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Abstract
Classical numerical integration methods have been tested for

determining the orbit of most recent Low Earth Orbiter (here-
after LEO) satellites. In general, numerical integration tech-
niques for orbit determination are commonly used to fill the gap
between two discrete, observed epochs. In this study orbits have
been determined using the EGM96 gravity model by the Euler,
Runge-Kutta, Bulirsch-Stoer and Adams-Moulton numerical in-
tegration techniques among others. This analysis is performed
for a LEO, the GOCE, and for medium altitude satellite, one
GPS satellite. The orbits are integrated under different assump-
tions on the roughness of the force model, considering effects of
the ellipticity, high order gravity and non-static Earth generated
accelerations on the orbit.
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1 Introduction
There are countless reasons why orbit determination of a ce-

lestial body with the use of numerical integration techniques can
be a demand. In many cases of the classical astronomical appli-
cations, these techniques are applied in order to forecast the mo-
tion of a celestial body for a long period, such as weeks, months
or even years.

In this study we deal with a specific need of orbit determi-
nation that is for satellite geodesy. Satellites are the key instru-
ments of geodesy, which are used for several applications in-
cluding navigation, positioning, altimetry and Earth observation
[23]. For many applications of satellite geodesy, low altitudes
are preferred in order to get better spatial resolution, especially
for Earth observing tasks, which are recently in the forefront of
geodetic researches. These satellites at very low altitude, gener-
ally below 2000 km are the so-called Low Earth Orbiters (LEO).
Meanwhile, the low altitude is a barrier for the time duration
of the mission. The altitude is always chosen to be an opti-
mal balance between these two requirements. Due to the techni-
cal developments, gradually the feasible altitude became notably
lower, and already reached 250-350 km for the present satellites
(Fig. 1). The figure shows the altitude of geodetic LEOs as a
function of the date of their launch. The date of launch has been
chosen for referencing in time according to an implicite assump-
tion that the altitude of any missions was based on the techni-
cal limitations before the date of launch. The figure is based
on the altitude of the following 62 satellites: ECHO I, TRAN-
SIT satellites (OSCAR), ANNA 1B, EXPLORER-19, ECHO II,
BEACON EXPLORER-B, GEOS-1, EXPLORER-39, GEOS-2,
STARLETTE, GEOS-3, SEASAT-1, GEOSAT, AJISAI, SPOT-
1, MOS-1, SPOT-2, ERS-1, TOPEX-POSSEIDON, SPOT-
3, ERS-2, RADARSAT-1, SeaStar, TRMM, SPOT-4, Land-
sat 7, QuikSCAT, ACRIMSAT, CBERS (1, 2, 2B), IKONOS,
CHAMP, EO-1, Jason-1, QuickBird, Envisat, GRACE, Aqua,
SPOT-5, ICESat, SORCE, Aura, PARASOL, Monitor-E, EROS
A, ALOS, Arirang-2, CALIPSO, CloudSAT, COSMIC, EROS
B, TerraSAR-X, RADARSAT-2, Jason-2, THEOS, GOCE,
SMOS, Proba-2, MTM, Cryosat-2, Aeolus, Swarm and Aquar-
ius, based on [20] and on official internet sites for the recent
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missions. In case of high eccentricity, the mean orbit, i. e. the
average of the semi-major and semi-minor axes, is displayed. In
case of global satellite systems, the date of launch of the very
first satellite was indicated, assuming that the system’s scenario
was constructed on the level of technololgy of that time. The
figure indicates that by mid-90s altitudes below 500 km become
routinely applicable due to the technical developments. The
message of the figure is that by now it is inevitable to analize or-
bit determination related issues at altitudes such as 250-300 km.
Generally, the air drag effect at this altitude differs slightly from
that at 500 km, however, the effect of the small scale gravity fea-
tures has an increased role on shaping the orbit of the satellites.
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Fig. 1. The altitude of several geodetic LEO satellites as a function of the
date of launch

