 16.50 23.00 24.50
20.50

(132.35)

A4 15.00 15.50 15.50
20.50

(132.35)

A5 0.10 0.10 0.10 0.10 (0.65)

A6 0.10 0.50 0.50 0.10 (0.65)

A7 0.50 7.50 7.50
9.00

(58.10)

A8 18.00 21.0 20.50
20.50

(132.35)

A9 19.50 21.5 20.50
20.50

(132.35)

A10 0.50 0.10 0.10 0.10 (0.65)

Weight(lb) 4217.30 5059.9 5073.51
5171.5

(2345.7 kg)

Fig. 4. Convergence curve of the best result obtained for the 10-bar truss by
the MSCSS (case 2)

4.2 An Eighteen-bar Cantilever Planar Truss
The eighteen-bar planar truss shown in Figure 5 has been in-

vestigated by Imai and Schmit [21] and Lee and Geem [22]
as a pure size optimization problem. The material density is
0.1 lb/in3 (2767.990 kg/m3) and the modulus of elasticity is
10,000 ksi (68,950 MPa). The members are subjected to stress
limitations of 20 ksi (137.89 MPa). An Euler bucking compres-
sive stress limitation is also imposed on the members under

Tab. 3. The values of the parameters used in the optimization of the ten-bar
truss

Number of

particles
c1 c2

Particle size

(a)

Case 1 Pointers’ CP set 50 1 9 0.3

Types’ CP set 50 1 4.5 1

Case 2 Pointers’ CP set 50 1 9 0.3

Types’ CP set 50 1 4.5 1

compression according to the following equation:

σ E
i =

−ki Ai E

L2
i

(18)

where E is the modulus of elasticity and ki is a constant which is
determined considering the shape of the section. L i is the mem-
ber length and Ai is the cross-sectional area. In this example, the
buckling constant is taken to be k = 4. The loading condition
consists of a set of vertical downward point loads P = 20 kips
(89 kN) acting on all the upper nodes.

Fig. 5. An eighteen-bar cantilever planar truss

This is a continuous optimization problem with a minimum
cross-sectional area of A=0.1 in2 (645.16 cm2). Table 4 rep-
resents the ad hoc element grouping together with the element
grouping obtained by the MSCSS, and Table 5 compares the op-
timal results.

Tab. 4. Ad hoc element grouping together with the grouping obtained by
MSCSS for the 18-bar planar truss

Group number Ad hoc grouping
Grouping obtained by

MSCSS

1 A1 , A4 ,A8 ,A12 ,A16
A1 , A3 ,A4 ,A5 ,A8 , A9 ,

A12 ,A13

2 A2 , A6 , A10 , A14 , A18 A2 , A6 ,A7 ,A16 ,A17

3 A3 , A7 ,A11 ,A15 A10 , A11 ,A15

4 A5 ,A9 ,A13 ,A17 A14 , A18

It can be seen that the result obtained by the MSCSS is 22.2
percent lighter that the best previously obtained result. This is
mainly because of the effectiveness of element grouping algo-
rithm offered by the MSCSS.

Figure 6 shows the convergence curve of the optimization
process performed by the MSCSS for the eighteen bar truss, and
Table 6 represents the values of the parameters used.
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Tab. 5. Comparison of optimal designs for the 18-bar planar truss structure

Group number

(in2)

Imai and Schmit

[21]

Lee and Geem

[22]

MSCSS in2

(cm2)

1 9.998 9.980 6.022 (38.85)

2 21.65 21.63 10.146 (65.46)

3 12.50 12.49 13.706 (88.43)

4 7.072 7.057 21.886 (141.21)

Weight (lb) 6430.0 6421.88
4992.18

(2264.36 kg)

Fig. 6. Convergence curve of the best result obtained for the 18-bar truss by
the MSCSS

Tab. 6. The values of the parameters used in the optimization of the 18-bar
truss

Number of particles c1 c2 Particle size (a)

Pointers’ CP set 50 1 9 0.3

Types’ CP set 50 1 4.5 1

4.3 A 52-bar Planar Truss
Figure 7 shows a 52-bar planar truss which has been previ-

ously analyzed with an ad hoc grouping by Wu and Chow [17],
Lee and Geem [23], Li et al [20] and Kaveh and Talatahari [24].
The material density is 7860.0 kg/m3 and the modulus of elas-
ticity is 2.07×105 MPa. The members are subjected to stress
limitations of 180 MPa. Point loads Px = 100 kN, Py = 200 kN
are acting on the upper nodes of the structure as depicted in the
figure. The discrete variables are selected from the American
Institute of Steel Construction (AISC) Code, which is shown in
Table 7 [25].

