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Abstract
Due to their small sizes molecular systems are often over-

damped. Conformational changes in these molecules are a con-
sequence of the separation of the energy input between the dif-
ferent displacements and velocities of the different functional
sites of the molecule. We show how a simple mechanical device,
that splits the forces between the different parts of the system,
can achieve spatial (displacements) and temporal (velocities)
separation. As a result of the overdamped nature of the mo-
tion, the equations can be decoupled by introducing a damping
center. As a particular example, we briefly discuss myosin II,
a motor protein responsible for the contraction of skeletal mus-
cles.
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1 Introduction
In engineering systems, damping is usually present [1,2], and

plays an important role. In cases, damping can be so strong
that the system is overdamped [3–6]. For example, if we as-
sume a single material point of mass m fixed by a linear spring
of strength k driven by a constant force F0, in the presence of
damping, we can write Newton’s second law in the form

F0 − cẏ − ky = mÿ, (1)

where y = y(t) is the displacement of the mass, and dots in-
dicate derivation with respect to time t . This system is over-
damped if the damping coefficient c > 2

√
km, in that case the

mass does not start oscillating, it just relaxes towards its equilib-
rium state [6].

Overdamped systems are not unique for engineering struc-
tures. High level of damping is found when motion occurs in
fluids of high viscosity, like in case of colloidal particles in mag-
netorheological suspensions [7–9] or motion of flagellar organ-
isms [10, 11]. Overdamped coupled pendulums are also used to
model Josephson junctions [12, 13]. In many cases, the small
size and mass of the particles is the reason why the system is
overdamped: damping is proportional to the second, while mass
to the third power of the characteristic size of the particles, for
further examples see Refs. [14–16]. In some cases, damping can
be so high that it dominates the inertial term in Eq. (1). Indeed,
we can cast (1) into a dimensionless form to be able to com-
pare the importance of the terms. Measuring time in units of
τ = c/k, displacements in units of L = F0/k, so that the new,
dimensionless time variable is t ′ = t/τ and the new, dimension-
less displacement is x = y/L , Eq. (1) can be written in the form

mk
c2 ẍ + ẋ + x = 1, (2)

where dot indicates derivation with respect to dimensionless
time t ′. From this form we can see that if mk/c2 is much less
than one, the inertial term mkẍ/c2 can be neglected. In this
paper we intend to investigate such systems where damping is
extremely strong. In this case, the system can be described by
first order equations of motion: the damping term, containing
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the velocity, is equal to the other forces acting on the mass: the
spring force and the load F0.

We note that mathematically, when the coefficient of the lead-
ing order term in (2) is very small, the system is singularly per-
turbed. This means that the first term, containing the second or-
der derivatives, only plays a role when the other terms vanish or
much smaller. A general treatment of such systems usually re-
quires special methods, like multiple-scale analysis or matched
asymptotic expansion [17]. However, our overdamped system
can be treated as first order: in our analysis we only take a look
at the decaying motion of the system where the order of magni-
tude of the accelerations is never larger than that of the veloci-
ties.

The motivation for investigating such very strongly damped
systems comes from the observation that molecular systems in
living organisms possess such properties. For example, in case
of the motor protein called myosin II, an enzyme responsible
for contraction of skeletal muscles [18], measurements serve the
following data: the mass of the molecule is m = 160×10−24 kg
[19], the restoring molecular forces impose a spring constant on
the order of k = 4 pN/nm [19], while damping is c = 60 pN·s/m
[19]. For determining the type of motion, we need to compare
the inertial term with the damping term by calculating the value
of mk/c2. In case of myosin II, we find mk/c2

= 1.78×10−4
�

1 which indicates that the motion of myosin II molecules during
muscle contraction is highly overdamped, and the inertial term
can be neglected safely from (1).

