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Abstract
This paper presents a new design approach for the stability

design of thin-walled members. The proposed approach is based
on the buckling modes and critical forces/moments determined
by a linear buckling analysis performed on a regular shell finite
element model. A fully automatic buckling mode identification
technique is applied, by using the modal base functions of the
newly proposed constrained finite strip method, where the vari-
ous buckling types are separated by clearly defined mechanical

criteria. The paper briefly summarizes the determination of
modal base functions which then are used to approximate fi-
nite element displacement functions (i.e., buckling modes). The
mode identification method provides the lowest critical values
(forces or moments) to all the three characteristic buckling
types: global, distortional and local, on the basis of which the
buckling resistance can be calculated by using the design formu-
lae of the direct strength method. The proposed new approach,
which is potentially more general than any of the existing de-
sign approaches, is demonstrated on Z columns and beams with
simple loading and boundary conditions. Critical values as well
as resistances are calculated for some selected cases, the results
are compared to those of another design method. The compar-
isons prove the applicability of the proposed procedure. Further
research is necessary to extend the proposal for more general
and more complex practical cases.
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1 Introduction
An important tendency of the civil engineering industry dur-

ing the last few decades is the application of more slender ele-
ments and structures. This trend is reflected e.g., by the wider
and wider application of cold-formed steel members, supported
by developments in the production technology as well as im-
provements in design methods, design standards and compu-
tational techniques. Cold-formed steel members are more and
more used in Hungary, too, appearing in many innovative appli-
cations, such as light steel frames for small industrial buildings
[1] and residential houses [2], light-weight trusses [3] or com-
posite floor systems [4].

In the behaviour of thin-walled member buckling has crucial
importance. It may take place in various forms, but usually three
basic classes of buckling modes are distinguished: global, dis-
tortional, and local. Though widely accepted definitions for the
classes do not exist, they are usually defined on the basis of in-
plane cross-sectional deformations. However, it is not the defor-
mation pattern that makes the distinction important, but rather
the post-buckling behaviour. Generally, global buckling has
no post-buckling reserve, local buckling potentially has signif-
icant post-buckling reserve, and distortional buckling has mod-
erate post-buckling reserve. Existence, or lack thereof, of post-
buckling reserve greatly influences the member strength, thus it
is important to be able to properly identify an arbitrary buckling
mode.

Due to advances in computation, the calculation of buckling
modes and critical forces is no longer a challenging task. For
thin-walled members, most generally the problem is solved by
the finite element method (FEM) using shell elements. How-
ever, FEM analysis typically leads to hundreds of buckling
modes, most of them apparently interacted from modes of vari-
ous classes. Given a lack of any quantitative method, the identi-
fication is typically done by visual inspection, which is a highly
subjective process.

An alternative to FEM is the application of semi-analytical fi-
nite strip method (FSM), see e.g. [5–7]. By using FSM the crit-
ical values are to be calculated as a function of buckling length,
and, based on this critical value vs. buckling length curve, also
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Fig. 1. Signature curves of a Z cross-section

known as the signature curve of the cross-section (see Fig. 1),
the local, distortional or global critical loads can easily be de-
termined for many practical cases: local and distortional values
correspond to the two minimum points of the curve, while global
value is most frequently the one calculated for the actual mem-
ber length. A further practical advantage of FSM is that it is
easily available, having been implemented into the open source
CUFSM software [8]. Cases exist, however, when the shape of
the signature curve makes the determination of local and/or dis-
tortional critical loads/stresses uncertain. Recently, a new ver-
sion of FSM has been proposed which eliminates most of the
uncertainties of the conventional FSM, see [9–13]. Mechani-
cal criteria are defined and implemented into the semi-analytical
FSM, through which the general displacement field of the FSM
can be limited and the member can be enforced to deform ac-
cording to pre-defined mechanical criteria, thus, to determine
any “pure” buckling mode (e.g., global, distortional or local)
or arbitrary combination of interacted modes. Since the em-
bedded mechanical criteria mean constraints for the deforma-
tions, this special version of FSM is called constrained finite
strip method (cFSM). The method is implemented into CUFSM
software, too, providing a simple tool for the direct calculation
of local, distortional and global critical values (or any combi-
nations of them) for arbitrary open thin-walled cross-sections.
Another useful feature of cFSM is that it can calculate the con-
tribution of any individual buckling mode, or any mode class
in an arbitrary FSM-calculated buckling (or deformation) mode.
However, since cFSM is based on FSM, it naturally has all the
limitations of FSM, e.g., the cross-section must be prismatic,
only simple boundary conditions can correctly be handled, etc.