At the dawn of the satellite geodesy, the tracking of the satel-
lites could be done from terrestrial stations only, photographi-
cally, with Satellite Laser Ranging or with Doppler [20]. Due to
the development of the GPS satellite system with their 20200 km
high altitude, a unique opportunity has been emerged for contin-
uous satellite tracking of LEOs. It made feasible a plenty of de-
manded scenarios, resulting in a ’new era’ of satellite geodesy.
Most of the relevant post-GPS LEOs are equipped with a GPS-
receiver onboard, which enables a quasi-continuous tracking
(sampling the orbit with 1-2 seconds) with an accuracy of 2-
3 cm [22]. According to this, the relevance of orbit integration
for long arcs has been decreased. Instead, present applications
need orbit integration for periods ranging from some minutes to
some hours. These are meant either to fill data gaps (some hours
intervals), or determining reduced-dynamic orbit from observed
geometric positions (some minutes). In this study we investigate
the feasibility of classical numerical integration techniques for
the determination of short arcs of LEO orbits. As a case study
of a LEO, the satellite on the lowest altitude so far, the GOCE
is analyzed [4,6]. In order to provide a base for comparison, the
considerably higher orbit of a GPS satellite [20] is also deter-
mined with these techniques.

Several numerical integration techniques has already been ap-

plied for astronomic applications, such as manifold correction
methods for long-term numerical integration of the solar sys-
tem [8], recurrent power series for orbit determination around
an oblate spheriod [9], conservative numerical integration for
Henon-Heiles Systems [16], but has never been applied for
LEOs. A conceptual difference of abovementioned astronom-
ical applications and LEO orbit determination is that the later is
generally a dissipative system with a quite variable force field
in time and space. At the present stage of the research none of
these methods has been tested, but going to be considered in the
future.

The present study deals with those kind of numerical integra-
tion techniques, which are classically applied for orbit determi-
nation in geodesy [20, 23], enlisted in Section 2.2. Application
of these techniques for orbit integration of Medium Earth Or-
biters (i.e. above 2000 km and below the geostationary orbits)
has a long history [3, 19, 24], though the conceptual difference
of a LEO altitude at 500 km or so, is still a challenge. A sim-
ilar investigation to the present study has been performed by
[5]. That study estimates orbit integration errors of a LEO at
an altitude of 400 km using Runge-Kutta-Fehlberg and Adams-
Moulton Predictor-Corrector methods. In the present study sim-
ilar methods to that two and further four methods have been in-
vestigated, and a lower altitude for the LEO has been chosen
according to the state-of-the-art techniques.

The orbit integration process is contaminated at least by two
error sources: gravity field model errors and numerical integra-
tion errors (the later includes the initial state errors). [11] made
estimate of satellite orbit error due to gravity field model errors
for LEOs on a nearly circular orbit at 400 km and 800 km using
Kaula’s linear perturbation theory [13]. They have found that
the RMS orbit error due to the EGM96 model errors is about
0.5 m and 65 m when integrating one period meaning one day
(at 400 km) and three days (800 km), respectively. This study
employs the same gravity model, but up to a higher maximal de-
gree, for shorter period and for a lower altitude. According to
that, in our case gravity field model errors can be in the order
of magnitude of some 10 cms at the end of the integration pe-
riod. Instead of providing a full error analysis of orbit determi-
nation, this study purely concentrates on errors of the numerical
integration methods, so no estimate on the accuracy of the final
coordinates is determined.

2 Methodology - Basic equations for orbit integration
2.1 The differential equation
Generally, the acceleration of a satellite is determined by con-

sidering all the accelerations acting on the satellite (Eq. (1)).

r̈ = aEarth + als + aind +

∑
anc (1)

In Eq. (1) r̈ is the acceleration of the satellite, which is the in-
put information of the orbit determination. The first term on the
right-hand side, aEarth is the gravitational acceleration induced
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by the Earth, which is the largest influence on the satellite. The
term als and aind stands for the direct and indirect effect of the
lunisolar gravitation. The last term,

∑
anc contains all the ef-

fects of non-gravitational accelerations, such as solar radiation
pressure or atmospheric drag.

