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Abstract
This paper presents the results of numerical simulation of the

flutter performance of different generic bridge cross sections.
The bridge flutter assessment has become a major concern in
bridge design practice. In the early ages, wind tunnel tests
were made in order to assess the aerodynamic performance of
bridges. In this paper the flutter performance of different bridge
deck sections was investigated by using numerical flow simula-
tion. The detailed comparison of the aerodynamic behaviour of
the different cross sections in terms of flutter instability gives the
engineers good means to design of bridge structures.
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1 Introduction
Nowadays, with a strong computational background, CFD

(Computational Fluid Dynamics) simulations appear to be pow-
erful rivals of the wind tunnel tests [2, 4, 6, 8]. Recently a num-
ber of numerical simulations have been made in order to assess
the aeroelastic behaviour of bridge structures. The most ad-
vanced ones take into account the three-dimensional motion of a
bridge deck in fluid flow [5,22]. This approach is rare nowadays,
mainly because it is computationally intensive. Instead, only a
two-dimensional section is considered of the bridge in CFD sim-
ulations. Many of them deal with the classical benchmark tests
case; the oscillating flat plate in uniform airflow. This case is
very important, because analytical solution is available to com-
pare with. There are results for generic cross sections as well
[12, 17]. In a CFD solution, the most commonly used approach
is the forced vibration method. During such an analysis, the
investigated cross section is oscillated with a desired harmonic
motion according to either vertical or rotational degrees of free-
doms. The main advantage of the forced vibration method is
that the flutter derivatives can be easily extracted from the force
and moment signals obtained from the simulation.

In this paper the above mentioned approach is used by uti-
lizing the 6.3.26 version of the FLUENT commercial software
[1]. Before applying it to an arbitrary bridge deck section, it
was tested on generic cross sections. For this purpose a stream-
lined and three non-streamlined cross sections were considered
that can be found in [21]. The comparison of the results will be
presented.

The generic cross sections are idealized forms of real bridges
and do not comprise additional elements such as curbs, barri-
ers, handrails or even a vehicle that can alter the aerodynamic
behaviour significantly. On top of all, the role of the angle of
attack of the wind direction can be also important [4]. To assess
the effects of the above, a real boxed bridge cross section was
studied. The flutter derivatives were calculated for the bridge
with and without the mentioned complementary elements at dif-
ferent angle of wind attack. A detailed comparison will be ad-
dressed in order to express the effects of the certain elements.

The effects of inflow turbulence are not discussed here, uni-
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form airflow is assumed only. The ways of taking turbulence
into account can be seen in [9, 11, 15, 16]. These pieces of work
basically use offers by standards or wind tunnel measurements.
There are methods, however, that might be used to determine the
time dependent wind structure onto a certain terrain [14]. Such
methods may be used in the near future combined with structural
vibration related simulations.

2 Mathematical background
In this chapter the main mathematical formulations are pre-

sented. The first step in a flutter study should be setting up the
structural dynamics model of the bridge to be analysed. In [3,7]
a detailed description can be found. If the FEM model is made,
a representative section of the whole bridge deck needs to be
taken. The final aim is a two degree of freedom oscillator model
that can be further studied in terms of flutter instability.

2.1 Theory of the flutter derivatives
The above mentioned 2DOF system has a load vector that

contains two load components. In wind tunnel tests as well as
in CFD simulations the Scanlan flutter derivatives give an easy
understanding of the acting forces [18, 19, 21]. In equations (1)
and (2) the meaning of these derivatives are shown.
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In (1), (2) L and M are the lift force and moment respectively.
B is the width of the bridge deck, U is the inflow velocity, ρ is
the air density, h and α are the vertical and rotational motions
respectively, ω is the oscillating frequency. K = B · ω/U is
the reduced frequency. It can be seen that the forces can be
written as a function of the reduced frequency, the oscillating
amplitudes and the H1∗

−H4∗ and A1∗
−A4∗ flutter derivatives.

The main goal is to determine these derivatives that can be used
to calculate the critical wind speed.