A possible approach to overcome the difficulties of both FEM
and FSM/cFSM in the determination of pure global, distortional
and local buckling modes and corresponding critical values is
the combination of the FEM and cFSM by keeping the gener-
ality of FEM but utilizing the modal nature and mode separa-
tion capability of cFSM. Two approaches exist for the FEM-
cFSM combination. A possible approach is to implement con-
straints (similar to those used in cFSM) directly into FEM,
which makes FEM capable to calculate any pure buckling mode
(see for example: [14]). The other approach, followed here,
uses the system of modal base functions of the cFSM to ap-
proximate displacements (i.e., buckling modes) calculated via

un unconstrained FEM, e.g., by using shell finite elements..
Since cFSM base functions are defined separately for the var-
ious mode classes, an approximate mode identification of gen-
eral FEM buckling modes can be done. This mode identification
method has been applied by the Authors, and has proved its ap-
plicability [15, 16], at least for certain cross-sections (namely:
lipped channels), certain loading (namely: pure compression),
and certain boundary conditions (namely: pinned-pinned end
supports).

In this paper the mode identification method is applied for
cases not studied earlier, namely: Z-section columns and beams,
including illustrative example for a beam with discrete elastic
restraints. Moreover, a new design approach is proposed on the
basis of the mode identification method. The main steps of this
design approach are as follows:

(i) Elastic buckling analysis of the considered thin-walled
member by using the finite element method and shell fi-
nite elements. A fairly realistic model is possible to
use, including practically any possible irregularities in the
member (e.g., holes, certain cross-section changes), in the
boundary conditions (e.g., intermediate and/or partial re-
straints), or in the loading.

(ii) Determination of the cFSM base functions.

(iii) Identification of the FEM calculated numerous buckling
modes (e.g., first 50 modes). The identification is com-
pleted by approximating the FEM displacement functions
as the linear combination of cFSM base functions. Since
these cFSM base functions are given separately for the
characteristic buckling types (e.g., global, local, distor-
tional), their linear combination immediately yields to
mode contribution percentages, i.e., it is possible to cal-
culate the contribution of global, local or distortional class
in an actual buckling mode.

(iv) Based on the critical values and the mode class contribu-
tions, the nominal “pure” modes can be selected, and the
design resistance can be calculated by using a design stan-
dard.

In the subsequent Sections of the paper these main steps are
briefly presented and applied for Z-section columns and beams.
Based on the results conclusions are drawn and the potential
further development of the proposed design approach is sum-
marized.

2 Modal base functions
2.1 General
Determination of the modal base functions is in accordance

with [5–7], and can be completed by the following steps: (i) a
displacement field identical to the one used in finite strip method
(FSM) is assumed, (ii) the characteristic buckling mode classes
are defined by simple mechanical criteria, (iii) the mechanical
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criteria are implemented to separate the general FSM displace-
ment field, and (iv) the resulting base system is orthogonalized
and normalized.

For the analyzed member we assume that: (i) the member is
a column, (ii) the column is prismatic, (iii) it is supported by
two hinges at its ends, (iv) it is loaded by a compressive force
(uniformly distributed along the cross-section), (v) its material
is linearly elastic, and (vi) it is free from imperfections (resid-
ual stresses, initial deformations, material inhomogenities, etc.).
It is important to point out that even though the determination
of cFSM base functions is done on an axially loaded column,
the base functions then can be used for beam or beam-column
problems, too.

