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Abstract
As the CHAMP has been launched as the first of the grav-

ity satellites of the 2000s, its processing has been a real chal-
lenge for the geodetic community. Several methods have been
developed for gravity field modelling based on different theoret-
ical backgrounds. In this study the feasibility of the direct use
of the Newtonian equation of motion has been studied. Then
numerical results for 2 years of CHAMP observations are pre-
sented. Though the method failed to provide the best CHAMP-
only gravity field model, it has been found to be generally feasi-
ble, and worth for using of other gravity satellite data.

Keywords
Newtonian equation of motion · gravity satellite · CHAMP ·

gravity field modelling

Acknowledgement
This work is connected to the scientific program of the “De-

velopment of quality-oriented and harmonized R+D+I strategy
and functional model at BME” project. This project is supported
by the New Hungary Development Plan (Project ID: TÁMOP-
4.2.1/B-09/1/KMR-2010-0002).

This study has been supported by the Bolyai scholarship.
When this research has been performed, the second author has
been worked as assistant at Department of Geodesy, Faculty of
Geoinformatics, University of West Hungary and has studied at
the Civil Engineering Faculty of Budapest University of Tech-
nology and Economics – the support from the colleagues at both
institutes is appreciated.

Lóránt Földváry

Department of Geodesy and Surveying, MTA-BME Research Group on Physical
Geodesy and Geodynamics, BME, H-1111 Műegyetem Rakpart 3, Budapest,
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1 Introduction
Generally, the first decade of the new century has pro-

vided some of the most exciting satellite missions of the space
geodesy. The CHAMP satellite aimed to determine the magnetic
field of the Earth, but also allows the determination of the grav-
ity field. The CHAMP is followed by the GRACE, which is a
definite satellite gravimetric mission, which provides both a very
accurate static and a set of monthly varying gravity fields. The
finally launched mission was the GOCE gradiometric mission,
which concentrates on the static field with very detailed resolu-
tion. An appropriate combination of the gain of these gravity
missions can provide a very accurate global gravity model, en-
abling a range of scientific applications on global sense [19];
[5]. Furthermore, due to their unprecedented spatial resolution,
i.e. some cm accuracy of geoid on some 100 km scale, these
measurements can effectively support refinement of a regional
geoid model [9]; [20]; [24], which can be extensively used as
the reference height level for different scientific and engineering
applications (e.g. [22]; [2]).

As the CHAMP has been launched first, its processing has
been a challenge for the geodetic community. Several methods
have been developed for different theoretical backgrounds. The
energy integral approach has already been employed in the Hun-
garian research community as well [8]; [12] and [13], while the
use of the Newtonian equation of motion is a novelty for us.
Though different groups have derived their method making use
of the equation of motion, no detailed description of the method
or essentially different methods under the same name has been
found (e.g. [1]; [17]). Elaborated description of the method as
derived by us and numerical results for CHAMP observations
are introduced and discussed in the present study.

The CHAMP satellite has been launched on 15. July of 2000.
The CHAMP satellite (Fig. 1) has a special characteristic due
to the long rod in its front, the so-called “boom”. The boom
has been attached for bearing one of the main on-board instru-
ments, the magnetometer, which means an unlike profile for
gravimetric applications. Some technical parameters are listed
in the table next to Fig. 1. The choice of the inclination reflects
the no need of overemphasis of the polar region, while the al-
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titude (from 460 km gradually shifted to 250-300 km) provides
the very good resolution.

Fig. 1. The CHAMP satellite and some technical parameters

We have used two years of CHAMP measurements in the pe-
riod of 11.03.2002 and 29.02.2004. The data base contained
orbit determined with precise GPS in 30 s resolution and mea-
surements of the on-board accelerometer.

2 Equation of motion of the satellite
In a conservative force field (or inertial field) all the forces, f

have a regular potential field, V , so f = ∇V holds. According
to this, the acceleration of the satellite, ẍ can be assumed to be
generated by the gradient of the potential field.

ẍ = ∇V (1)

Since for most application in geosciences the use of Earth-fixed
coordinate system is unavoidable, in the following parts the
equation of motion is derived in a rotating reference frame.