Even a single molecule can have several functional sites, with
displacements that can strongly differ from each other. The dis-
placements are caused by a chemical energy input, transformed
to mechanical energy. In living organisms, there are special pro-
teins called motor proteins that are capable of performing the
transformation at a high rate of efficiency. The spatial struc-
ture of these molecules is called conformation which can com-
pletely change during the working cycle of the protein. In the
case of myosin II, for example, after the hydrolysis of adenosine
triphosphate (ATP) the energy gain results in a conformational
change at two parts of myosin II: there is a rotational displace-
ment at a part of the molecule called converter domain, and an-
other motion at a place called actin binding site which makes
the molecule tend to attach to a filamentous protein chain called
actin [18]. To achieve a conformational change, the energy in-
put has to lead to a different displacement of the different parts of
the molecule. Hence it is of interest to see, through a simple me-
chanical model, how different displacements can be achieved in
a simple overdamped system under the action of a single force.
This is the subject of Sec. 2, how a simple mechanical device
can lead to spatial separation, that is, to different displacements
of the parts of a simple mechanical system. We note that these
different displacements can be tuned to fit any prescribed values
by an appropriate choice of the system parameters.

In many cases, however, it is not only the final position of the
parts of the molecules, at the end of a conformational change,

that is of importance. For instance, the speed of the approach of
the actin filament by a myosin II molecule can be much faster
than the motion of its loaded lever arm. To address this question,
in Sec. 3 we investigate an extended version of the model that
is capable to provide different speeds while approaching a final
state under the action of a single force. This leads to temporal
separation, that is, the time required to reach the prescribed final
displacaments can differ strongly for each body of the system.
Hence in this system there is both spatial and temporal separa-
tion. Finally, in Sec. 4 we draw our conclusions.

2 Separation of displacements
The system we investigate in this section is shown in Fig. 1a.

The two bodies of masses m1 and m2 are connected to point P
by linear springs of stiffness k1 and k2, respectively. This point
P is driven by a force F that might depend on time: F(t). The
displacement of point mass m1 is y1, that of m2 is y2. The dis-
placement of point P is y. The motion of the masses is damped,
the damping coefficients are c1 and c2 for the two masses, re-
spectively.

The forces in the springs are

S1 = (y1 − y)k1, S2 = (y − y2)k2. (3)

The forces exerted on the masses are from these spring forces
and from damping:

−S1 − c1 ẏ1 = m1 ÿ1, S2 − c2 ẏ2 = m2 ÿ2, (4)

where dots indicate derivation with respect to time. For sim-
plicity, we assume that point P is massless and is not affected by
damping, that is, it serves only as a force splitting device. Hence
the forces have to balance each other:

S1 + F = S2. (5)

This implies the relation (y1 − y)k1 + F = (y − y2)k2, leading
to

y =
F + k1 y1 + k2 y2

k1 + k2
. (6)

Substituting this and the spring forces into Eqs. (4) gives

m1 ÿ1 = −c1 ẏ1 + F
k1

k1 + k2
−

k1k2

k1 + k2
(y1 − y2)

m2 ÿ2 = −c2 ẏ2 + F
k2

k1 + k2
+

k1k2

k1 + k2
(y1 − y2) (7)

We can cast this system of equations in a dimensionless form.
Let’s write force F in the form F(t) = F0 f (t) where F0 is
the magnitude of the force and | f (t)| ≤ 1 the dimensionless
force function that describes the time-dependence of the force.
Then we can measure the displacements in terms of L = (k1 +

k2)F0/k1k2, the time in terms of τ = c1c2(k1 + k2)/[k1k2(c1 +

c2)], so that Eqs. (7) become

µ1 ẍ1 = −γ1 ẋ1 + κ1 f (t) − x1 + x2,

µ2 ẍ2 = −γ2 ẋ2 + κ2 f (t) + x1 − x2, (8)
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Fig. 1. (a) Layout of the overdamped system. (b) Free body diagrams showing the forces acting on each pieces.

where xi = yi/L , i = 1, 2, dots indicate derivation with re-
spect to dimensionless time t/τ , µ1 = m1L/F0τ

