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Abstract
In response to the increasing concerns and challenges for

most frequently left-turn crashes at intersections, partial pro-
portional odds models, for which some of the beta coefficients
vary across variables, are proposed to examine and understand
the influence of contributory factors (i.e. human attributes, traf-
fic flow features, roadway geometrics, and environmental fac-
tors, etc.) on injury severity involved in left-turn crashes, us-
ing the selected 317 crash data over latest 6 years from Xian
city. The results show that partial proportional odds model has
better performance than general ordered logit or probit proba-
bility approach. Specifically, the aged and younger drivers are
more prone to cause left-turn crashes, and the increasing effect
of trucks involvement, impact points of both vehicles, environ-
mental factors, safety belt usage, alcohol and/or drugs are also
significantly associated with higher injury severities, which was
underestimated or underreported in previous researches.
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1 Introduction
As the most dangerous locations of a roadway network, in-

tersections have a poor safety performance compared with other
road location groups [1]. According to the Harbin Traffic Po-
lice annual statistics report for 2008, motorcycle crashes con-
stitute about 68.3% of fatal and about 56.9% of injury records
at intersections controlled by traffic signals [2] and these ob-
servations are even more alarming in some hilly cities, such
as Qingdao, Dalian, etc. Obviously, intersections are prone to
be involved in traffic crashes due to the substantial causal fac-
tors, such as vehicular characteristics, driver attributes, pedes-
trian conflicts, roadway geometry features, environmental fac-
tors, etc [3, 4]. How these different factors affect the occurrence
of crashes and severities, however, are still not clear, particular
left-turn crashes.

There have been considerable research reports on the crash
injury severity in the last two decades. A number of researchers
have attempted to specify multinomial logit models into quan-
tifying the effects of multiple alternatives (e.g. roadway, traffic,
environmental, human and vehicular factors) on intersection re-
lated injury severity [5–7]. Chimba and Sando (2011) consid-
ered number of lanes, alcohol and drug use, high posted speed
limit, curved areas, turning movements, ramps, and driving with
no adequate daylight in their multinomial logit and multino-
mial probit analysis of independent variable effect on each injury
severity [8]. Geedipally et al (2010) applied multinomial logit
model to predict the proportion of crashes by collision type and
to estimate crash counts by collision type and found it produced
the best fit even for small sample size [9].

However, ordered nature of severity is inconsistent with the
general logit model’s assumption that alternatives or variables
have independent errors. Hence, nested logit, mixed logit, or
probit models can be applied to indentify the severity in terms of
levels or grades from a modeling perspective. Young and Lies-
man (2007) applied the binary logit model to examine whether
there was significant correlation between weather station wind
data and the likelihood of freight vehicle involved overturning
crashes [10]. Tay and Rifaat (2007) applied the ordinal pro-
bit model to determine the determinants (i. e., vehicle type,
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road type, collision type, driver’s characteristics and time of
day, etc) of the severity of intersection crashes using 1992-2002
crash data in Singapore [11].Unfortunately, the assumption of
the same coefficients of ordered probability models for differ-
ent severity levels except for cut-off points is too arbitrary, and
determining more parameters than necessary also causes some
variables insignificant [12]. Wang and Abdel-Aty (2008) exam-
ined the left-turn crash injury severity using partial proportional
odds models and reached a consistently better performance than
ordered probability models with either logit or probit function
[13], where parallel-lines constraint is violated only by one or a
few of the included explanatory variables.

In summary, there have been numerous studies investigating
crash injury severity. Unfortunately, only limited studies fo-
cused on left-turn crash injury severity at intersections specifi-
cally, and in previous studies, crash injury features are unable to
be associated with contributory factors (i.e., turning movements,
signal phase, traffic flow, roadway geometrics, environmental at-
tributes, etc) that depend on sufficient crash data. However, it is
difficult to collect crash data or even not available for most inter-
sections. In this study, left-turn crash injury severity is estimated
using partial proportional odds models, compared with ordered
logit and probit models. Upon the urgent demand, the primary
purpose of this research is to specify the effect of specific at-
tributes on crash severity features using the surveyed 2005-2010
intersection crash data in Xi’an city, which enables researchers,
engineers and decision-makers to identify and rank intersections
for safety performance improvement needs.