The actual acceleration vector is preferred to be provided in
inertial coordinate system. However, all terms on the right-hand
side of Eq. (1) can conveniently be determined in an Earth-fixed
one. For example, the gravitational acceleration of the Earth is
conventionally −grad(V ), where the potential, V , is defined by
a spherical harmonic expansion in Earth-fixed system. Accord-
ing this need, Eq. (1) has been modified to

r̈ =Rot{−grad(V ) + als + aind +

∑
anc

+ ω × (ω × R) + 2(ω × Ṙ) + (ω̇ × R)}
(2)

In Eq. (2) r refers to the inertial and R to the Earth-fixed po-
sition vector, and Rot to the rotation matrix between them, i.e.
r = Rot{R}. The rotation involves apparent accelerations to
the equation. These are the last three terms of the right-hand
side, which are the centrifugal, Coriolis and Euler accelerations,
respectively (for more details see [7]).

Acceleration of the satellite thus can be determined by Eq. (2)
at any position (R, Ṙ) in the knowledge of the Earth’s gravity
field, V , and rotation, ω, and the direct and indirect effect of
the lunisolar acceleration, als and aind . The gravitational accel-
eration, −grad(V ), has been computed by spherical harmonic
analysis of the EGM96 gravity model [?Lem], up to degree and
order 360. The lunisolar acceleration was modelled by arbitrar-
ily timing the simulation to 01.01.2000, and the actual positions
of the Sun, Moon, Jupiter, Mars, Venus and Saturn starting at
that epoch has been taken into account. The arbitrary timing
should not introduce any error or unlike assumption, since the
lunisolar effect does not change relevantly by shifting the test
period by some years or decades. Similarly, aind has been taken
into account for the same time span. It consists of three com-
ponents, that is the solid Earth tide, ocean tide and polar tide.
For the ocean tide a combination of a TOPEX/Poseidon-based
and the Schwiderski tide models was used; for solid Earth tide
and for polar tide the IERS data and conventions were used
[15]. Also, for the angular velocity of the Earth, ω, IERS data
was used. Finally,

∑
anc is a very case sensitive variable, and

cannot be appropriately simulated, though there are convinc-
ing results for modelling it (e.g. [12]). This term has been
excluded from the investigation. Generally, exclusion of non-
gravitational accelerations from Eq. (2) doesn’t change drasti-
cally the acceleration of the satellite at a discrete epoch. In the
case of GRACE (altitude: 500 km), the magnitude of the non-
gravitational accelerations were measured to be in the range of
10−8 m/s2, while that of the gravitational potential is about 8.43
m/s2 [17]. Thus the non-conservative acceleration is 8 orders of
magnitude smaller than the signal, so it is negligible in a single
epoch. Nevertheless on a long run it has a notable effect on a

LEO orbit due to the dissipative nature of these accelerations.
These have always the same sign, which is cumulated in time,
e.g. air drag always slows down a satellite’s motion and never
gives a push. According to this, for simulation of short-arc or-
bit integration the air-drag can be neglected. Furthermore, in the
case of the GOCE these accelerations are real time compensated
by thrusters, so the GOCE orbit literally are not affected by them
[1].

In the present study numerical integration techniques are in-
vestigated for different accuracy requirements. Accuracy re-
quirements are defined implicitly, described by the refinement
of the force model needed for the orbit integration:

1. Applications, for which a spherical Earth approximation is
sufficient,

2. Applications, for which an ellipsoidal Earth approximation
is demanded,

3. Applications, requiring an exact knowledge of the Earth
gravity field,

4. Applications, requiring the consideration of all effects.
For the four different applications, Eq. (2) has been modi-

fied according to the description to a spherical approximation
(only the spherical part of the term grad(V ) is used, others ne-
glected), to an ellipsoidal approximation (long-wavelength zon-
als of the term grad(V ) are used, others neglected), to a high
order approximation (all terms of grad(V ) are used, others
neglected), and to an all-effects-considered approximation (no
simplification of the equation), respectively.