2.2 Basics of numerical fluid dynamics simulation
If a cross section is made undergone a forced oscillation, the

flutter derivatives can be extracted. To do so, the Navier-Stokes
equations along with the continuity equation need to be solved.

In (3) the scalar forms of these equations are shown.
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In (3) vi are the three velocity components, gi are the three
gravity force components, p is the pressure, ρ is the density, υ

is the viscosity.
The FLUENT software solves the integral form of the (3)

equations. As the direct numerical solution is not feasible, the
time averaging of the NS differential equation system is done
resulting in two more unknowns in case of two-equation turbu-
lence models. Therefore two more equations are necessary to
close the equations. In the simulations the widely used RNG
k − ε turbulence model was applied [1].

2.3 Calculation of the critical wind velocity
In case of a 2DOF system, the (4) equation system can write

the wind excitation (M: mass matrix, K: stiffness matrix, x: dis-
placement vector, γ : damping parameter). Such dynamic equa-
tions are found in many other structure related problems [23].
If the solution is searched in the form of (5), (4) yields (6). In
(6) the L matrix can be written by using the Starossek notation
[2], see equations (7) and (8). Finally the (8) linear eigenvalue
problem is to be solved (Ured = U/(B · f ), reduced velocity).
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Kẋ + Kx = q (4)

x = x̃eiωt (5)

−ω2Mx̃ + (1 + iγ )Kx̃ = ω2Lx̃ (6)

L = πρb2

[
chh chα

cαh cαα

]
(7)

chh =
2
π

H∗

4 + i
2
π

H∗

1 , chα =
4
π

A∗

4 + i
4
π

A∗

1,

cαα =
4
π

H∗

3 + i
4
π

H∗

2 , cαα =
8
π

A∗

3 + i
8
π

A∗

2

(8)

∣∣∣(1 + iγ )K − ω2 [M + L(Ured)]
∣∣∣ = 0 (9)

Per. Pol. Civil Eng.138 Gergely Szabó / József Györgyi



The equation (8) can be handled easily, since it contains 2 × 2
matrices. For large systems other techniques are necessary [10].
From (8) the ω complex natural frequencies can be extracted.
This frequency carries the natural frequency and the damping of
the total system (that is the bridge deck in airflow). By using
(9), the total logarithmic decrement of the system can be calcu-
lated. This procedure is to be done repeatedly by varying the
reduced velocity until the zero damping is found that belongs to
the flutter speed.

δ = 2π
I m (ω)

|Re(ω)|
(10)

3 Generic bridge deck sections
3.1 Introduction of the CFD simulation
In this chapter four different generic bridge deck sections

were studied; a streamlined, two different Tacoma-like ones and
a rectangle. The numerical grid around the streamlined cross
section can be seen in Fig. 1. In order to investigate the ef-
fect of the grid used, two different computational grids were ap-
plied. In Fig. 1, the left picture shows a structured (mesh#1:
104018 cells), the right one an unstructured mesh (mesh#2:
38240 cells). The unstructured mesh is easy to make, but the
structured is more desirable in terms of numerical convergence.

Fig. 1. Numerical grid around the streamlined cross section

In Fig. 2 the dimensions of the computational domain are
shown. The boundaries of the domain are chosen to be far away
from the bridge in order to decrease the effects on themselves

caused by the bridge. The bridge boundary is scaled up in Fig. 2
for better visibility.

Fig. 2. Computational domain

There are many aspect of constructing a numerical grid. First
of all, the number of cells needs to be as few as possible. For
flutter simulation, the main goal is the determination of the flut-
ter derivatives in (1) and (2). To do so, it is very convenient to
use the forced oscillation method. During this technique, the
considered bridge deck section must be given an arbitrary pe-
riodic oscillation. This oscillation is a vertical and a rotational
sinusoidal motion.