2 Data Collection
The data is sourced from the Traffic Safety Statistics and

Analysis Database developed by Xi’an General Department of
Transportation, which consists of data compiled from a sample
of police-reported crashes that involve at least one motor vehicle
traveling on a traffic road / street and resulting in property dam-
age, injury, or death. A number of crash-related information on
crash records, characteristics of the individuals involved, loca-
tions of crash, intersection geometric features and traffic control
from 2005 to 2010 were obtained for 163 four-legged signalized
intersections in Xi’an city. Details include the date of the occur-
rence, time of day, environment factors, involver age and gender,
vehicle characteristics, entering traffic flow, roadway design at-
tributes, and severity level in most observed crashes. According
to the direction of vehicle movement including straight ahead,
making right-turn and making left-turn, left-turn crashes could
be considered as the crashes involved the making left turn vehi-
cles.

Of the 1368 collisions at the selected intersections, 391 were
left-turn collisions that account for 28.58% of all observed col-
lisions at the selected locations. The injury severity of each in-
dividual involved in the crash record is collected on a five point
ordinal scale in increasing of severity: 1 = no injury, 2 = possi-
ble injury, 3 = non-incapacitating injury, 4 = incapacitating in-

jury, and 5 = fatal injury [14]. Of the total 391 left turn crashes,
1.17% crashes are classified as fatal crashes, 52.63% are classi-
fied as injury crashes that at least one person was injured and the
rest of them are property damage over CNY 5000 or no injury
crashes.

Two approaches were used to select approximate variables for
the severity estimation model. The first was to reference previ-
ous studies and find these similar reported variables [15, 16].
The second was to focus on local requirement and determine the
specific variables that might have significant influence on injury
crashes. It should be noted that some important variables such as
AADT, intersection width, median exists were not chosen here
because of the missing of necessary message in original crash
reports. Therefore, 317 observations were finally explored to
develop models retaining 9 variables in categories and the fur-
ther descriptive lists of the corresponding variables were in Ta-
ble 1, including type of vehicle, fault, crash geometry, safety
belt equipment, light condition, age, weather, etc.

3 Model Specification
This study aims to evaluate the associations between driver in-

jury severity and possible contributory factors. Since the sever-
ity of a crash is recorded in simple ordinal patterns such as fatal,
injury and non-injury crashes, thus the ordered probit or logit
model could be used to measure the crash involved severity be-
cause these approaches yield efficient and consistent estimates
[17].

If the crash severity could be considered as an ordinal variable
having m categories, Let j ( j = 1, 2, . . . , m-1) be an index to
describe a severity level. The index jfor severity level, for ex-
ample, may take values of “no injury” ( j= 1), “possible injury”
( j= 2), “non-incapacitating injury” ( j= 3), “incapacitating in-
jury” ( j= 4), and “fatal injury” ( j= 5). Therefore, the probabil-
ity of crash i having a severity level j will be specified through
an ordered logit model (OLM) [18] as:

P (Yi > j) =g
(
X iβ

′
)

=
exp

(
X iβ

′
− τ j

)
1 + exp

(
X iβ ′ − τ j

) ,

j = 1, 2, · · · , m − 1

(1)

where X i is a k × 1 vector of observed explanatory variables
of crash i , β is a k × 1 vector of under-determined regression
parameters. The model parameter β and cut-point (τ j ) of crash
i are estimated by maximum likelihood method [19].

It should be noted that the errors of Eq. (1) is assumed to
be homoskedastic. However, such an assumption is violated,
then the estimated parameters yield the inconsistency due to the
aggregation bias assumption [20]. To overcome the shortcom-
ing of unequal error variances, the heterogeneous choice model
(HCM) is proposed [21] as:

P (Yi > j) =g
(

X iβ
′

σi

)
=

exp
(
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j = 1, 2, · · · , m − 1

(2)
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Tab. 1. Driver-injury statistics and percentage distribution. Note: ∗ AADT per lane > 5,000 pcu, based on the total number of 317 observations.