Table 8 represents the ad hoc element grouping which has
been previously used by all researchers together with the opti-
mal element grouping found by the MSCSS. The only restric-
tion imposed on the element grouping task by the MSCSS is to
maintain the symmetry with respect to y axis. Table 9 repre-

Tab. 7. The available cross-sectional areas of the ASIC code [25]

No. in2 mm2 No. in2 mm2

1 0.111 71.613 33 3.840 2477.423

2 0.141 90.96786 34 3.870 2496.778

3 0.196 126.4518 35 3.880 2503.229

4 0.250 161.2905 36 4.180 2696.778

5 0.307 198.0648 37 4.220 2722.584

6 0.391 252.2584 38 4.490 2896.778

7 0.442 285.1617 39 4.590 2961.294

8 0.563 363.2263 40 4.800 3096.778

9 0.602 388.3876 41 4.970 3206.456

10 0.766 494.1942 42 5.120 3303.23

11 0.785 506.4523 43 5.740 3703.231

12 0.994 641.2912 44 7.220 4658.071

13 1.000 645.1622 45 7.970 5141.942

14 1.228 792.2591 46 8.530 5503.233

15 1.266 816.7753 47 9.300 6000.008

16 1.457 940.0013 48 10.850 7000.009

17 1.563 1008.388 49 11.500 7419.365

18 1.620 1045.163 50 13.500 8709.689

19 1.800 1161.292 51 13.900 8967.754

20 1.990 1283.873 52 14.200 9161.303

21 2.130 1374.195 53 15.500 10000.01

22 2.380 1535.486 54 16.000 10322.59

23 2.620 1690.325 55 16.900 10903.24

24 2.630 1696.776 56 18.800 12129.05

25 2.880 1858.067 57 19.900 12838.73

26 2.930 1890.325 58 22.000 14193.57

27 3.090 1993.551 59 22.900 14774.21

28 1.130 729.0332 60 24.500 15806.47

29 3.380 2180.648 61 26.500 17096.8

30 3.470 2238.713 62 28.000 18064.54

31 3.550 2290.326 63 30.000 19354.86

32 3.630 2341.939 64 33.500 21612.93

sents a comparison between the results obtained through ad hoc
grouping and the result obtained by the MSCSS.

It can be seen that the result obtained by the MSCSS is consid-
erably better than the best result obtained through ad hoc group-
ing while using 10 groups instead of 12 groups. Table 10 repre-
sents the values of the parameters utilized for the optimization
of the 52-bar planar truss. Fig. 8 shows the convergence curve
of the best result obtained by the MSCSS for the 52-bar planar
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Fig. 7. A 52-bar planar truss

Tab. 8. Ad hoc element grouping together with the grouping obtained by
MSCSS for the 52-bar truss

Group number Ad hoc grouping
Grouping obtained by

MSCSS

1 A1–A4 A2, A3, A5, A7, A8, A10

2 A5–A10
A18, A23, A37, A38, A39,

A51

3 A11–A13
A12, A15, A16, A25, A41,

A42, A50, A52

4 A14–A17 A11, A13, A33, A34

5 A18–A23
A19, A22, A24, A26, A31,

A36, A44, A49

6 A24–A26
A28, A29, A45, A46, A47,

A48

7 A27–A30 A32, A35, A40, A43

8 A31–A36 A20, A21

9 A37–A39 A6, A9, A27, A30

10 A40–A43 A1, A4, A14, A17

11 A44–A49 -

12 A50–A52 -

truss.

4.4 A 72-bar Spatial Truss
A 72-bar space truss as shown in Figure 9 has been analyzed

previously by Wu and Chow [17], Li et al [20] and Kaveh and

Tab. 9. Comparison of optimal designs for the 52-bar planar truss structure

Variables

(mm2)

Wu and

Chow

[17]

Lee and

Geem

[23]

Li et al

[20]

Kaveh

and

Talatahari

[24]