As the FLUENT offers the possibility of an arbitrary function
to be defined as a motion, the forced oscillation method can be
easily carried out. There is a delicate issue, however, to be dealt
with in detail. The motion of the bridge deck needs the refor-
mulation of the numerical mesh around the body. There are two
options to handle this problem by the software; re-meshing and
mesh deformation (smoothing). The bridge suffers relatively
low motion amplitude, therefore there is no need to re-mesh,
and mesh deformation is enough to follow the motion. In gen-
eral, the mesh in the vicinity of the bridge surface suffers great
distortion, which is undesirable. To overcome this phenomenon,
the mesh strategy in Fig. 1 was developed (upper picture). The
main idea is that the bridge is surrounded by a rigid body mesh
that does not suffer any mesh distortion and moves perfectly
together with the bridge deck. In other words, the desired si-
nusoidal function is defined to the bridge contour and the rigid
body mesh around it altogether. The rigid body mesh is made by
using rectangle cells inside that are numerically advantageous
as less discretization error appears. By using this technique, the
good mesh quality near the bridge can be maintained. The dis-
tortion is handled by triangular cells outside that are numerically
less advantageous but are really adequate to follow the motion
of the rigid body mesh (see Fig. 3).

Another issue is that the mesh has to be adapted to the tur-
bulence model chosen. As two-dimensional mesh is used, two-
equation models are obvious to use. For low-Reynolds number
models (e.g. SST k-ω) the y+ value in the first cell on the bridge
surface is to be kept below 1. For high-Reynolds number mod-
els (e.g. RNG k-ε), the y+ value must be between 30 and 300
[1]. For the first criterion the mesh#1 fits best, for the second the
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Fig. 3. Numerical grid at two different rotational states

mesh#2.
In Fig. 4 four different generic cross sections are shown.

These shapes are really important to deal with as these are con-
sidered in literature [13, 17, 21]. Before calculating real bridge
structures it is highly recommended to study these as bench-
mark cases. The above mentioned mesh#1 and mesh#2 were
constructed for all these four sections.

Fig. 4. Numerical grid around the four generic bridge cross sections

The streamlined cross section can be mostly approximated
by using the Theodorsen theory [20]. The explanation is that
the flat plate theory uses inviscid approach that is the stream-
lines are parallel with the oscillating body, and there is no flow
separation. Numerical simulations show that though in case of
SECTION#1 there is flow separation (see Fig. 6), the magni-
tude of that is insignificant for lower angle of attack (4o), and

the flow field even during oscillation is close to the Theodorsen
theory. To be in line with this fact, the numerical grid of SEC-
TION#1 does not need to be fine in the farther regions from the
body. In case of SECTION#4 also small separation bubble is
expected, though somewhat larger than in case of SECTION#1.
SECTION#3 represents the highly unfavourable Tacoma cross
section. The H-shape is comprised of the flat bridge deck and
the stiffening girders on each side. SECTION#2 is also a model
of the Tacoma cross section, but the deck width is thicker than
SECTION#3. The reason for the flutter-sensitive behaviour is
the large and edgy windward surface that generates high inten-
sity vortices that roll over the bridge deck resulting in highly
fluctuating wind forces [18, 19]. Over the bridge deck the shear
layer is farther from the surface, therefore the mesh was conse-
quently fine enough in these regions in order to model the high
gradients in velocity and pressure accurately.

3.2 Calculation of the static force coefficients
The first step was the calculation of the static force coeffi-

cients. It is extremely important to check the numerical model
and eliminate modelling errors. The force coefficients were
extracted for different angle of attack from 0 to 10 by 2 de-
grees. SECTION#1 and SECTION#2 were investigated only.
The RNG k-ε and the SST k-ω turbulence models were used
on mesh#2 in each case. In Fig. 5 the calculated force coef-
ficients are shown with respect to the angle of attack by using
two different turbulence models. The average y+ value along
the bridge boundary is around 8; therefore usage of the k-ε tur-
bulence model is more correct than that of the SST k-ω. Despite
this fact the results are close together except for cL at higher an-
gle of attack values. In Fig. 6 the velocity field is shown at 4o

and 10o angle of attacks.
In Fig. 6, it can be seen that for low angle of attack there is

only a small separation bubble but for 10o there is a large one.
In Fig. 8 the velocity field is shown for SECTION#2. Even for
low angle of attack there is a shear layer far away from the body.
The separated flow does not reattach to the bridge deck as it can
be seen in Fig. 6. In this steady simulation the importance of
the mesh chosen can be understood; contrary to the findings for
SECTION#1 the mesh resolution in the region of the free shear
layer must be fine enough.