Explanatory variables No injury Possible

injury/non-incapacitating

injury

Incapacitating

injury/fatal

Total %

Driver features of left-turning vehicle

Very Young (age ≤ 18) 2 100 0 0 0 0 2 0.63

Young (18 < age < 24) 13 72.2 4 22.2 1 5.6 18 5.68

Old (age>65) 21 63.6 8 24.2 4 12.1 33 10.41

Alcohol/drug impaired 45 56.3 22 27.5 13 16.3 80 25.24

Trapped/extracted 14 51.9 7 25.9 6 22.2 27 8.52

Illness/fatigured 9 39.1 11 47.8 3 13.0 23 7.26

Asleep/fainted 17 54.8 10 32.3 4 12.9 31 9.78

Safety belt not used 136 59.4 54 23.6 39 17.0 229 72.24

Driver features of entering vehicle

Very Young (age ≤ 18) 1 50.0 1 50.0 0 0 2 0.63

Young (18 < age < 24) 8 61.5 4 30.8 1 7.7 13 4.10

Old (age>65) 25 64.1 11 28.2 3 7.7 39 12.30

Alcohol/drug impaired 107 59.8 49 27.4 23 12.8 179 56.47

Trapped/extracted 31 58.5 14 26.4 8 15.1 53 16.72

Illness/fatigured 13 36.1 17 47.2 6 16.7 36 11.36

Asleep/fainted 12 34.3 14 40.0 9 25.7 35 11.04

Safety belt not used 121 52.4 63 27.3 47 20.3 231 72.87

Vehicle characteristics

Both vehicles in large size 13 65.0 5 25.0 2 10.0 20 6.31

Motorcycle involved 46 61.3 20 26.7 9 12.0 75 23.66

Impact point of left-turning vehicle

Back right 69 62.2 31 27.9 11 9.9 111 35.02

Back 47 71.2 15 22.7 4 6.1 66 20.82

Back left 53 49.1 39 36.1 16 14.8 108 34.07

Front left 15 78.9 3 15.8 1 5.3 19 5.99

Other 11 84.6 2 15.4 0 0.0 13 4.10

Impact point of entering vehicle

Front right 72 59.5 34 28.1 15 12.4 121 38.17

Back right 53 60.9 26 29.9 8 9.2 87 27.44

Back and back left 66 77.6 16 18.8 3 3.5 85 26.81

Other 17 70.8 5 20.8 2 8.3 24 7.57

Roadway characteristic

Heavy traffic∗ 77 58.8 35 26.7 19 14.5 131 41.32

Average daily percent of trucks 34 48.6 21 30.0 15 21.4 70 22.08

Posted speed limit 40 km/h 87 46.3 58 30.9 43 22.9 188 59.31

Traffic signal 46 62.2 20 27.0 8 10.8 74 23.34

Stop sign/flasher 184 65.5 76 27.0 21 7.5 281 88.64

Environmental influence

Wet road surface 66 72.5 17 18.7 8 8.8 91 28.71

Snow/slush road surface 41 53.9 25 32.9 10 13.2 76 23.97

Ice road surface 24 44.4 13 24.1 17 31.5 54 17.03

Fog/smoke/haze 9 28.1 12 37.5 11 34.4 32 10.09

Severe cross wind 5 71.4 1 14.3 1 14.3 7 2.21

Time of day

AM rush hour (7:00-9:00) 36 44.4 14 17.3 31 38.3 81 25.55

PM rush hour (17:00-19:00) 53 57.6 26 28.3 13 14.1 92 29.02

Light condition

Dawn or dusk 16 69.6 5 21.7 2 8.7 23 7.26

Dark-lighted 52 72.2 8 11.1 12 16.7 72 22.71

Dark-unlighted 35 59.3 18 30.5 6 10.2 59 18.61

Sunglare 13 56.5 7 30.4 3 13.0 23 7.26

Total 176 82 59 317

Percentage 55.52 25.87 18.61 100
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Generally, the OLM regression approach follows the propor-
tional odds / parallel lines assumption and the estimated param-
eters remain the same for different severity levels. However, this
parallel-lines assumption could be violated in many cases. We
therefore employ a generalized ordered logit model (GOLM),
which would not impose the constraint of parallel regression as-
sumption and allow the effect of the explanatory variables to
differ for each category of dependent alternatives [22], which
could be specified as:

P (Yi > j) =g
(

X i β̂
′

)
=

exp
(

X i β̂
′
− τ j

)
1 + exp

(
X i β̂ ′ − τ j

) ,

j = 1, 2, · · · , m − 1

(3)

Different from the parameter β in OLM, vector β̂ could differ
across equations in GOLM. Considering the homoscedasticity
assumption might be violated only by one or a few variables,
a gamma parameterization of partial proportional odds model
with logit function could be proposed [23] as:

P (Yi > j) =

exp
(

X ′

1iβ
′
+ X ′

2iβ
′

j − τ j

)
1 + exp

(
X ′

1iβ
′ + X ′

2iβ
′

j − τ j

) (4)

where the parameter β related to variables X1 j would be the
same across all equations with respective to different severity
level j and the parameter β j associated with other variables X2 j

would vary across some severity level j . In the model, each
explanatory variable has one β coefficient, k − 2 β j coefficients,
where k is 9 as the number of alternatives. There are k − 1 τ

coefficients reflecting cut-off points.

4 Estimation Results and Analysis
This study analyzed police-reported intersection crashes from

the city of Xi’an, China, from 2005 to 2010, involving only left
turning observations. This yields a total of 317 samples. OLM,
HCM, GOLM approaches and partial proportional odds model
with logit function for both unsignalized intersections and sig-
nalized intersections were developed for comparison in case of
the quantitative estimation of total left-turn crash injury severity
using the proposed nine variables reported in Table 3, which
includes some goodness-of-it statistics as well, such as log-
likelihood at zero, log-likelihood at convergence, and Akaike
information criterion “AIC”.

GOLM approach has better performance than the ordered
logit model and probit one due to the largest Pseudo R2(0.0285)
and the smallest AIC (1063.67). Parallel-lines assumption for
each variable was tested through Wald tests to check whether its
coefficients differ across injury levels. The variables, safety belt
/ alcohol involved and environmental influence, are identified to
be against the parallel-lines assumption (p-value < 0.01). The
p-values of the Wald test derived from other variables satisfy the
parallel-lines assumption for the final model [13].

Traffic flow related variables (i. g., traffic volume, traffic com-
position, driving behavior, vehicle features, etc.) are identified
to be among the most significant factors for left turning crash
occurrence. In this study, the effects of different forms of traffic
flow on crash injury severity are checked including driver fea-
tures of left-turning vehicle, driver features of entering vehicle,
vehicle characteristics, impact point of left-turning vehicle, im-
pact point of entering vehicle. The results show that very young
drivers tend to be involved in more severe crash (Coef. < 0.05;
p-value < 0.01), specifically during the rush hour and under the
foggy / rainy driving environment. From the total crash data,
more than 60 percent are left-turning vehicles at-fault, such as
unsafe turning, primarily turning with insufficient headway. On
the other hand, more opposing through traffic also causes less
time and space for left-turn vehicles due to shorter gaps and
therefore cause crashes between two vehicles.

Among the roadway features, average daily percent of trucks
is identified to be significant (Coef. < 0.04; p-value < 0.04).
Too more trucks will bring poor visibility and decreased capac-
ity of overall intersection and positive restriction of trucks would
be better able to provide driving visibility for both drivers and
then mitigate the occurrence of left turning crashes as well as
lower crash severity. Driver’s age also has significant effect on
crash injury severity. Compared to middle aged drivers, older
than 65 people and young people of age group 18–24 are both
more likely to be involved in left-turn crashes due to weak physi-
cal conditions and poor driving experiences and very young peo-
ple are more prone to be get severe injuries and fatalities, which
is consistent with previous studies [12, 13].

Of the crash related variables, the points of impact of both
left turning vehicles and entering vehicles affect crash severity
significantly. Coefficients of the factors back right, back, back
left, front left are all negative, which indicate that the front of
both involved vehicles is the most dangerous impact point, due
to the greater colliding forces translated from excessive speed
[13]. The difference of variable speeds of both vehicles was
marginally significant to affect crash injury and seat-belt use
would relieve automatically shock in collision and reduce crash
severity to a greater extent (Coef. < −0.1; p-value < 0.03).

