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Abstract
A spatial probabilistic model is developed and applied to pre-

dict failure patterns over a water supply pipe network. The Za-
laegerszeg waterworks is used to illustrate the methodology. The
ageing of water supply pipes is a worldwide concern; therefore
it is of high interest to identify the best interventions in time and
space. Two-part models can be used; one is an economic by for-
mulating time horizon total costs. The other part forecasts the
break patterns in time and space. Spatial modeling is necessary
since elements of the cost function depend on the location of fail-
ures. A network based model is developed for the internal part of
the Zalaegerszeg waterworks since the system is homogeneous
in a sense that the environmental and network features do not
exhibit significant correlation with the occurrence of failures.
Network based failure probabilities are described by a space-
time Poisson process where non-homogeneous Poisson process
(NHPP) refers to time and a stochastic point process refers to
space. To estimate the intensity the whole area is covered by a
grid system of 250 × 250 meters with an average pipe length
of 703 meter in a cell. Both the number of and the distance be-
tween failures prove the applicability of the Poisson process. It
is shown how a simulation procedure can be applied to gener-
ate possible pipe failure patterns which - by combining with the
spatial cost functions – leads to estimate total costs per selected
time periods.
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1 Introduction
The purpose of the paper is to develop and apply a spatial

probabilistic model in order to predict failure patterns over a
water supply pipe network. The ageing of water supply pipes
is a worldwide concern. In Hungary the average annual failure
rate is 38 breaks per 100 km [1] which is similar to 36/100 in
the USA [2]. The specific failure rate varies considerably in
European cities (Fig. 1) [3].

The break history generally shows an increasing trend, e.g. in
the town of Zalaegerszeg used to illustrate the methodology in
this paper (Fig. 2).

In the U.S. the costs for upgrading the nation’s aging pipe
infrastructure is estimated $77 billion over the next 20 years,
that is $55000/km [4]. This figure is $117000/km in Hungary
[5].

Water utility companies generally have limited amount of
available resources for the maintenance, repair and gradual re-
placement of the ageing water mains. Thus, it is of high interest
to identify in time and space the best intervention actions over
their system. The best intervention actions commonly aims at
minimizing the total discounted costs over the planning hori-
zon. Often, are these intervention actions realized using past
experiments, limited available amount of measured information
and expert judgment. As a consequence, the actual interventions
may considerably deviate from the unknown best interventions.
To this end, much effort has been done to develop models to
facilitate the identification of the best interventions. However,
the lack of information required by many of the models hinders
their wide application.

Models helping water companies should have two integrated
parts. One is an economic by formulating a cost function that
summarizes time horizon costs of break repairs, losses due to
breaks, pipe replacements and lack of service. The other part
forecasts the break patterns in time and space. Spatial model-
ing is necessary since elements of the cost function depend on
the location of failures. The model presented in this paper will
forecast the break patterns in space using commonly available
company-based information.
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Fig. 1. Specific failure rates of water supply pipes in European cities
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Fig. 2. Relationship with age and specific pipe failure rate (ROCOF) in Zalaegerszeg

2 Pipeline Failure Models
Four main groups of pipeline failure models can be distin-

guished:

• Expert based point assignment methods

• Mechanistic models

• Regression/neural network models

• Failure probability models

Expert based point assignment methods are popular in asset
management [6], and can be used with data commonly avail-
able at the waterworks. Earlier the waterworks of Budapest de-
veloped a scoring system for reconstruction planning [7]. This
company nowadays also applies a fuzzy logic method for recon-
struction planning [8]. This software operates with a large data
demand because it works with 58 input data field, and suitable
for ranking the investigated pipe sections based on their risk.
The advantages of the expert based models are the relatively low
data demand, and their easy applicability. However, subjective
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factors may limit the accuracy of the results.
The base of mechanistic models is a comparison between

the overall load (e.g. traffic load, pressure, etc.) and the
strength/capacity of the pipe, either or both formulated as ran-
dom variables leading to the probability of failure [9]. The data
demand of these models is quite high, since statistical informa-
tion on the parameters influencing load/strength are rarely avail-
able (e.g. the bedding factor, the exact traffic and soil load, the
decrease of wall thickness, etc. [10]). To this end, pipe material
inspections may be necessary for verification. Pipe inspection
may be in-situ (e.g. acoustic investigation) or laboratory inspec-
tion. These inspections are quite expensive in water supply sys-
tems. Consequently, pipe inspections alone are inappropriate
for reconstruction planning for the whole system. Thus, in most
cases mechanistic models can be used for pipe sections or for
major transmission water mains, and not for the whole water
supply system.