2.1 Equation of motion of the satellite in a rotating frame
The Earth-fixed reference frame is a rotating system, so

Eq. (1) does not hold. From now on the rotating system is noted
with X, Y, Z coordinates, while for the inertial system x, y, z
axes are used. Accelerations in the rotating system and in the
inertial systems can be related to each other [18]:

r̈XY Z = Rr̈xyz−2 (ωωω × ṙXY Z )−(ω̇ωω × rXY Z )−ωωω×(ωωω × rXY Z ) ,

(2)
where ωωω is the angular velocity of the rotating Earth, “dot” refers
to differentiation with respect to time, and R is the rotational ma-
trix, thus rXY Z = Rrxyz . All components of Eq. (2) can be inter-
preted from physical aspect. According to Eq. (2), acceleration
observed in a rotational, r̈XY Z and in an inertial coordinate sys-
tem, r̈xyz are different in the following terms: −2 (ωωω × ṙXY Z ),
the Coriolis acceleration, − (ω̇ωω × rXY Z ), the Euler acceleration
and −ωωω × (ωωω × rXY Z ), the centrifugal acceleration.

Applying Eq. 2) for the equation of the motion of a satellite,
Eq. (1) becomes:

∇V = Rẍ − 2
(
ωωω × Ẋ

)
− (ω̇ωω × X) − ωωω × (ωωω × X) . (3)

2.2 Equation of motion of the satellite in a non-conservative
force field
In case of a non-conservative force field, acceleration of a

point mass is generated by the sum of all the accelerations acting

on it, so
ẍ = ∇V +

∑
fnc, (4)

or in the case of a rotating system

Rẍ−2
(
ωωω × Ẋ

)
−(ω̇ωω × X)−ωωω×(ωωω × X) = ∇V +

∑
fnc, (5)

where
∑

fnc stands for the sum of the non-conservative acceler-
ations, the subscript nc refers to “non-conservative”. On board
of the CHAMP there is a capacitive accelerometer used to detect
the non-conservative accelerations, therefore the sum of these
effects can be treated without considering the different and inde-
pendent sources separately.

2.3 Equation of motion of the satellite in force field of cer-
tain celestial bodies
In Eq. (5) all conservative accelerations are summed in the

term ∇V . Among them the largest is by far the gravitational
acceleration of the Earth, moreover for geodetic use this is the
target quantity to be determined. Therefore it is worth to decom-
pose ∇V into its sources. First of all the satellite is affected by
the force field of more celestial bodies, these are the so-called
tides. Secondly, these celestial bodies generate mass redistri-
butions of the physical body of the Earth, these are the indirect
tides, such as ocean tides, solid Earth tides. Finally the celestial
bodies by their effect on the mass distribution indirectly relocate
the rotational axis of the Earth – this type of indirect tide is the
pole motion. So Eq. (5) by noting the separated effects becomes:

Rẍ − 2
(
ωωω × Ẋ

)
− (ω̇ωω × X) − ωωω × (ωωω × X)

= ∇VEarth + ∇Vls + ∇Vind +

∑
fnc,

(6)

where ∇VEarth is the gravitational acceleration of the Earth,
∇Vls is the direct tide effect of the other celestial bodies (ls
refers to lunisolar as the main contribution is provided by the
Sun and the Moon), ∇Vind refers to the indirect tides, including
the ocean tide, the solid Earth tide and the polar motion.

3 Equation of motion of the satellite as observation
equation for determining the gravity field by spherical
harmonic analysis
Rearranging Eq. (6) for the gravitational acceleration be-

comes:

∇VEarth =Rẍ − 2
(
ωωω × Ẋ

)
− (ω̇ωω × X) − ωωω × (ωωω × X)

− ∇Vls − ∇Vind −

∑
fnc.