5 Conclusions
A large number of previous studies have applied ordered-

response logit / probit models to examine injury severity in re-
lation to human factors, vehicle attributes, and roadway geo-
metrics and environmental effects. These approaches have im-
plicitly assumed the model’s independent errors for alternatives
that are actually inconsistent with the fact that crash injuries are
ordered. The parallel-lines or proportional odds assumption is
generally too restricting as well and it may be violated only by
one or a few of input variables.

Different from other crash patterns, left-turn crash has its own
conflicting features and possibly other specific related factors.
This study attempts to estimate the effects of the parameters or
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Tab. 2. Driver-injury severity estimation for left turning crashes. Note: dash (—) indicates data not applicable or unavailable.

Variables OLM HCM GOLM

Coef. S.E. Coef. S.E. Coef. S.E.

Beta

Driver features of left-turning vehicle

Very Young (age ≤ 18) 0.0471 0.0036 0.0463 0.0036 0.0411 0.0036

Young (18 < age < 24) -0.1706 0.7812 -0.1726 0.7739 -0.1633 0.7667

Old (age>65) -0.2548 0.0883 -0.2601 0.0875 -0.2409 0.0867

Alcohol/drug impaired -0.5013 0.2601 -0.4936 0.2577 -0.5098 0.2553

Trapped/extracted 0.2145 0.1837 0.2126 0.1820 0.2073 0.1803

Illness/fatigured -0.1831 0.0784 -0.1872 0.0777 -0.1786 0.0770

Asleep/fainted -0.0726 0.2917 -0.1839 0.2891 0.0711 0.3364

Safety belt not used 0.2503 0.0273 -0.0763 0.0269 -0.1396 0.0266

Driver features of entering vehicle

Very Young (age ≤ 18) 0.0487 0.0107 0.0430 0.0106 0.0481 0.0105

Young (18 < age < 24) -0.1583 0.7347 -0.1601 0.7279 -0.1515 0.7211

Old (age>65) -0.2064 0.0819 -0.2513 0.0811 0.2235 0.2967

Alcohol/drug impaired -0.4851 0.2413 -0.4579 0.2391 -0.4729 0.3369

Trapped/extracted 0.1990 0.1904 -0.1972 0.1886 -0.1923 0.1868

Illness/fatigured -0.1699 0.0727 -0.1837 0.0720 -0.1657 0.0713

Asleep/fainted 0.1674 0.2706 -0.1706 0.2681 -0.0660 0.2956

Safety belt not used -0.2322 0.0253 -0.1908 0.0251 -0.1295 0.0249

Vehicle characteristics

Both vehicles in large size -1.4987 0.2137 -1.4744 0.2164 -1.4794 0.1102

Motorcycle involved -0.9239 0.3083 -1.0082 0.3071 1.5281 0.4204

Impact point of left-turning vehicle

Back right -0.2087 0.0748 -0.1977 0.0708 -0.2170 0.0777

Back -0.1762 0.0822 -0.1869 0.0779 -0.2052 0.0855

Back left -0.2596 0.0764 -0.2649 0.0724 -0.2908 0.0795

Front left -0.6635 0.2703 -0.6884 0.2560 -0.7557 0.2810

Other 0.2143 0.1928 0.1630 0.1826 -0.1789 0.2005

Impact point of entering vehicle

Front right -1.1762 0.1135 -1.1098 0.1132 -1.2183 0.1121

Back right -1.6776 0.0791 -1.5417 0.0791 -1.6925 0.0776

Back and back left -0.8709 0.2647 -0.8561 0.2647 -0.9398 0.2617

Other 0.1281 0.0623 0.1106 0.0623 0.1214 0.0609

Roadway characteristic

Heavy traffic 0.6137 0.1046 0.7208 0.1041 0.7345 0.1039

Average daily percent of trucks -0.4813 0.0374 -0.4275 0.0284 -0.4223 0.0261

Posted speed limit 40 km/h -1.0471 0.0747 -0.9741 0.0733 -0.9622 0.0725

Traffic signal -1.6109 0.0651 -1.5093 0.0617 -1.1336 0.0616

Stop sign/flasher 0.9235 0.2833 0.9346 0.2568 1.1232 0.2607

Environmental influence

Wet road surface -0.3805 0.3598 -0.3976 0.3642 -0.4048 0.3962

Snow/slush road surface 0.7342 0.3524 0.7431 0.3568 0.7523 0.3871

Ice road surface -0.5303 0.6430 -0.5369 0.6509 -0.5435 0.7083

Fog/smoke/haze -0.1335 0.4523 -0.1351 0.4579 -0.1368 0.4966