2.2 Numerical integration techniques
Orbit integration generally is a process of determining po-

sition, r , in the knowledge of accelerations, r̈ , computed by
Eq. (2) based on the Hamiltonian mechanics [10]. For using
Eq. (2), the knowledge of the position and velocity is required
for each step forward. According to that, it is proper to change
the position variable to general coordinates, i.e. x = [r, ṙ ]. With
that substitution, orbit determination can be simplified to a first
order integration:

ẋ =

[
0 1

−gradV 0

]
x +

[
0

als + aind

]
(3)

For solving Eq. (3) by numerical integration, the following
classical techniques have been used:

1. Euler method, which is a first order method
2. Midpoint method, or second order Runge-Kutta method
3. Fourth order Runge-Kutta method
4. Modified midpoint method, which is a high order method

with an arbitrary order
5. Bulirsch-Stoer method, a high order method employing the

Richardson extrapolation
6. High order polynomial predictor-corrector method
7. Adams-Moulton/Adams-Bashford predictor-corrector

method, which is a 4th order linear multistep method
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Tab. 1. Initial coordinates in inertial coordinate system

[m] or [m/s] G P S G OC E

x 10372205.358 6229351.121

y -13696243.141 -260596.816

z 20027165.249 2252272.469

ẋ 3565.919 -2652.114

ẏ 1119.005 -837.504

ż -1111.911 7238.332

An overall description of the Euler, Runge-Kutta and
predictor-corrector methods is provided by [2]. Bulirsch-Stoer
method is described in [18]. For further details on the exact use
of them for the present investigation see [21].

3 Initial Conditions and Parameterization
For integrating the orbit, initial conditions of the satellite

has to be defined by setting the initial position of the satellite,
x = [r, ṙ ] at the beginning of the orbit determination period.
This can be equivalently provided by defining six Keplerian ele-
ments. For GPS, actual coordinates of a satellite were used. For
the GOCE, at the time of this study there were no actual orbits
available, thus nominal orbital elements of the GOCE orbit were
used, with 251 km semi-major axis, inclination of 96.6 degree.
The real anomaly has been set to 20◦, while the rest of the ele-
ments, i.e. eccentricity, perigeum and ascending node were set
to zero. The altitude of 251 km for GOCE was set according to
the original scenario, which has been modified to 270 km due to
the delay of the launch, which unlikely has resulted in increased
Sun activity. The applied initial coordinates are summarized in
Table 1.

The duration of the integration was chosen to be 10000 s. In
the case of GOCE it means less than two revolutions, in the case
of GPS it is less than a quarter revolution. The choice of the
same duration was defined in order to relate the numerical errors
to integration time and not the completed periods.

The step size of the integration was chosen to be 1 s and 5 s
for GOCE and GPS, respectively. The fine resolution has been
chosen in order to include the delicate features of the gravity
field variations as much as possible, resulting in a "reliable" or-
bit. Still, in both cases the precision of the computer and of the
used software has not been reached. (The estimated precision of
the computation is displayed on those figures later, where it is
found to be informative).

The free parameters of the investigated methods have been
defined as follows: For the modified midpoint method 4th and
10th order chains were tested. For the Bulirsch-Stoer method
first the orbit is integrated with some conveniently applicable
step sizes, then theoretical infinite step size is achieved by an
extrapolation; for the later we have used the Richardson ex-
trapolation. The Adams-Moulton/Adams-Bashford method re-
quires more epochs initially; these have been derived using the
4th order Runge-Kutta method. The analytical linear predictor-
corrector method in our case refers to use a fifth order polyno-

mial fitting for both the predictor and the corrector steps.