Regression models describe the relationship between failures
or failures rates and time [11] or several influencing factors.
Commonly used influencing factors include network properties
(material, diameter, age, pressure, water quality), environmental
(soil, groundwater) and external loads (traffic, bedding factor,
depth of the laying) [12–14]. These models are relatively easy
to connect with an economic model but they need much data
and the relationship may be quite weak [15]. Artificial neural
networks may be more appropriate since they detect the best
possible relationship obtained from a learning data set [16].

Failure probability models do not intend to investigate the
physical processes causing failures but use statistical data to es-
timate the probability of the time between failures, the location
of failures or the number of failures per time (e.g. years). In
this respect, a water supply networks is considered as repairable
system which, after failure can be restored to performing all of
its functions by any method (say repair), other than replacement
of the entire system. The model, which is mostly used with re-
pairable systems, is the NHHP to take changing failure rates in
time into consideration. The basic parameter of NHPP is the rate
of occurrence of failures (ROCOF) as shown in Fig. 2. Then, in
a given time period the probability of the number of failures can
be represented by a Poisson distribution with a mean of the av-
erage ROCOF for that period.

Failure probability models have two main groups: the first
considers individual pipe sections (commonly called pipes)
while the other endeavors to cover the whole network. The
pipe based models work with homogenous pipes (same environ-
mental and network features) and applies ROCOF function to
each of them. However, at least five historical failures per pipes
are necessary to estimate the ROCOF functions [17]. So many
known failures rarely happen in practice. As a consequence pipe
based models can applied mostly to a small part of the whole
network [18]. Network based models can be used if the investi-
gated system is homogeneous in a sense that the environmental
and network features do not exhibit significant correlation with

the occurrence of failures. The case of Zalaegerszeg has this
characteristic. Network based failure probabilities then may be
described by a space-time Poisson process where NHPP refers
to time and a stochastic point process refers to space.

3 Case of Zalaegerszeg Waterworks
The city of Zalaegerszeg in Hungary has 60 000 inhabitants.

The development of Zalaegerszeg was significant during the last
century. It was influenced by the inhabitants, location, indus-
try of the town and also by its role as a cultural center similar
to other European cities [19]. The predecessor of ZALAVIZ
Waterworks Company founded in 1959 began water supply that
year. Most conduits were built of asbestos cement until 1980’s.
The length of the water distribution system is about 292 km with
diameters of 80-400 mm. The water supply in the town is close
to 100%. The average supplied water is 11000 m3/day. This wa-
terworks is interested in learning how the reconstruction budget
in Zalaegerszeg can be spent effectively in time.

The internal part of the city without the suburbs (Fig. 3) was
selected for the investigation because the pipes (70 km.) are
quite homogenous (material, age, diameter, etc.), and the spatial
distribution of the conduits on the assigned area is uniform. The
ratio of the asbestos cement pipes is above 70%. The size of
investigated area is 5,875 km2.

Fig. 3. The boundary of the investigated area

The following data have been available from the technical in-
formation system of ZALAVIZ:

• pipes (coordinates, material, diameter, year of construction,
length)

• failures (year, coordinates)

• hydraulic data from HCWP 6.1 [20]
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219 failure data are available for six complete years (2004-
2009). This short data time series is not suitable for classical sta-
tistical analysis. The average annual value of failure rate is 54,6
/100 km. ZALAVIZ has not collected technically relevant infor-
mation about the environment (soil, traffic, corrosivity, etc.) The
environmental and traffic data was obtained from other sources.
Soil type information was provided by the Geological Institute
of Hungary [21]. The typical soil in Zalaegerszeg is clay.

The regression analysis between the actual environmental and
network factors and the occurrences of failures did not result
in any significant correlations (r < 0.2). Similarly, the neural
network could not show any casual relationship.

4 The Spatial Probabilistic Model
The purpose of this modeling effort is to describe the loca-

tion of failures stemming from a spatial point process over the
investigated pipe network. A spatial point process is a random
pattern of points in d-dimensional space. Spatial point processes
are useful as statistical models in the analysis of observed pat-
terns of points, where the points represent the locations of some
object of study, here pipe failures [22]. One of most practically
applied spatial point process is the homogeneous spatial Pois-
son process [23, 24]. Let the parameter S denote a bounded re-
gion of the plane (or higher- dimensional space, for that matter).
Let X(S) be the number of entities, here failures contained in S.
Then X(S) is a homogeneous spatial Poisson process if it obeys
the Poisson postulates, yielding a probability distribution:

P {X (S) = k} =
[λA(S)]k e−λA(S)

k!
for A(S) ≥ 0, k = 0, 1, 2, · · ·

(1)

In this case λ is a positive constant called the intensity pa-
rameter of the process and A(S) represents the area or volume
of S, depending on whether S is a region in the plane or higher-
dimensional space. In the present case, d = 2 and so A is the
area of a regular grid of the pipe network.