MSCSS

1 4658.055 4658.055 4658.055 4658.055 252.26

2 1161.288 1161.288 1161.288 1161.288 363.23

3 645.160 506.451 363.225 494.193 506.45

4 3303.219 3303.219 3303.219 3303.219 641.29

5 1045.159 940.000 940.000 1008.385 1045.16

6 494.193 494.193 494.193 285.161 1283.87

7 2477.414 2290.318 2238.705 2290.318 1374.19

8 1045.159 1008.385 1008.385 1008.385 1993.55

9 285.161 2290.318 388.386 388.386 2696.78

10 1696.771 1535.481 1283.868 1283.868 4658.07

11 1045.159 1045.159 1161.288 1161.288 -

12 641.289 506.451 792.256 506.451 -

Weight

(kg)
1970.142 1906.76 1905.495 1904.83 1611.77

Fig. 8. Convergence curve of the best result obtained by the MSCSS for the
52-bar planar truss

Tab. 10. The values of the parameters used in the optimization of the 52-bar
truss

Number of particles c1 c2 Particle size (a)

Pointers’ CP set 100 1 9 0.3

Types’ CP set 100 1 4.5 1

Talatahari [24] considering an ad hoc grouping. The material
density is 0.1 lb/in3 (2767.990 kg/m3) and the modulus of elas-
ticity is 10,000 ksi (68,950 MPa). The members are subjected to
stress limitations of 25 ksi (172.375 MPa). The uppermost nodes
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Tab. 11. Loading conditions for the 72-bar space truss

node Case 1 Case 2

Px kips (kN) Py kips (kN) Pz kips (kN) Px kips(kN) Py kips(kN) Pz kips (kN)

1 0.5(-22.25) 0.5(22.25) -0.5(-22.25) _ _ -0.5(-22.25)

2 _ _ _ _ _ -0.5(-22.25)

3 _ _ _ _ _ -0.5(-22.25)

4 _ _ _ _ _ -0.5(-22.25)

Fig. 9. A 72-bar spatial truss

Fig. 10. Convergence curve of the best result obtained by the MSCSS for
the 72-bar space truss (case 1)

are subjected to displacement limitations of 0.25 in (0.635 cm)
both in x and y directions. There are two optimization cases
to be implemented. Case 1: The discrete variables are selected

Fig. 11. Convergence curve of the best result obtained by the MSCSS for
the 72-bar space truss (case 2)

from the set D = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9,1.0,
1.1,1.2, 1.3,1.4, 1.5,1.6, 1.7, 1.8, 1.9, 2.0, 2.1,2.2, 2.3,2.4, 2.5,
2.6, 2.7, 2.8, 2.9, 3.0, 3.1,3.2} (in2) or {0.65, 1.29, 1.94, 2.58,
3.23, 3.87, 4.52, 5.16, 5.81, 6.45, 7.10,7.74, 8.39, 9.03, 9.68,
10.32, 10.97, 12.26, 12.90, 13.55, 14.19, 14.84,15.48, 16.13,
16.77, 17.42, 18.06, 18.71, 19.36, 20.00, 20.65} (cm2). Case 2:
The discrete variables are selected from Table 7. The loading
conditions for both optimization cases are listed in Table 11.

Table 12 represents the ad hoc element grouping which has
been previously used by all researchers together with the opti-
mal element grouping found by the MSCSS. Table 13 and 14
represent a comparison between the results obtained through ad
hoc grouping and the results obtained by the MSCSS for the 72-
bar space truss for cases 1 and 2, respectively. Figure 10 and 11
represents the convergence curves of the best results obtained by
the MSCSS for the 72-bar space truss in cases 1 and 2, respec-
tively. Table 15 lists the values of the parameters used for the
optimization of the 72-bar space truss.

It can be seen from Table 13 and 14 that the results obtained
by the MSCSS are slightly lighter than the results obtained
through ad hoc grouping. It can also be seen that in case 2 the
MSCSS algorithm has used fewer number of different variables.
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Tab. 12. Ad hoc element grouping together with the grouping obtained by MSCSS for the 72-bar truss

Group number Ad hoc grouping Grouping obtained by MSCSS

Element No. (case 1) Element No. (case 2)

1 A1–A4
1 4 5 8 10 11 14 18 19 27 30 31 33

34 36 38 42 49 50 51 52 54 56 58

62 63 66 67 70 71

7 11 15 24 30 33 35 41 49 50 51 52

53 54 59 67 68 69 71 72

2 A5–A12
3 9 13 15 16 20 24 29 32 40 43 46

47 60 68 69 72
66 70

3 A13–A16 2 7 25 35 19 31 34

4 A17–A18 6 22 23 37 41 53 59 1 4 18 32 36 61 64

5 A19–A22 12 21 45 48 5 14 16 27 47

6 A23–A30 17 26 44 61 64 65
3 8 9 10 13 17 20 22 23 25 26 28

38 40 43 44 45 46 48 56 62 63

7 A31–A34 28 55 57 2 58 65

8 A35–A36 39 29 42 60 6 12 37 55 57

9 A37–A40 - 21 39

10 A41–A48 - -

11 A49–A52 - -

12 A53–A54 - -

13 A55–A58 - -

14 A59–A66 - -

15 A67–A70 - -

16 A71–A72 - -

Tab. 13. Comparison of optimal designs for the 72-bar planar truss structure (case 1)