2 and µ2 =

m2L/F0τ
2 are the dimensionless masses, γ1 = (c1 +c2)/c2 and

γ2 = (c1 + c2)/c1, with γ −1
1 + γ −1

2 = 1, characterize damping
of the two bodies, and κ1 = k1/(k1 + k2) and κ2 = k2/(k1 + k2)

are the relative spring stiffnesses with κ1 + κ2 = 1.
If the system is overdamped in the sense described in the In-

troduction, then µ1 and µ2 are negligible. This leads to the sys-
tem of equations

γ1 ẋ1 = κ1 f (t) − x1 + x2, γ2 ẋ2 = κ2 f (t) + x1 − x2. (9)

To solve this set of equations, we introduce the concept of
the damping center, so that its position is defined as c(t) =

γ1x1(t)+γ2x2(t). In an overdamped system, the damping center
is similar to the center of mass in inertial systems: we can solve
the system by using the location c(t) of the damping center as
one of the unknowns and the increase d(t) = x1(t) − x2(t) in
the distance between the bodies as the other unknown. This way
Eqs. (9) can be cast into the following form:

ċ = f (t), ḋ =

(
κ1

γ1
−

κ2

γ2

)
f (t) − d, (10)

where we have used the fact that κ1 + κ2 = 1. The advantage of
this form is that the equations are now de-coupled, there is now
only a single unknown in each equation. Once these equations
are solved, we find x1 and x2 from

x1(t) =
c(t) + γ2d(t)

γ1 + γ2
, x2(t) =

c(t) − γ1d(t)
γ1 + γ2

. (11)

We solve Eqs. (10) in the special case of a constant driving
force f (t) ≡ 1. In this case we find

c(t) = t + A, d(t) =

(
κ1

γ1
−

κ2

γ2

)
+ Be−t , (12)

where A and B can be set from the initial conditions. If at the
start of a conformational change, at t = 0 the system is at rest,
c(0) = 0 and d(0) = 0, we find A = 0 and B = κ2/γ2 − κ1/γ1,
and hence

c(t) = t,

d(t) =

(
κ1
γ1

−
κ2
γ2

) (
1 − e−t) . (13)

This means that the damping center will move at a constant
speed 1. The distance of the two mass, after a short transient,
converges to κ1/γ1 − κ2/γ2. The convergence is exponential,
with rate 1.

In the original dimensionless variables the result is

x1(t) =
1

γ1 + γ2

[
t +

(
γ2

γ1
κ1 − κ2

) (
1 − e−t)] ,

x2(t) =
1

γ1 + γ2

[
t −

(
κ1 −

γ1

γ2
κ2

) (
1 − e−t)] . (14)

The first term in the square bracket gives a constant velocity
translation, which is the same for both masses. The second term
contains an exponential term that decays rapidly, and a constant
term that gives the long time displacement of the bodies. More
precisely, we can compute x1 − x and x − x2 as the distance of
the masses from point P, where x = y/L is the dimensionless
position of point P. Using (6) we find that x = κ1κ2 + κ1x1 +

κ2x2, which leads to x1 −x = −κ1κ2 +κ2(x1 −x2) and x −x2 =

κ1κ2 + κ1(x1 − x2). Using (14), in the long time limit t → ∞

we find

x1 − x = −κ1κ2 + κ2

(
κ1

γ1
−

κ2

γ2

)
,

x − x2 = κ1κ2 + κ1

(
κ1

γ1
−

κ2

γ2

)
.

(15)

Hence the displacements of the bodies with respect to point P,
driven by the force, are different, hence their positions are spa-
tially separated. This spatial separation depends on the stiff-
nesses of the springs and on the relative strength of damping.
This is a very important finding in terms of the conformational
changes in molecules: after a conformational change different
functional units of the molecules can end up in separate final
states using a similar mechanism.

Note, however, that the velocities cannot be separated this
way, the long-time velocity is the same for the two bodies, and
it coincides with the velocity of point P. In the next section we
modify this model to find a mechanical device that, besides dif-
ferent displacements, can also lead to different velocities of its
parts, and hence these parts can approach their different final
states during different time periods.