4 Results
4.1 Computational Time
The computational time of the methods can be informative

from efficiency aspects. These are shown in Table 2. According
to our experience, the most time consuming step was the ana-
lytical determination of ẋ by Eq. (2). In order to confirm it, in
Table 2 the number of using Eq. (2) during computation of one
step size has also been provided. Since the step size of the GPS
is 5 times of that of the GOCE, the computational time of the
GOCE orbit took roughly about 5 times of the GPS (cf. last two
columns of the table).

4.2 Accuracy of the methods
First a rough test of the integrated orbits has been performed:

the period of the GOCE orbits derived by different techniques
has been determined. In the case of the Euler method it was
5602.5 s, while in the case of all other methods it was 5545.4 s.
It suggests that the Euler orbit parts away from the others.

For visualizing the differences of the orbits, the 5th order
predictor-corrector method was chosen to be the reference of
comparison. According to the prelavent use of this method, it is
presumably assumed to provide a "reliable" estimate, thus dif-
ferences to the orbit based on that method can be considered as
an error estimate to a certain extent. These residuals are shown
on Fig. 2 and 3. In these figures an approximate value for the
precision of the computation is also shown, which is based on
simple considerations on the limitations of the used hardware
and os the software.

Generally, the accuracy of the methods is quite similar for the
case of the GPS and of the GOCE, with slightly smaller residuals
at the end of the integration period in the case of GPS. This
is due to the fact that at the altitude of the GPS satellites the
force field is notably smoother and the gravity is smaller. Since
the accelerating force is smaller, less numerical error due to its
integration occur.

The accuracy of the Euler method is in the same order of
magnitude than the coordinates are. The 2nd order Runge-
Kutta method performs notably better, providing errors below
100 m. The 4th order modified midpoint method manifests an
error in the range of 5-10 m, while the 10th order modified mid-
point method performs better with one more order of magnitude.
Surprisingly the 4th order Runge-Kutta and the Bulirsch-Stoer
methods agreed completely within the precision of the computer
and of the software. The difference of these two methods is also
displayed (thin black dotted line), which is under or close to the
precision of the computation (thin horizontal solid line). These
orbits differ from the reference one for some cm only. Finally,
the difference of the two predictor-corrector methods is in range
of mm.
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Tab. 2. Computational time of the orbit integration

no. of using runtime f or runtime f or

equation 2 G P S [h] G OC E [h]

Euler 1 1.3 7.8

2nd order Runge − K utta 2 3.5 11.8

4th order Runge − K utta 4 7.4 26.0

4th order modi f iedmidpoint 4 6.8 23.5

10th order modi f ied midpoint 10 12.6 58.1

Bulirsch − Stoer 14 20.8 96.2

5th order polynomial predictor − corrector 2 2.5 12.2

Adams − Moulton/Adams − Bash f ord 2 2.5 10.6
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Fig. 2. Residuals to the 5th order polynomial predictor-corrector orbit for the GPS satellite
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Fig. 3. Residuals to the 5th order polynomial predictor-corrector orbit for the GOCE satellite
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Tab. 3. Differences to the 5th order polynomial predictor-corrector-based orbit at the end of the test period, after 10000 s

G P S G OC E

[m] [m]

Euler 1.062· 105 1.429· 106

2nd order Runge − K utta 3.386· 101 5.874· 101

4th order modi f ied midpoint 2.703· 100 8.838· 100

10th order modi f ied midpoint 4.059· 10−1 1.186· 100

4th order Runge − K utta 3.497· 10−2 2.746· 10−1

Bulirsch − Stoer 3.496· 10−2 2.746· 10−1

Adams − Moulton/Adams − Bash f ord 1.263· 10−4 4.063· 10−3
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Fig. 4. Effects of the ellipticity, of the high order gravity, and of the non-Earth effects on the GPS orbit along with the residual curves of Fig. 2
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Fig. 5. Effects of the ellipticity, of the high order gravity, and of the non-Earth effects on the GOCE orbit along with the residual curves of Fig. 2