(7)

All the terms in the right hand side can be considered by mea-
sured or modelled quantities. The acceleration of the satellite
can be derived from the orbit of the satellite by numerical differ-
entiation. The Earth-related parameters of the centrifugal, Eu-
ler and Coriolis accelerations are provided by the IERS (Inter-
national Earth Rotation and Reference Systems Service) [11].
Values of ∇Vls and ∇Vind can be derived from tide models. The
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non-conservative accelerations,
∑

fnc are measured by the on-
board accelerometer. These measured and modelled effects can
be summed in an observation vector:

I =Rẍ − 2
(
ωωω × Ẋ

)
− (ω̇ωω × X) − ωωω × (ωωω × X)

− ∇Vls − ∇Vind −

∑
fnc.

(8)

So Eq. (7) – with leaving the trivial notation that the potential
refers to that of the Earth – simplifies to:

∇V = I, (9)

where V can be defined in the usual spherical harmonic rep-
resentation (e.g. [19]). The adjustment is done for a set of
unknowns, C̄lm and S̄lm normalized spherical harmonic coef-
ficients. Therefore analytical determination of ∇V , and of the
partial derivatives, ∂∇V

∂
〈
C̄lm, S̄lm

〉 should be provided. The gradient

of the potential in a rectangular coordinate system is:

∇V =


∂V
∂x
∂V
∂y
∂V
∂z

 =


∂V
∂r

dr
dx +

∂V
∂ϕ

dϕ
dx +

∂V
∂λ

dλ
dx

∂V
∂r

dr
dy +

∂V
∂ϕ

dϕ
dy +

∂V
∂λ

dλ
dy

∂V
∂r

dr
dz +

∂V
∂ϕ

dϕ
dz +

∂V
∂λ

dλ
dz

 . (10)

The partial derivatives with respect to the polar coordinates are

∂V
∂r

= −
k M
R2

∞∑
l=0

l
(

R
r

)l+1 l∑
m=0

(
C̄lm cos mλ

S̄lm sin mλ

)
P̄lm (ϕ)

∂V
∂ϕ

=
k M
R

∞∑
l=0

(
R
r

)l l∑
m=0

(
C̄lm cos mλ

S̄lm sin mλ

)
∂ P̄lm (ϕ)

∂ϕ
(11)

∂V
∂λ

=
k M
R

∞∑
l=0

(
R
r

)l l∑
m=0

(
−mC̄lm sin mλ

mS̄lm cos mλ

)
P̄lm (ϕ)

The remaining components of Eq. (10), which describes the
transformation between the Cartesian and the polar coordinates

is the well-known:

 x
y
z

 =

 r cos ϕ cos λ

r cos ϕ sin λ

r sin ϕ


or r

ϕ

λ

 =


√

x2 + y2 + z2

arctan z
d

arctan y
x

,

where d =

√
x2 + y2. According to this in Eq. (10) the deriva-

tives of the polar coordinates with respect to the Cartesian ones
are the followings:

dr
dx
dϕ
dx
dλ
dx

 =


x
r

−zx
r2d
−y
d2

 ;


dr
dy
dϕ
dy
dλ
dy

 =


y
r

−zy
r2d

x
d2

 ;


dr
dz
dϕ
dz
dλ
dz

 =


z
r
d
r2

0

 ,

(12)

or in a different notation [21]:
dr
dx
dϕ
dx
dλ
dx

 =

 cos ϕ cos λ

−
sin ϕ cos λ

r
−

sin λ
r cos ϕ

 ;


dr
dy
dϕ
dy
dλ
dy

 =

 cos ϕ sin λ

−
sin ϕ sin λ

r
cos λ

r cos ϕ

 ;


dr
dz
dϕ
dz
dλ
dz

 =


sin ϕ
cos ϕ

r

0

 .

(13)

The partial derivatives required for the design matrix with the
use of Eq. (10) and (11) becomes:

∂∇V

∂

(
C̄lm
S̄lm

) =



∂
(

∂V
∂r

dr
dx +

∂V
∂ϕ

dϕ
dx +

∂V
∂λ

dλ
dx

)
∂

(
C̄lm
S̄lm

)
∂
(

∂V
∂r

dr
dy +

∂V
∂ϕ

dϕ
dy +

∂V
∂λ

dλ
dy

)
∂

(
C̄lm
S̄lm

)
∂
(

∂V
∂r

dr
dz +

∂V
∂ϕ

dϕ
dz +

∂V
∂λ

dλ
dz

)
∂

(
C̄lm
S̄lm

)