3 Separation of velocities
Simple mechanical devices that can, as we shall see, separate

the velocities as well as the displacements are shown in Figs. 2
and 3. In case of the device shown in Fig. 2a the two ratcheted
bars are moved by the rotating cylinders, that, in turn, is rotated
by the force F acting on the third ratcheted bar. As the radius
of the cylinders are different, αR for the bar attached to mass
m1 and β R for the bar attached to m2, and it is R for the force
F , we can effectively exert a different force on the masses. As
before, the displacements of the masses are y1 and y2, while the
displacement of the loaded racheted bar is y.

Spatial and temporal separation in overdamped systems 912010 54 2



y
y2

y1

S1S1

S2S2

c2y2
c y1 1

y
y2

2c

y1

1cR
α

Rβ
R

(a)

F

m2

m1

(b)

F

m2

k2

m1

k1

Ax

Ay
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y

y2

y1
2c

1c

m2

y2

S2

c2y2

m1

y1

S1

c y1 1

y

S1

Ay

Ax

S2

(b)

F

Rβ
R

α

R

m2

k2

m1

k1

F

(a)

Fig. 3. (a) Layout of the force splitting device using a lever arm. (b) Free body diagrams showing the forces acting on each pieces.

Fig. 3a shows a device that separates the forces by applying a
lever arm. This works effectively the same way as the previous
device shown in Fig. 2, but only when the horizontal displace-
ment y of the top of the lever arm is small. If this is the case, the
two systems work essentially the same way. The forces acting
on the pieces are shown in Figs. 2b and 3b. Assuming neither
inertia nor damping for these force separating devices, we can
write the balance of moments around the pinned point of both
devices as

S1αR + F R = S2β R. (16)

Here S1 = (y1 − αy)k1 and S2 = (βy − y2)k2 are the forces in
the springs, and from (16) we can express y as

y =
F + αk1 y1 + βk2 y2

α2k1 + β2k2
. (17)

Substituting this into (4) we find the equations of motion for the
two masses to be

m1 ÿ1 = −c1 ẏ1 +
αk1 F

α2k1+β2k2
−

β2k1k2
α2k1+β2k2

y1

+
αβk1k2

α2k1+β2k2
y2,

m2 ÿ2 = −c2 ẏ2 +
βk2 F

α2k1+β2k2
+

αβk1k2
α2k1+β2k2

y1

−
α2k1k2

α2k1+β2k2
y2. (18)

Note that with the choice of α = β = 1 we recover Eq. (7).
Let us, again, cast this system of equations into a dimen-

sionless form. We can measure the distances in units of L =

(α2k1 + β2k2)F0/(αβk1k2) and time in units of τ = (α2k1 +

β2k2)c1c2/(αβk1k2(c1 + c2)), then we obtain the new dimen-
sionless equations of motion:

µ1 ẍ1 = −γ1 ẋ1 + κ1 f (t) −
β
α x1 + x2,

µ2 ẍ2 = −γ2 ẋ2 + κ2 f (t) + x1 −
α
β x2, (19)

where we use the notation xi = yi/L , i = 1, 2, with dots
indicating derivation with respect to dimensionless time t/τ .
The parameters µ1 = m1L/F0τ

2 and µ2 = m2L/F0τ
2 in-

dicate the dimensionless masses just like in the previous sec-
tion, γ1 = (c1 + c2)/c2 and γ2 = (c1 + c2)/c1 characterize
damping of the two masses. The parameters that differ from
the previous, simpler model are the relative spring stiffnesses
κ1 = αk1/(α

2k1 + β2k2) and κ2 = βk2/(α
2k1 + β2k2). Note,

however, that with the choice of α = β = 1 the old κ1 and κ2

are recovered. Also note that ακ1 + βκ2 = 1 holds.
Just like for the model in the previous section, we can intro-

duce the concept of the damping center, whose position is de-
fined as c(t) = αγ1x1(t)+βγ2x2(t). We also introduce the nor-
malized distance between the masses as d(t) = βx1(t)−αx2(t).
With these notations, Eqs. (19) can be rewritten as

ċ(t) = f (t),

ḋ(t) =

(
βκ1

γ1
−

ακ2

γ2

)
f (t) −

α2γ1 + β2γ2

αβγ1γ2
d(t).