2.2 FSM assumptions
Since the cFSM is the specialization of FSM, the basic

assumptions of FSM are reflected in the cFSM base func-
tions/vectors. The implied assumptions can be summarized as
follows: (i) the member is modeled by 2D surface elements, (ii)
in-plane (membrane) and out-of-plane (plate bending) deforma-
tions are allowed, (iii) for the in-plane behavior a classical 2D
stress state membrane is considered, (iv) for the out-of-plane be-
havior a classical Kirchhoff plate is considered, (v) the displace-
ment functions are expressed as the product of nodal displace-
ments (collected in displacement vectors) and shape functions,
(vi) the transverse displacement functions are approximated by
cubic polynomials, (v) and finally, the longitudinal displacement
distribution is assumed in trigonometric form, as follows:

δtransv = δCS,t sin
mπy

L
and δlongit = δCS,w cos

mπy
L

(1)

where L is the member length, m is the number of half-sine-
waves considered, while δtransv and δlongit denotes (symboli-
cally) the transverse and longitudinal displacement function, re-
spectively, δCS,t and δCS,w stand for cross-section transverse and
warping displacements, respectively.

It is to observe that (i) the above functions correspond to
pinned-pinned and free to warp boundary conditions, (ii) trans-
verse displacements have maximum values in the middle of
the beam, and (iii) longitudinal displacement has its maximum
value at the beam ends.

2.3 Definition of buckling modes
In the literature and design standards for thin-walled mem-

bers, it is common to distinguish three characteristic classes of
buckling: global, distortional and local. Though there seems to
be an agreement on the existence of these mode classes, there is
no widely agreed upon definitions for them. It is also to mention
that there evidently exist modes which neither can be catego-
rized into any of the above three classes nor can be regarded as
interaction of these three classes: these modes will be referred
simply as other modes (including membrane shear and trans-
verse extension).

Tab. 1. Mode class definition in cFSM

G mode class D mode class L mode class O mode class

Criterion 1 Yes Yes Yes No

Criterion 2 Yes Yes No -

Criterion 3 Yes No - -

Fig. 2. Coordinates, displacements

Given the lack of commonly adopted mode definition, the one
proposed in [11, 12] is applied here. Note this definition can be
regarded as equivalent to the one which is implicitly used in gen-
eralized beam theory (GBT), see e.g. [17, 18]. The separation
between global (G), distortional (D), local (L) and other (O) de-
formation modes can be completed by the application of three
mechanical criteria. Table 1 shows the criteria that must be satis-
fied by the different mode classes. By using the local coordinate
system shown in Fig. 2, the criteria are as follows:

(i) Criterion 1: (a) γxy = 0, i.e. there are no in-plane shear
strains, (b) εx = 0, i.e. there is no transverse extensions,
and (c) v is linear in x within a flat part.

(ii) Criterion 2: (a) v , 0, i.e. the warping displacement is
not constantly equal to zero along the whole cross-section,
and (b) the cross-section is in transverse equilibrium.

(iii) Criterion 3: κxx = 0, i.e. there is no transverse flexure.

2.4 cFSM base functions
As it shown e.g. in [11], the above mechanical criteria can

systematically be applied within the semi-analytical finite strip
method (FSM). The application requires lengthy mathematical
derivations, not discussed here, which finally lead to a base sys-
tem where the various deformation classes are separated from
each other. Since this separation can also be interpreted as ap-
plication of appropriate constraints that enforce deformations
according to the given criteria, this version of FSM is termed as
constrained FSM, or cFSM.

The above mechanical criteria for mode definition unambigu-
ously define subspaces of the original FSM displacement field,
(also referred as G, D, L and O spaces), however, these spaces
are typically multi-dimensional, therefore various systems of
base functions are possible. According to the most basic idea
of FSM, displacement functions are represented by vectors of
nodal displacements, therefore, base functions are represented
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by nodal displacement vectors, too, hence simply referred as
base vectors.