=

=
k M
R

∞∑
l=0

l∑
m=0

(
R
r

)l
P̄lm (ϕ)

·



−
l
r

(
cos mλ

sin mλ

)
dr
dx +

(
cos mλ

sin mλ

)
∂ P̄lm (ϕ)

∂ϕ
1

P̄lm (ϕ)

dϕ
dx +

(
−m sin mλ

m cos mλ

)
dλ
dx

−
l
r

(
cos mλ

sin mλ

)
dr
dy +

(
cos mλ

sin mλ

)
∂ P̄lm (ϕ)

∂ϕ
1

P̄lm (ϕ)

dϕ
dy +

(
−m sin mλ

m cos mλ

)
dλ
dy

−
l
r

(
cos mλ

sin mλ

)
dr
dz +

(
cos mλ

sin mλ

)
∂ P̄lm (ϕ)

∂ϕ
1

P̄lm (ϕ)

dϕ
dz +

(
−m sin mλ

m cos mλ

)
dλ
dz


.

(14)

In the next steps simplifications of Eq. (14) are to be provided.
Symmetry of (11) with the spherical harmonic representation
of the potential suggests that partial derivatives of the potential
should be derived as a function of the potential itself.

∂Vlm

∂r
= −

l + 1
r

Vlm

∂Vlm

∂ϕ
=

∂ P̄lm (ϕ)

∂ϕ

1
P̄lm (ϕ)

Vlm (15)

∂Vlm

∂λ
=

(
−m tan mλ

m cot mλ

)
Vlm

Using (15) and (12) or (13) the partial derivatives become (for
use of (12) and (13) the result is (16) and (17), respectively):

∂∇V

∂

(
C̄lm
S̄lm

) =


−

l+1
r2 x −

∂ P̄lm (ϕ)
∂ϕ

zx
r2d P̄lm (ϕ)

−

(
−m tan mλ

m cot mλ

)
y

d2 cos ϕ

−
l+1
r2 y −

∂ P̄lm (ϕ)
∂ϕ

zy
r2d P̄lm (ϕ)

+

(
−m tan mλ

m cot mλ

)
x

d2 cos ϕ

−
l+1
r2 z +

∂ P̄lm (ϕ)
∂ϕ

d
r2 P̄lm (ϕ)


∂Vlm

∂

(
C̄lm
S̄lm

)
(16)
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∂∇V

∂

(
C̄lm
S̄lm

) =


−

l+1
r cos ϕ cos λ −

∂ P̄lm (ϕ)
∂ϕ

sin ϕ cos λ
r P̄lm (ϕ)

−

(
−m tan mλ

m cot mλ

)
sin λ

r cos ϕ

−
l+1

r cos ϕ sin λ −
∂ P̄lm (ϕ)

∂ϕ
sin ϕ sin λ
r P̄lm (ϕ)

+

(
−m tan mλ

m cot mλ

)
cos λ

r cos ϕ

−
l+1

r sin ϕ +
∂ P̄lm (ϕ)

∂ϕ
cos ϕ

r P̄lm (ϕ)


∂Vlm

∂

(
C̄lm
S̄lm

)

(17)

Inserting the spherical harmonic series of the potential to
(16) or (17), furthermore using the simple geometrical equation,
d2

= x2
+ y2

= r2 cos2 ϕ, the design matrix can be built using
the formulas below (for use of (16) and (17) the result is (18)
and (19), respectively):

∂∇V

∂

(
C̄lm
S̄lm

) =


− (l + 1) x −

∂ P̄lm (ϕ)
∂ϕ

zx
d P̄lm (ϕ)

−

(
−m tan mλ

m cot mλ

)
y

cos3 ϕ

− (l + 1) y −
∂ P̄lm (ϕ)

∂ϕ
zy

d P̄lm (ϕ)
+

(
−m tan mλ

m cot mλ

)
x

cos3 ϕ

− (l + 1) z +
∂ P̄lm (ϕ)

∂ϕ
d

P̄lm (ϕ)


·

k M

R3

(
R
r

)l+3
(

cos mλ

sin mλ

)
P̄lm (ϕ)