Per. Pol. Civil Eng.104 Balázs Somodi / Lóránt Földváry



The differences at the end of the period, 10000 s are displayed
in Table 3. Note that in the case of the GOCE it is in some cases
not the maximal difference. Since the GOCE completes more
than a whole revolution, orbital periodical errors also appear.
However, it turned out that the difference from the maximal error
due to the periodicity is less than 5%, so makes no essential
difference for the conclusion.

4.3 Components of the force model
In this section the relation between the accuracy of the meth-

ods and the accuracy requirements is investigated: for what
accuracy demands the different techniques can be applied ef-
ficiently? The orbit integration has been performed with the
reference method, the 5th order polynomial predictor-corrector
method under four different assumptions on the force field, as
they were defined in Section 2.1.

The most rough accuracy requirements can be satisfied by as-
suming a spherical Earth, while a more realistic orbit can be
obtained by integrating in an ellipsoidal Earth model. Integrat-
ing orbits using these two approximations, the difference of the
two orbits describes the effect of the difference of the spherical
and the elliptical models on the orbit, that is the ellipticity of the
Earth. This is displayed by thin light-grey dashed line. Simi-
larly, difference of orbits integrated in an elliptic Earth and in
a high order models (thin grey dashed line), and difference of
the high order Earth and the all-effects-considered models (thin
black dashed line) have been determined. The first describes
the effect of the non-ellipsoidal, or high-order components of
the Earth gravity field, while the later estimates the effect of the
non-Earth generated accelerations, such as direct and indirect
tides on the orbit of the satellite. These are shown on Fig. 4 for
GPS and Fig. 5 for GOCE, along the accuracy curves of the orbit
integration techniques.

Comparing Fig. 4 and Fig. 5, it is relevant that in both cases
after a spherical Earth assumption, the ellipticity has the largest
effect on the orbit. However beyond this, in the case of the
GOCE, the high order gravity signal has the larger effect on the
orbit, while in the case of the GPS it is the non-Earth generated
forces. It is in accordance with the task of the satellites: the
GOCE is designed to map the high order gravity signal, while
for GPS it is rather important to revolve on a stable orbit, so
minimal perturbations are preferred.

The interpretation of the accuracy of the numerical integra-
tion techniques and of the accuracy requirements on Fig. 4 and
5 is as follows. When the demand is that for a satellite orbit cer-
tain signal, e.g. ellipticity should be taken into account, those
methods are considered to fulfill the requirements, which lie
at least one order of magnitude below the signal curve. Ac-
cording to this, the 10th order modified midpoint, the 4th or-
der Runge-Kutta, the Bulirsch-Stoer and the Adams-Moulton /
Adams-Bashford methods are found to be generally applicable
methods. For as high orbit as that of the GPS, 4th order modified
midpoint method should be sufficiently accurate too. Similarly,

more refined conclusions can be drawn from the figures, which
is provided method by method in the next section.

5 Conclusions
In this study the accuracy of numerical integration techniques

for orbit determination of geodetic satellites has been investi-
gated. The accuracy estimates are then analyzed from the aspect
of the influencing signal, i.e. the force field. The considered
components of the force field were the ellipticity of the Earth,
the high order gravity information of the Earth and the non-Earth
generated effects. The results are summarized for each method
one by one in the followings.

Euler method: The simplest and the less accurate numerical
integration technique. It causes in a 10000 s arc errors in the
order of magnitude of 106 m for the case of the GOCE, and 105

m for the GPS. Due to its quick runtime, this method can only
be used for robust analysis of very short arcs.