(20)

The first equation describes how the damping center is driven by
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the external force, whereas the second equation describes how
the two masses move with respect to each other.

In case of a constant force f (t) = 1, with initial conditions
c(0) = 0, d(0) = 0 the solutions are:

c(t) = t,

d(t) =
αβ(βκ1γ2 − αγ1κ2)

α2γ1 + β2γ2

(
1 − e−

α2γ1+β2γ2
αβγ1γ2

t
)

.
(21)

We can see that the damping center moves at a constant unit ve-
locity, again. The normalized distance d between the masses
approaches exponentially a steady state value at the rate of
(α2γ1 + β2γ2)/(αβγ1γ2), this steady state distance is d∗

=

αβ(βκ1γ2 − ακ2γ1)/(α
2γ1 + β2γ2).

For the dimensionless positions of the masses we obtain

x1(t) =
α

α2γ1 + β2γ2
t

+βγ2
αβ(βκ1γ2 − αγ1κ2)

(α2γ1 + β2γ2)2

(
1 − e−

α2γ1+β2γ2
αβγ1γ2

t
)

,

x2(t) =
β

α2γ1 + β2γ2
t (22)

−αγ1
αβ(βκ1γ2 − αγ1κ2)

(α2γ1 + β2γ2)2

(
1 − e−

α2γ1+β2γ2
αβγ1γ2

t
)

.

The exponential terms disappear with time, and we find in the
steady state that the masses move at a constant, but different
speed. Note that the coefficients in each term are different, hence
with an appropriate choice of the parameters any prescribed fi-
nal displacement can be reached in any prescribed time. Hence
the bodies have different final positions (spatial separation) and
they require different time to reach them (temporal separation).
Such simultaneous spatial and temporal separation in our over-
damped system is very important in understanding the confor-
mational changes of macromolecules. Our model, in essence,
is a prototypical mechanical device to investigate the mechanics
of conformational changes of, for example, the myosin II motor
protein.

4 Discussion and conclusions
In biological systems, motor proteins are responsible for

many types of motions from cellular transportation through
skeletal muscle contraction to peristaltic movements. The num-
ber of molecules acting during the motion is in the range of a
single molecule (intracellular transportation) and several thou-
sand molecules (macroscopic movements). There are different
approaches and models in different disciplines trying to describe
the complicated phenomena occurring during motion. In Me-
chanics, new perspectives were opened by computational meth-
ods creating the research field of molecular dynamics, with ten-
tatives of considering all the atoms acting together within a pro-
tein. However, despite the increasing capacity of computers, it
is not yet possible to model all the atoms of motor proteins, and
for the moment, it is hopeless to examine complicated structures

with several proteins working together. In the present study, we
have found a very simple mechanical device that is capable of
separating displacements, and another one, which can separate
both displacements and velocities of two bodies. This way, we
have found a system, which can produce the same basic oper-
ation as a single protein: spatial and temporal separation. Due
to the low degree-of-freedom of our model, it can be a conve-
nient building block to model the highly ordered, huge protein
structures, like muscle tissue, for example.

The direction of further investigations originates also from
biology: under some circumstances, motor proteins seem to
“think” between states, which means that they act slower than
expected based on the molecular stiffnesses and damping pa-
rameters. In our model this could be modelled by inserting a
damping element on the excited point. This might lead to more
complicated equations, but would not influence the main proper-
ties of the model, hence this is a quite straightforward extension
of our mechanical device. It is also quite simple to extend our
model to include other force functions F(t), that could better
model actual energy input into molecular systems.
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