(18)

∂∇V

∂

(
C̄lm
S̄lm

) =

k M

R2


− (l + 1) cos ϕ cos λ −

∂ P̄lm (ϕ)
∂ϕ

sin ϕ cos λ
P̄lm (ϕ)

−

(
−m tan mλ

m cot mλ

)
sin λ
cos ϕ

− (l + 1) cos ϕ sin λ −
∂ P̄lm (ϕ)

∂ϕ
sin ϕ sin λ
P̄lm (ϕ)

+

(
−m tan mλ

m cot mλ

)
cos λ
cos ϕ

− (l + 1) sin ϕ +
∂ P̄lm (ϕ)

∂ϕ
cos ϕ

P̄lm (ϕ)


·

(
R
r

)l+1
(

cos mλ

sin mλ

)
P̄lm (ϕ)

(19)

4 Results
4.1 Observation vector
The largest contribution of the observation vector is provided

by the kinematic acceleration of the satellite, ẍ, which has been
determined as in [6]. An order of magnitude smaller signal pro-
vided by the centrifugal, Euler and Coriolis accelerations. In
case of the Euler acceleration the angular acceleration, ω̇ωω, has
been derived from the IERS angular velocity data by simple
linear interpolation, which rough method has been found suffi-
ciently accurate with respect to the tiny magnitude of the signal.

The contribution of the direct tidal effects is even smaller, i.e.
in the order of 10−6 m/s2. Practically effects of the Sun, Moon,
Jupiter, Mars, Venus and Saturn have been taken into account. In
all cases 12 hour ephemeris data were available, and to the actual
epoch the data have been interpolated by linear interpolation.

The indirect tides, ∇Vind are an order of magnitude below the
direct tides. The solid Eatrh tide and polar motion was computed

as suggested by the IERS [11]. The ocean tide based on the
Schwiderski combined with TOPEX/Poseidon tide model.

The non-conservative accelerations,
∑

fncare similar to the
order of the direct tides. Observations of the accelerometer are
presented in 1 second resolution, which we have reduced to 30
seconds with a Butterworth-filter.

Fig. 2. CHAMP-based gravitational acceleration along X , Y and Z axes (up
to down)

In Fig. 2 the observation vector is visualized as described
by Eq. (8). This value is the basis of the gravity analysis,
thus it manifests the gravitation of the Earth as detected by the
CHAMP. This is compared to a synthesised signal from a known
Earth gravitation model on Fig. 3, where differences of ∇V from
CHAMP and from a model are displayed. The used gravity
model is the EGM96 [10]. The information on Fig. 3 is two
kinds: first, it displays the signal, which is the novel informa-
tion on the gravity field to the EGM96 model. Second it also
shows all the CHAMP measurement, processing and modelling
errors. This information of the second kind is overemphasized:
the visible “large” variation in the range of 0.01 m/s2, is mainly
contributed by outliers contributing only to the very short wave-
length gravity information, which in practice makes no harm on
the gravity analysis.

4.2 Pre-processing
The two years of CHAMP observations have been filtered in

order to omit data gaps and outliers. Data gaps both in the or-
bit and in the star catalogue have been detected. Outlier of the
orbit has been defined as deviation to a physically meaningful
orbit, i.e. the kinematic orbit has been filtered by comparing
to a reduced-dynamic orbit, which is known to be accurate to
some centimetres. The maximal deviation has been set to 0.5
m. All together 26% of the data has been filtered. The remain-
ing epochs contain valid data for applying Eqs. (8) and (19) on
them to build the observation vector and the design matrix, re-
spectively.

According to a priori information on the content of the
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Fig. 3. Gravitational acceleration residuals (CHAMP minus EGM96) along
X , Y and Z axes (up to down)

CHAMP measurements [7] the maximal degree and order of the
spherical harmonic analysis has been set to 60, which means
3721 unknowns.