The application of the mechanical criteria of Table 1 leads to a
constraint matrix, R, for each deformation mode class, namely,
RG, RD, RL and RO. These RM matrices can also be interpreted
as transformation matrices that make the transformation from
the original FSM nodal system to the modal system of cFSM.
Each RM defines a subspace consistent with a given deformation
mode class and the columns of RM are the linearly independent
base vectors for that subspace. Since displacement vectors al-
ways represent displacement functions, the columns of RM de-
fine linearly independent base functions for the sub-space. The
G, D, L and O subspaces are nearly always multi-dimensional,
thus, an infinite number of base vectors (functions) is possible
to define within the subspace. However, if mode contributions
are to be calculated, it is strongly advantageous to use orthonor-
mal base vectors (functions). Thus, both orthogonalization and
normalization should be performed.

According to cFSM, orthogonalization is completed by solv-
ing the constrained eigen-value problem for the member, sepa-
rately for all four sub-spaces:

RT
MKeRM888M = 333MRT

MKgRM (2)

or
KeM888M = 333MKgM (3)

where subscript M may be G, D, L or O, Ke and Kg are the elas-
tic and geometric stiffness matrices used in FSM for the given
member, 888M is the matrix of eigen-vectors, 333M is the diago-
nal matrix of the eigen-values, and KeM and KgM matrices may
be interpreted as the constrained elastic and geometric stiffness
matrices, respectively. As a result of Eq. (3), the system of the
original base vectors, the columns of RM, are transformed into
a system of orthogonal base vectors, the columns of 888M.

As it is proven in [11] the number of cross-section deformed
configurations is dependent on the number of strips or nodes,
and for an open unbranched cross-section it can be given as fol-
lows: G modes: nG,CS = 4, D modes: nD,CS = nm − 4, L
modes: nL,CS = nm + 2 × ns + 2, O modes: nO,CS = 2 ×

nm + 2 × ns − 2, where nm is the number of main cross-section
nodes (at the corners) and ns is the number of sub-nodes (or
intermediate nodes) located between main nodes.

Eq. (1) suggests the total number of base functions depends
also on the longitudinal shape function, namely: the m num-
ber of half-sinewaves considered. Theoretically, m can arbitrar-
ily be selected. Practically, the number is limited to a certain
mmax which provides reasonable accuracy for the approxima-
tion, when considering the wave-lengths m = 1 · · · mmax. This
means that the total number of base functions for a given mode
is: nM = nM,CS × mmax, where subscript M stands for G,
D, L or O. (Considering that the displacement functions that are
to be approximated come from a finite element analysis, they
are strongly dependent on the applied discretization. This sug-
gests that the shortest considered sine half-wavelength should be

comparable to the size of the applied finite elements, see also in
Sec. 5.)

2.5 Normalization
A fundamental feature of eigen-functions (eigen-vectors) is

that they can be scaled arbitrarily. Since our aim here is to use
the above-defined base functions to approximate displacement
functions and then to determine contribution of the various mode
classes, appropriate normalization (i.e., scaling) is indispens-
able. Various normalizations are possible. Here the simplest is
used, the displacement vectors are normalized in a vector sense
(taking advantage that displacement functions are expressed as
the product of displacement vectors and shape functions). Vec-
tor normalization yields to reasonable results if a regular cross-
section discretization is used. (Other normalizations are briefly
discussed for cFSM in [13]).

For vector normalization, the 888M,i column vectors of the 888M

matrices are normalized in a vector sense so that each (orthogo-
nal and normalized)

ϕϕϕi =
888M,i

‖ 888M,i ‖
(4)

vector satisfies that
ϕϕϕT

i ϕϕϕi = 1. (5)

Though this normalization is not perfect (e.g. it is dependent
on the applied discretization, the effect of rotations is under-
represented, etc.) similar normalization is used in GBT [18].

3 Approximation of FEM solution by cFSM modes
3.1 Determination of coefficients in the linear combination
Once the ϕ cFSM base functions are known, it is possible to

approximate any δFE FEM displacement function as the linear
combination of the base functions. The solution to get the cFSM
approximation of a FEM displacement function is presented in
[14, 15], and can be summarized as follows.