The underlying mathematical preconditions of the homoge-
neous spatial Poisson process are satisfied:

1 Only nonnegative integer values are assumed by X (S) and
0 < P {X (S) > 0} < 1 if A(S) ≥ 0

2 The probability distribution of X (S) depends on S only
through the value of A(S) with the further property that if
A(S) → 0, then P {X (S) ≥ 1} → 0

3 If S1, S2, ...Sn(n ≥ 1) are disjoint regions, then
X (S1), ..., X (Sn) are mutually independent random variables
and X (S1 ∪ ... ∪ Sn) = X (S1) + ... + X (Sn)

4 There is a probability zero of points overlapping:

lim
A(S)→0

P {X (S) ≥ 1}

P {X (S) = 1}
= 1 (2)

To estimate the intensity the whole area is covered by a grid
system of 250×250 meters cell sizes with an average pipe length
of 703 meter in the 101 cells. The average ROCOF of 2004-
2009 (age 31.7-37.7) is 0.5 failures/km/year (Fig. 2). Thus, the
intensity: λ = 204/101= 2.01 failures/cell. Fig. 4 shows the rela-
tive frequency distribution and the calculated Poisson probabil-
ities. The expected distance between failures can be calculated
as

1
λ

=

√
Ainv

N

2
= 97 m (3)

where:

• Ainv - investigated area (m2)

• N - total number of failures

Fig. 5 showing the cumulative frequency distribution and the
exponential distribution with the calculated expected distance
proves that the Poisson assumption works.

Next, the homogeneous spatial Poisson process is validated
by doubling the areas of the cells. To this end, Eq (1) is used
with parameter 2λ = 4.02 failures/two cells to calculate a Pois-
son distribution and compare it with the corresponding relative
frequencies. Fig. 6 suggests the validity of the assumption that
the location of failures can be modeled as a homogeneous spatial
Poisson process.

Using the available 6 year spatial failure data the spatial sta-
tionarity of the Poisson process can be checked by comparing
the relative frequencies of failures stemming from 2004 to 2006
and those from 2007-2009. Fig. 7 shows that the two distribu-
tions are very close to each other. The present random spatial
failure occurrence may be used for network rehabilitation plan-
ning until there are no significant changes in the environmental
factors discussed earlier.

5 Generating Failure Patterns
Generation of possible future failure patterns based on the

above spatial probabilistic model can assist waterworks with
network restoration planning and failure scenario analysis. Con-
sider the total cost of break repairs, losses due to breaks, pipe
replacements and lack of service in a selected future time period
t as C(t). This cost depends on the number X and the location
of failures called here as failure pattern. The number of failures
follows a NHPP in time characterized by the ROCOF function
(Fig. 2), while failure pattern is described by the above homoge-
neous spatial Poisson process. Thus C(t) can be considered as
an expected value obtained by double expectation:

• first, over the possible failure patterns for a generated number
of failures

• next, over the NHPP based Poisson number of failures.

The expected C(t) can be obtained by the following procedure.
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Fig. 1. Relative frequency and probability of failures in the investigated area 

 
 

Fig. 4. Relative frequency and probability of failures in the investigated area
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Fig. 5. Cumulative relative frequency and distribution of failures distance in the investigated area

1 Simulate a Poisson number of failures covering the whole re-
gion for a selected period (annual, five-year) As an example,
consider the period 2016-2020 (age 43.7-48.7) represented by
an average ROCOF value of 0.73 failure/km/year (Fig. 2). Us-
ing this value as the expected value a possible failure number
of i = 301 is generated with the Poisson distribution. The next
steps involve the simulation of spatial patterns with a given
intensity over a region [22].

2 Scatter that number of failures uniformly over the analyzed
region.

3 Generate a random radius D between a uniformly scattered
point and its nearest neighbor (a possible failure location)

from the distribution function:

FD(x) = P(D ≤ x) = 1 − e−λπx2
(4)

In the present case λ = 0.015 1/m. Next, find a possible failure
location where D reaches a pipe. If D crosses several pipes
select one of them randomly (Fig. 8).