Severe cross wind -0.4807 0.3758 -0.4866 0.3804 -0.4926 0.4135

Time of day

AM rush hour (7:00-9:00) -0.4089 0.1337 -0.4136 0.1029 -0.4379 0.0933

PM rush hour (17:00-19:00) -0.1293 0.1158 -0.1308 0.1086 -0.1536 0.1017

Light condition

Dawn or dusk -1.3651 0.4275 -1.3336 0.4162 -1.3028 0.4068

Dark-lighted -1.0037 0.3311 -0.9805 0.3268 -0.9579 0.3207

Dark-unlighted 0.4309 0.4637 0.4209 0.4597 0.4112 0.4515

Sunglare 0.2298 0.6872 0.2245 0.6804 0.2193 0.6933
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Tab. 3. Driver-injury severity estimation for left turning crashes. Note: dash (—) indicates data not applicable or unavailable.

Variables OLM HCM GOLM

Gamma_2

Safety belt / alcohol involved vs. No — — — — 0.3275 2.4617

Gamma_3

Safety belt / alcohol involved vs. No — — — — 0.5163 2.7704

Gamma_4

Safety belt / alcohol involved vs. No — — — — 0.8819 3.1386

Alpha

Constant 1 -0.4448 – -0.3874 – -0.3082 0.2073

Constant 2 0.6154 – 0.5463 – 0.3679 0.2498

Constant 3 2.2429 – 1.8347 – 1.3292 0.2249

Constant 4 5.0396 – 3.9703 – 2.6953 0.2188

Summary Statistics

Number of observations 317 317 317

Log likelihood at convergence -498.72 -486.36 -471.84

AIC 1081.25 1070.18 1063.67

Pseudo R2 0.0207 0.0226 0.0285

variables on crash severity, and also compares parametric in-
sights on key roadway geometrics, vehicle, environmental and
driver related factors through the application of OLM, HCM,
GOLM and partial proportional odds model with logit function
approaches when accounting for injury study, aiming at pro-
viding reasonable basis to potentially reduce left turning injury
severity through advancing the state-of-the-art of injury mitiga-
tion strategy, facility manufacturing and policy-making.

Left-turn crashes are located to the crash sites where they oc-
cur, which enable to specify the effect of contributory factors on
injury severity. The partial proportional odds model has bet-
ter performance for left-turn crashes, compared with ordered
logit or probit model. By using three proposed statistical mod-
els, the interpretation of 9 group variables yields greater insight
concerning contributing effects of included variables on injury
severity. For example, it reveals the aged or younger drivers are
more likely to cause left-turn crashes and percentage of trucks
involvement also affects the crash occurrence frequency strongly
and significantly and increases the injury severity as well. Mean-
while, the points of impact of both vehicles, environmental con-
ditions, safety belt usage, alcohol and/or drugs are found to be
strongly associated with higher severities, and all these risk fac-
tors should be considered strategically in any future traffic man-
agement.

This study is the first step in the statistical estimation of the
size of variables affecting injury severity in left-turn crashes.
Similar to most previous studies, this approach also has some
limitations, such as the fact that small sample data from a single
Xi’an city database in Western China, the fact that limited avail-
able types of traffic flow related variables from the database, and
the fact that traditional statistical models are compared. Future
studies with multiple data from different databases and more
comprehensive analysis models and methods are strongly en-
couraged and conducted to confirm the efficiency of the estima-

tor for large-scale analysis for left-turn crashes.
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