As a consequence of the complex geometry, the lift force turns
to be positive on a certain long angle of attack range (see Fig. 7).
It can be also noted that the difference between the results ob-
tained from different turbulence models is significant for SEC-
TION#2.

3.3 Calculation of the Strouhal number
After obtaining the static force coefficients, the unsteady be-

haviour was studied. To do so, an unsteady simulation was nec-
essary. The time step selection is always a delicate issue. The
smallest cell and the maximum wind speed determine the max-
imum time step. The so called Courant number is to be kept
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Fig. 6. Velocity magnitude contour plot for 4o and 10o (SECTION#1)

Fig. 5. Force coefficients for SECTION#1 (cD: drag, cL: lift, cM: moment)

below 1. In case of mesh#1 the time step was set to 0.00002s,
while in case of mesh#2 a time step of 0.0002s was selected.
In Fig. 9 the oscillating force coefficients can be seen by using
the above mentioned turbulence models applied on the two dif-

ferent meshes providing four simulation cases. Although there
are significant differences in the force amplitudes obtained from
these simulations, the force frequency is almost the same for all
cases. The Strouhal number was computed from the following
formula:

Str =
f · D
U

(11)

In (10) f is the vortex shedding frequency, U is the flow speed,
D is the largest crosswise dimension. The Strouhal number
for SECTION#1 was 0.16. This value is close to the value of
0.17 estimated in [17]. SECTION#2 was a much tougher case
in terms of capturing any oscillation. None of the mentioned
turbulence models even gave unsteadiness; the oscillation was
damped in the unsteady solution. The reason is that a free shear
layer dominates the flow structure, and that can be only captured
by using more advanced turbulence models, such as SAS (Scale
Adaptive Simulation, [1]). For SECTION#2 the Strouhal num-
ber was Str=0.11 (see Fig. 10). This value is well in line with the
0.11 value calculated to a similar Tacoma-like section in [17].

In Fig. 11 and Fig. 12 the velocity magnitude contours
are shown for SECTION#1 and SECTION#2 respectively. In
Fig. 11 the results belonging to the RNG k-ε model can be seen.
In the wake of the bridge deck the vortices are fully developed,
the dynamic unsteadiness gives a sinusoidal vertically oscillat-
ing lift force to the body. The size of the wake is really small
in this case and the vortex shedding happens in a well bounded
region. In case of SECTION#2 (Fig. 12) the wake is really ex-
tended, and a dynamically instable shear layer oscillates around
the bridge deck. To conclude, streamlined cross sections were
able to be investigated by using two-equation turbulence models,
while Tacoma-like sections needed SAS model to obtain reliable
results.

3.4 Calculation of the flutter derivatives
For flutter calculation the most important parameters are the

flutter derivatives [21]. In case of SECTION#2 a test was done
in order to find the differences between the turbulence models.
As it was highlighted previously, usage of RNG k-ε model is
adequate to calculate vortex shedding for streamlined sections.
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Fig. 8. Velocity magnitude contour plot for 4o and 10o (SECTION#2)

Fig. 7. Force coefficients for SECTION#2 (cD: drag, cL: lift, cM: moment)

At the same time, Tacoma-like sections require advanced turbu-
lence models. As the extraction of the flutter derivatives needs
unsteady simulation, it is reasonable to respect these rules. Be-

Fig. 9. Fluctuating lift force acting on the bridge deck SECTION#1

Fig. 10. Fluctuating lift force acting on the bridge deck SECTION#2

Fig. 11. Velocity magnitude contour plot for SECTION#1

sides, the SAS simulation needs more computational efforts and
the findings for fixed bodies are not necessarily true for oscil-
lating ones. Therefore the RNG k-ε model was used for each
section even if there were significant differences between RNG
k-ε and SAS models due to the fluctuations generated by the
SAS model (see Fig. 13 and 14). Moreover, these differences do
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Fig. 12. Velocity magnitude contour plot for SECTION#2

not necessarily cause great differences in the calculated critical
wind velocities.