4 Perform step 3. for every failure point (obtained in step 2)
to obtain one possible failure pattern, j. A possible generated
failure pattern is on Fig. 9. Fig. 10 shows that failure distances
are fairly well represented by the theoretical exponential dis-
tribution even for this single generated failure pattern. Given
the cost consequences as functions of the failure locations the
total cost C(i,j,t) can be calculated.
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Fig. 7. Relative frequency of failure numbers observed in two periods

5 Repeat steps 3-4 n-times to obtain other possible failure pat-
terns and estimate the expected costs over all generated failure
patterns as C(i,t) =

∑
C(i,j,t) /n

6 Repeat steps 1-5 m-times to obtain possible failure patterns
for all simulated number of failures and estimate the double
expected costs as C(t) =

∑
C(i,t) /m

6 Discussion and Conclusions
A network based spatial probabilistic model is presented and

applied to a medium size city to forecast failure locations of

water supply mains. This homogeneous Poisson process is suit-
able for failure forecasting if short term historical failure data
are available for reconstruction planning. Network based proba-
bilistic modeling can be used for cases when the following con-
ditions are satisfied:

• uniform pipe distribution over area,

• similar features of the pipes (size, material, age, pressure)

• similar environmental features,

• known failure locations
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Fig. 9. A generated failure pattern for the period 2016-2020

• minimum 5 year long failure data.

If these criteria are not met the network should be divided into
and analyzed according to individual pipes without a formal spa-
tial analysis. However, detailed pipe based failure data are nec-
essary in this case. Often a non-homogeneous Poisson process
based on a ROCOF function describes the statistical properties
of failures in time. Pipe-based models require specific ROCOF
function /pipe. On the other hand, network based models can be
used with one ROCOF function but a joint space-time modeling
is necessary as shown in this paper. Total life time cost can be
obtained by summarizing time period costs calculated according
to the six step procedure over the planning horizon.

Probabilistic models, in general, assume that the future be-
havior of the system will correspond statistically to the observa-
tional data upon which parameters of probabilistic models are
estimated. Here, specifically, it is assumed that the ROCOF
function will stay the same in the future and the spatial Pois-
son process will be maintained.

The following conclusions can be drawn:

1 The spatial probabilistic model presented in this paper can
be used to forecast future failure patterns over water supply
mains.

2 A main precondition of using the model is homogeneous en-
vironmental and pipe network features.

3 The spatial model is a homogeneous Poisson process that can
be connected to a non-homogeneous Poisson process describ-
ing pipe failure changes in time.

4 Water main reconstruction planning requires cost estimation
of break repairs, losses due to breaks, pipe replacements and
lack of service. Spatial modeling is necessary since elements
of the cost function depend on the location of failures.

5 The space-time model enables us to calculate to any future
time period the total costs expressed as an expected value over
space and time.

6 In the investigated Zalaegerszeg system the environmental
and network features do not exhibit significant correlation
with the occurrence of failures.

7 The homogeneous spatial Poisson process could be calibrated
and validated with the available 219 failure data stemming
from six years.

8 It is shown how a simulation procedure can be applied to gen-
erate possible pipe failure patterns which - by combining with
the spatial cost functions – leads to estimate total costs per se-
lected time periods.
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Hungarian, Vízmű Panoráma 14 (2006), no. 5, 9–11.
9 Pampoukis G., Camarinopoulos L., Reliability of a water supply network,

PSAM 7 - ESREL ’03 Conference (1996), Probabilistic safety assessment
and management, Spinger, 1996, pp. 1872– 1877.

10 Davis P., De Silva D., Marlow D., Moglia M., Gould S., Burn S.t, Fail-

ure prediction and optimal scheduling of replacements in asbestos cement

water pipes, Journal of Water Supply: Research and Technology–AQUA 54
(2008), no. 4, 239–252, DOI doi:10.2166/aqua.2008.035.

11 Shamir U., Howard C.D.D., An analytic approach to scheduling pipe re-

placement, Journal AWWA 71 (1979), no. 5, 248–258.
12 Rostum J., Dören L., Schilling W., Deterioration of Built Environment:

Buildings, Roads and Water Systems, Norwegian University of Science and
Technology, may 1997. IVB-report B2-1997-2, ISBN 82-7598-040-2.

13 Andreou S., Predictive models for pipe break failures and their implications

on maintenance planning strategies for deteriorating water distribution sys-

tems, PhD thesis, Massachusetts Institute of Technology Cambridge, 1986.
14 Bartos S., Meszaros P., Solti D., Reconstruction of the water and sewer
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