2nd order Runge-Kutta method: It’s runtime is twice of Eu-
ler’s method’s, which means it is still a definitely quick way
of orbit determination. It generates errors in the integration of
a 10000 s arc in the range of 10 m. With this limitations, this
method can generally be used for robust orbit determination, but
it can be appropriate also for integrating longer orbits in a ho-
mogeneous ellipsoidal Earth model.

4th order Runge-Kutta and Bulirsch-Stoer methods: These
two methods turned out to provide the same results. These are
fairly accurate methods, providing at the end of the 10000 s arc
some decimetre errors in the GOCE, and some centimetres in
the GPS orbits. These errors are in the range of the gravity field
model errors. With this accuracy both methods are applicable
for precise orbit determination over short arcs, such as filling of
data gaps for some hours, or computing reduced-dynamic orbits
with stochastic pulses after each some minutes. For integration
of longer arcs, further tests are required. General difference of
the two methods is the computational time, which is 3-4 times
more for the Bulirsch-Stoer method than that of the 4th order
Runge-Kutta method.

Modified midpoint method: Its efficiency is function of the
parameterization. The 4th order method has quite similar com-
putational time to the 4th order Runge-Kutta method, but at the
end of a 10000 s long integration, its errors are about 2 orders
of magnitude larger than that of the Runge-Kutta method, in
the range of some meters. The 10th order modified midpoint
method takes 2-3 times more computational time compared to
the 4th order method, and results in an improvement of an order
of magnitude in accuracy. Its use for precise orbit determina-
tion is not really suggested, since for LEO orbits the computa-
tional errors are in the same order of magnitude than that of the
tides (i.e. main components of the non-Earth generated acceler-
ations).

Adams-Moulton/Adams-Bashford and 5th order polyno-
mial predictor-corrector methods: Since the predictor-corrector
methods were used in this study as a reference, conclusions on
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accuracy in these cases cannot be drawn. The difference of the
two methods to each other is in the sub-millimetre range. It
is a kind of validation of the mathematically simpler method,
i.e. the Adams-Moulton/Adams-Bashford method, proving that
the simplified closed forms of both the prediction and the cor-
rection steps can reach the same accuracy than the high or-
der polynomial fitting. A general strength of these methods
is the efficient computational time, only 1.5-2 times of that of
the Euler method, they take even less time than the 2nd or-
der Runge-Kutta method. Due to the simplicity of the Adams-
Moulton/Adams-Bashford method, this is even slightly less. So
for precise orbit determination over long arcs these are the most
suggested techniques.

All in all, for short arc orbit determination tasks, among
the mathematically simple methods, the 4th order Runge-Kutta
method is found to be efficient. For both short and long arc or-
bits the Adams-Moulton/Adams-Bashford method is the most
efficient one among the investigated techniques.

References
1 GOCE Gravity Field and Ocean Circulation Explorer, Phase A Executive

Summary, GOC-RP-AI-0006, Alenia Spazio, 1999.
2 Butcher J C, Numerical methods for ordinary differential equations, John

Wiley & Sons Ltd, 2003.
3 Cojocarua S, A Numerical Approach to GPS Satellite Perturbed Or-

bit Computation, Journal of Navigation 60 (2007), 483–495, DOI
10.1017/S0373463307004377.

4 Drinkwater M R, Floberghagen R, Haagmans R, Muzi D, Popescu A,
GOCE: ESA’s first Earth Explorer Core mission, Earth Gravity Field from
Space - from Sensors to Earth Sciences (Beutler G B, Drinkwater M, Rum-
mel R, von Steiger R, eds.), Space Sciences Series of ISSI, vol. 18, Kluwer
Academic Publishers, Dordrecht, Netherlands, 2003, pp. 419–432, DOI
10.1023/A:1026104216284, (to appear in print).