Variables (in2)
Wu and Chow

[17]

Lee and Geem

[23]
Li et al. [20]

Kaveh and

Talatahari [24]

MSCSS in2

(cm2)

1 1.5 1.9 2.1 1.9 0.2 (1.29)

2 0.7 0.5 0.6 0.5 0.3 (1.94)

3 0.1 0.1 0.1 0.1 0.5 (3.23)

4 0.1 0.1 0.1 0.1 0.7 (4.52)

5 1.3 1.4 1.4 1.3 0.8 (5.16)

6 0.5 0.6 0.5 0.5 0.9 (5.81)

7 0.2 0.1 0.1 0.1 1.5 (9.68)

8 0.1 0.1 0.1 0.1 2.3 (14.85)

9 0.5 0.6 0.5 0.6 -

10 0.5 0.5 0.5 0.5 -

11 0.1 0.1 0.1 0.1 -

12 0.2 0.1 0.1 0.1 -

13 0.2 0.2 0.2 0.2 -

14 0.5 0.5 0.5 0.6 -

15 0.5 0.4 0.3 0.4 -

16 0.7 0.6 0.7 0.6 -

Weight (lb) 400.66 387.94 388.94 385.54
379.19

(172.02 kg)

5 Concluding Remarks
In this paper a multi set charged system search is introduced

to investigate structural optimization problems containing vari-

ables with different interpretations. In general, variables repre-
senting cross-sectional, geometrical, topological and grouping
properties of the structure may be present in a structural opti-
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Tab. 14. Comparison of optimal designs for the 72-bar planar truss structure
(case 2)

Variables

(in2)

Wu and

Chow [17]
Li et al [20]

Kaveh and

Talatahari

[22]

MSCSS

in2 (cm2)

1 0.196 427.203 1.800 0.111 (0.72)

2 0.602 1.228 0.442 0.141 (0.91)

3 0.307 0.111 0.141 0.196 (1.26)

4 0.766 0.111 0.111 0.250 (1.61)

5 0.391 2.880 1.228 0.391 (2.52)

6 0.391 1.457 0.563 0.563 (3.63)

7 0.141 0.141 0.111 0.766 (4.95)

8 0.111 0.111 0.111 1.228 (7.93)

9 1.800 1.563 0.563 1.266 (8.17)

10 0.602 1.228 0.563 1.80 (11.62)

11 0.141 0.111 0.111 -

12 0.307 0.196 0.250 -

13 1.563 0.391 0.196 -

14 0.766 1.457 0.563 -

15 0.141 0.766 0.442 -

16 0.111 1.563 0.563 -

Weight (lb) 427.203 933.09 393.380
375.70

( 170 kg)

Tab. 15. The values of the parameters used in the optimization of the ten-bar
truss

Number of

particles
c1 c2

Particle size

(a)

Case 1 Pointers’ CP set 150 1 9 0.3

Types’ CP set 150 1 4.5 1

Case 2 Pointers’ CP set 150 1 9 0.3

Types’ CP set 150 1 4.5 1

mization problem. These variables, having different effects of
different orders on the structure, may be useful to be controlled
separately. Here the special case of element grouping is consid-
ered but the algorithm can solve problems of other types.

MSCSS ignores the predefined grouping (ad hoc grouping)
and tries to optimize the cross-sectional size and the element
grouping of the structure simultaneously. The control of differ-
ent variable types is imposed using different sets of optimization
parameters. Here a try and error process is carried out to obtain
an optimal set of parameters. It can be seen that the parame-
ters do not show a disturbing fluctuation from one example to
another.

Four illustrative examples are considered here; a ten-bar truss;

an eighteen-bar cantilever truss; a 52-bar planar truss and a 72-
bar spatial truss. The results demonstrate the effectiveness and
efficiency of the algorithm.

Future works may concentrate on the adaptive and self-
adaptive control of the optimization parameters so that the te-
dious task of tuning the parameters is removed. Other types of
structural problems such as topology optimization problems and
configuration optimization problem can also be investigated.
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