Tab. 1. Reduced velocities and the belonging parameters

In Fig. 15 the velocity vector plot is shown at two different
time steps by using SAS model. The unsteadiness can be clearly
seen as the vortices (marked with arrows) are moving along the
bridge deck. The same pattern is obtained by using the RNG k-ε
model that did not provide unsteadiness on fixed bodies. In this
case, however, the bridge deck is under forced oscillation that
makes the flow field behave unsteady.

By performing all the simulation cases shown in Table 1 the
flutter derivatives were obtained. The flutter derivatives are used
to calculate the critical wind speed of a bridge deck. By analyz-
ing the A2* derivative (see Fig. 16), important consequences can
be drawn. According to (2), the A2* derivative plays an impor-
tant role on the moment acting on the bridge deck in rotational
oscillation. If A2* negative, there is a positive damping due to
airflow. In case of an ideal flat plate, the rotational damping is
always positive (see THEODORSEN in Fig. 16). This is almost
the same for SECTION#1 (streamlined). SECTION#4 (rectan-
gle) is somewhat less advantageous, because A2* tends to go
positive. SECTION#2 and SECTION#3 (Tacoma sections) are
prone to torsional flutter as for lower Ured values A2* is posi-
tive.

3.5 Calculation of the critical wind speed
After extracting the flutter derivatives the (8) eigenproblem

was solved for each cross section. The critical wind speed can be
determined by searching the zero-damping condition. In Fig. 17
the damping of the 2DOF system in uniform airflow is shown for
the ideal flat plate SECTION#2. The delta damping values are
plotted for the vertical (delta1) and rotational (delta2) motions.
It is obvious that in case of the flat plate (THEODORSEN) the

rotational damping turns to be zero at higher wind velocity. To
the contrary, SECTION#2 behaves differently; there is a short
section where the damping belonging to the vertical motion is
negative causing heave-branch flutter [18]. As this happens on a
shorter Ured section only, the torsional-branch flutter condition
was also calculated.

In Fig. 18 the flutter wind speed modification factors are
shown after [13]. There are many types of idealized bridge deck
sections investigated in Fig. 18.

It is known that streamlined section are modified by larger
factors (around 0.80 typically), that is their flutter performance
is close to the flat plate. The Tacoma-like sections have a worse
modification factor from 0.10 up to 0.60 as a function of side
ratios and frequency ratios.

4 A specific boxed bridge deck section
Generic cross sections are really important to consider be-

cause ordinary cross sections can be idealized for practical use.
The question may arise, however, how to handle a section that is
not like any section contained in a standard for instance. There-
fore a realistic boxed bridge deck section was considered with
the usual complements (curbs, barriers and even a vehicle) that
may alter the aerodynamic behaviour.

4.1 Introduction of the CFD simulation
The previously introduced generic cross sections are idealized

bridge decks. The extraction of the flutter derivatives were done
for those cases. In this chapter a realistic bridge deck section
was investigated. The bridge shape with the numerical mesh
around it can be seen in Fig. 19. The upper pictures show the
bridge itself with the curbs, handrails and barriers. The lower
ones represent the same bridge with an obstacle representing a
lorry on the bridge either on the left or the right side of the deck.

Fig. 16. A2∗ derivatives for the investigated cross sections

4.2 Test cases
The test cases are signed as follows; BRIDGE1: bridge in

Fig. 19 (upper picture), BRIDGE2: the same bridge without
curbs, handrails and barriers (this case represents a construc-
tion case), BRIDGE3: the bridge with a vehicle on the wind-
ward side, BRIDGE4: the bridge with a vehicle on the leeward
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Fig. 13. Lift force and moment due to vertical motion (red: RNG k-ε, black: SAS)

Fig. 14. Lift force and moment due to rotational motion (red: RNG k-ε, black: SAS)

Fig. 15. Velocity vector plot by using SAS model

side. These cases were analysed by means of forced oscillation
method as was used for the generic cross section. The critical
wind speed modification factors were determined for all cases.