5 Es-hagh M, Step variable numerical orbit integration of a low earth orbiting

satellite, Journal of the Earth & Space Physics 31 (2005), no. 1, 1–12.
6 Floberghagen R, Drinkwater M, Haagmans R, Kern M, GOCE’s Mea-

surements of the Gravity Field and Beyond, ESA Bulletin, ESA, 2008.
7 Földváry L, Bokor Zs, Determination of a CHAMP gravity model based on

the Newtonian equation of motion, Periodica Polytechnica Civil Engineering
54 (2010), no. 2, 155-161, DOI 10.3311/pp.ci.2010-2.11.

8 Fukushima T, Efficient Orbit Integration by Orbital Longitude Methods,
Proceedings of the Symposium on Celestial Mechanics 36 (2004), 123–129,
DOI 10.1086/423042.

9 Hadjifotinou K G, Numerical integration of the variational equations of

satellite orbits, Planetary and Space Science 50 (2002), 361–369, DOI
10.1016/S0032-0633(02)00008-9.

10 Hairer E, Norsett S P, Wanner G, Solving ordinary differential equations

I: Nonstiff problems, 2nd Edition, Springer Verlag, Berlin, 1993.
11 Hwang C, Hwang L S, Satellite orbit error due to geopotential model er-

ror using perturbation theory: applications to ROCSAT-2 and COSMIC mis-

sions, Computers & Geosciences 28 (2002), 357–367, DOI 10.1016/S0098-
3004(01)00053-X.

12 James Raj M X, Sharma R K, Contraction of near-Earth satellite orbits

using uniformly regular KS canonical elements in an oblate atmosphere with

density scale height variation with altitude, Planetary and Space Science 57
(2009), 34–41.

13 Kaula W M, Theory of Satellite Geodesy, Blaisdell Publishing Co., London,
1966.

14 Lemoine F G et al., The Development of the Joint NASA GSFC and the Na-

tional Imagery and Mapping Agency (NIMA) Geopotential Model EGM96,
NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 USA,
1998.

15 McCarthy D D, IERS Conventions, IERS Technical Note, U.S. Naval Ob-
servatory, 1996.

16 Minesaki Y, Nakamura Y, A Conservative Numerical Integration Algorithm

for Integrable Henon-Heiles System, Proceedings of Institute of Mathematics
of NAS of Ukraine, Vol. 50, 2004, pp. 444–449.

17 Paizs Z, Földváry L, Determination of a gravity model based on GRACE

microwave ranging observations, Geomatikai Közlemények 10 (2007), 201–
210.

18 Press W H, Flannery B P, Teukolsky S A, Vetterling W T, Numerical

Recipes in C, 2nd Edition, Cambridge University Press, 1988.
19 Rutkowska M, The accuracy of orbit estimation for the low-orbit satellites

LARETS and WESTPAC, Advances in Space Research 36 (2005), 498–503,
DOI 10.1016/j.asr.2005.04.063.

20 Seeber G, Satellite Geodesy, Walter de Gruyter, Berlin, New York, 1993.
21 Somodi B, Application of numerical integration techniques for orbit deter-

mination of geodetic satellites, Scientific Student Work, Budapest Unv. of
Techn. and Economics, 2008.

22 Svehla D, Földváry L, From Kinematic Orbit Determination to Derivation

of Satellite Velocity and Gravity Field, Observation of the Earth System from
Space (Flury J et al., ed.), Springer Verlag, Berlin Heidelberg New York,
2006, pp. 177–192.

23 Torge W, Geodesy, 3rd Edition, Walter de Gruyter, Berlin, New York, 2001.
24 Torrence M H, Dunn P J, Kolenkiewicz R, Charecteristics of the LAGEOS

and ETALON Satellites Orbits, Advances in Space Research 16 (1995),
(12)21–(12)24, DOI 10.1016/0273-1177(95)98772-G.

Per. Pol. Civil Eng.106 Balázs Somodi / Lóránt Földváry


	Introduction
	Methodology - Basic equations for orbit integration
	The differential equation
	Numerical integration techniques

	Initial Conditions and Parameterization
	Results
	Computational Time
	Accuracy of the methods
	Components of the force model

	Conclusions