4.3 Normal matrix

Fig. 4. The normal matrix

The normal matrix has been derived from the design matrix
based on Eq. (19) by assuming unit weights, so N = AT A.
Since the size of the design matrix is too large to be treated by
a regular PC, we have determined directly the normal matrix in-
stead for more details see [3]. This has been done by the dyadic
decomposition of the design matrix [4]. The determined normal
matrix is shown on Fig. 4 in logarithmic scale. The sequencing
scheme of the normal matrix by degree and order is explained
on Table 1.

Tab. 1. Sequencing scheme of the coefficients on Figs. 4 and 5.

order 0    1      N-1  N 

degree 0 1 … N 1 2 … N   N-1 N N 

 

The block diagonal structure of the normal matrix is to the ex-
pectations, manifesting the large correlation of the coefficients
with the same order. The other characteristic feature is the
curved lines showing the resonances; those coefficients cannot
be determined from the CHAMP orbit. At these places the orbit
geometry purely mathematically provides incredible large coef-
ficients [23].

The observation vector computed by n = AT I is shown on
Fig. 5 in the same sequence (cf. Table 1). The figure shows that
the energy of the gravitational field is concentrated to the long
wavelength.

Fig. 5. The observation vector

4.4 CHAMP gravity model
Using the normal matrix (Fig. 4) and the observation vector

(Fig. 5) the unknowns determined by x = N−1n are displayed
on Fig. 6 in a logarithmic scale in the usual sequencing scheme,
i.e.:

C̄0,0 S̄1,1 S̄2,1 ... S̄i,1 ... S̄59,1 S̄60,1

C̄1,0 C̄1,1 S̄2,2 ... S̄i,2 ... S̄59,2 S̄60,2

C̄2,0 C̄2,1 C̄2,2 ... S̄i,3 ... S̄59,3 S̄60,3

... ... ... ... ... ... ... ...

C̄i,0 C̄i,1 C̄i,2 ... C̄i,i ... S̄59,i+1 S̄60,i+1

... ... ... ... ... ... ... ...

C̄59,0 C̄59,1 C̄59,2 ... C̄59,i ... C̄59,59 S̄60,60

C̄60,0 C̄60,1 C̄60,2 ... C̄60,i ... C̄60,59 C̄60,60


.

The geoid based on the newly derived coefficients is shown
on Fig. 7.

5 Discussions and conclusions
The validation of the newly derived geoid has been done by

comparison with known gravity models. The comparison was
done on geoids. The used models are EGM96 [10], EIGEN-1S
[14], EIGEN-2 [15] and EIGEN-GRACE01S [16]. In Table 2
the standard deviations are summarized.

Determination of a CHAMP gravity model based on the Newtonian equation of motion 1592010 54 2



Fig. 6. The CHAMP coefficients

Fig. 7. The CHAMP geoid

Tab. 2. The standard deviation of the different geoids to our model

Model EGM96 EIGEN-1S EIGEN-2 EIGEN-GRACE01S

std. dev [cm] 63.4 29.3 39.7 52.9

According to the statistics, there is a clear correlation with
the other CHAMP models. Surprisingly this CHAMP solu-
tion shows more similarity to two other CHAMP-based models
(EIGEN-1S and EIGEN-2) than the two to each other, which
has been found to be +/- 53.9 cm (not included in Table 2).
Assuming that the state-of-the-art GRACE model (EIGEN-
GRACE01S) is the most accurate among these models, the
statistics with using this model as a reference has also been de-
termined (Table 3).

Tab. 3. The standard deviation of the different geoids to EIGEN-
GRACE01S

Model EGM96 EIGEN-1S EIGEN-2 THIS MODEL

std. dev [cm] 38.2 61.9 41.1 52.9

According to this table we can conclude that this solution in
accuracy lies between the first two official CHAMP releases.
This is a fairly good result, even though finally we did not yield
the best possible result from certain satellite data. The method is
worth to apply to the orbit of other gravity satellites by redefin-
ing it for the specialization of them. For the GRACE measure-
ments between the two satellites can be involved by changing
Eq. (7) from the gradient of the potential to that of potential dif-
ference at the location of the two satellites. In the case of the
GOCE the method can directly be applied for the GOCE SST
part coupled with a GOCE SGG solution. In these other cases
the method can be more successfully applied just due to the dif-
ferences in the orbit geometry.
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