4.3 Critical wind speed
The calculated critical wind speed modification factors can

be seen in Table 2. All the mentioned generic and realistic cross
sections are included. BRIDGE1-4 sections are analyzed under
+5, 0, -5 angle of attack of wind direction. THEODORSEN
shows the analytical solution related to the ideal flat plate. The
ε value indicates the ratio of the torsional and the translational
frequencies. As expected, SECTION#2 (streamlined) gives a

value of 0.80-0.90, well in line with the ones in Fig. 18. SEC-
TION#4 (rectangle) shows the same behaviour. SECTION#3
(the classical Tacoma-section) produces 0.30-0.40 values. With
this side ratio (d/2b=0.2) the η factor is around 0.10 according
to Fig. 18 for idealized Tacoma sections. In Fig. 18, however,
the real Tacoma cross section is also highlighted with a value of
around 0.35, giving some confusion.

Moreover, SECTION#2 produced complex behaviour; the
critical wind speed determination showed that the flutter oc-
curs at two different wind speeds. The first wind speed be-
longs to the heave-branch flutter [18] (belonging to U∗

cr ), where
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Fig. 18. Flutter wind speed modification factors

Fig. 17. Logarithmic decrement of the total system

Fig. 19. Numerical mesh around the bridge section (BRIDGE2 is similar to
BRIDGE1, but there are no curbs, handrails and guide rails in this case

the damping of the vertical translational frequency vanishes.
With the increase of the wind speed the vertical damping goes
positive again and the rotational damping vanishes, giving the
classical torsional-branch flutter condition (marked with SEC-
TION#2_m). The rotational flutter state is not so critical in this

Tab. 2. Critical wind speed modification factors

case, as the η factor is around 0.60 (belonging to Ucr ).
The real bridge deck section showed good performance in

terms of flutter. The η factors were around 1.00 in case of con-
struction and finished state without vehicles on it. The angle of
wind attack meant noticeable differences, around ±5% with re-
spect to the 0o. The presence of vehicles on either side of the
bridge deck alters the behaviour significantly; the heave-branch
flutter rises as in case of BRIDGE3 and BRIDGE4. As men-
tioned there, the vertical motion damping turns to be negative
on a short Ured section only, and the classical torsion-branch
flutter shows up at higher wind speeds. The η factor belonging
to the torsional flutter is around 0.60. The role of the angle of
attack effect is almost the same in this case.

5 Conclusions
In this work the following conclusions were made:
- Several bridge deck sections were studied with respect to

flutter instability. All the necessary parameters were calculated
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by means of CFD by using the FLUENT commercial software.
The static force coefficients were determined using two different
turbulence models. It was shown that the streamlined cross sec-
tion is not sensitive to the choice of the turbulence models but it
was not the case for the Tacoma section.

- The Strouhal number was calculated easily for the stream-
lined section by using either of the two-equation turbulence
models or meshes. The Tacoma section needed more advanced
models that is adequate to model shear layer instabilities.

- The aerodynamic derivatives were extracted by using forced
vibration method. A really effective meshing strategy was
worked out that prevents the numerical mesh from distortion.
The flutter derivatives were calculated for all the generic cross
sections. Compared with data in literature good agreement was
found for the streamlined section. In case of the Tacoma-like
sections there were discrepancies both in literature and the nu-
merical results as well. The critical wind speed modification fac-
tors were given in a range from 0.10-0.60. The numerical sim-
ulation showed that there could be two different types of flutter
instability; heave-branch and torsional-branch flutter can occur.
It was also shown that the choice of turbulence models could
mean significant differences in the forces during the forced os-
cillation method.

- The flutter performance was determined for a real bridge
cross section. The bridge section showed good behaviour in
terms of flutter. The effect of the angle of attack of the wind
was noticeable but not significant. The presence of large ve-
hicles altered the aerodynamic performance; the heave-branch
flutter showed up as in case of the Tacoma section. With the
increase of the critical wind speed, however, the torsional flutter
developed, giving a modification factor of 0.60.

- To conclude, there is a need for wind tunnel tests in order to
clarify the above mentioned uncertainties; it is very important to
explore that whether the heave-branch flutter even develops. The
static force coefficients and the Strouhal-number will be also
validated.
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