In order to have the best approximation, the error should be
minimized as follows:

δerr = δFE −

∑
cϕ = min! (6)

where
∑

cϕ marks (symbolically) the linear combination. Fol-
lowing the logic used in normalization of the base functions (as
discussed above), the minimization will be completed on the er-
ror vector (instead of error function), by minimizing the vector
norm as follows:

dT
errderr = min! (7)

Considering that the error can be expressed as the difference of
finite element displacement vector (dFE) and its approximation,
i.e., the linear combination of the cFSM base vectors, Eq. (7)
can be written as:

(dFE − 888c)T (dFE − 888c) = min! (8)
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where 888 is the matrix with the FSM base vectors and c is the
vector of unknown combination factors. With some further re-
arrangement:

dT
FEdFE − (888c)T dFE − dT

FE888c + (888c)T 888c = min! (9)

Thus, the function to be minimized can be expressed as follows:

f (c) = dT
FEdFE − 2888T dFEc + cT888T888c = min! (10)

Minimization finally leads to a linear system of equations to be
solved for c:

∂ f (c)
∂c

= 0 (11)

888T888c = 888T dFE. (12)

3.2 Mode participation calculation
After calculating the combination factors, pi participation of

an individual buckling mode (or base function) can be calcu-
lated:

pi =
∣∣ci

∣∣ / ∑
all

∣∣ci
∣∣ . (13)

Taking advantage that within the base functions the various
buckling classes (i.e. global, distortional or local) are separated,
the pM participation of a class can be calculated as the sum of
the individual participation of the base vectors from the given
mode class:

pM =

∑
M

∣∣ci
∣∣ / ∑

all

∣∣ci
∣∣ (14)

where ci is an element of c vector, while M denotes that sum-
mation should be over all elements of a given mode class.

3.3 Error of approximation
Once the FEM displacement function is expressed by the

cFSM base functions, the error of approximation can conve-
niently be measured as the norm of the error vector relative to
the norm of the displacement vector:

err =

√
dT

errderr

/ √
dT

FEdFE. (15)

3.4 Determination of critical forces/moments for the mode
classes

By solving Eq. (12), any of the FEM calculated multiple
buckling modes can be approximated by the cFSM base func-
tions, thus, contribution of G, D, L and O classes can be calcu-
lated by using Eq. (14). The practical experience is that clearly
pure modes rarely exist, which means that 100% contribution of
any mode class practically never happens. This is especially true
for D mode class: even in seemingly pure distortional buckling
cases the D contribution rarely more than 80%. Another prac-
tical experience is that the contribution of O modes frequently
non-negligible, due to the applied mode class definition and or-
thonormalization.

Since we need to select “pure” buckling modes, but in a strict
mathematical sense “pure” modes do not exist, it is proposed

to define nominal pure modes in a more engineering way, by
adopting any mode as “pure” if the contribution from a given
mode class is at least 70-80%. Thus, the critical value for a given
mode class will be the smallest one that belong to a buckling
mode in which the contribution of the given mode class is at
least 70-80%. (Note, the presented numerical studies prove the
applicability of this definition of pure critical forces/moments,
see Section 5. Nevertheless further studies are necessary on this
question.)

4 Design resistance by the Direct Strength Method
4.1 General
Once the critical values (forces, moments, stresses) for global,

local and distortional classes are known, the design resistance
can be calculated. Different design codes give different ap-
proaches and formulae. The traditional way is the use of ef-
fective widths, as in Eurocode or AISI specification [19, 20]. A
more straightforward and relatively new proposal for the cal-
culation of the design resistance of thin-walled (cold-formed)
cross-section members is the so-called Direct Strength Method
(DSM), see [21], which has been adopted by the North Amer-
ican Standard for cold-formed steel design [22, 23]. The idea
of the DSM is to predict the resistance on the basis of elastic
critical force or moment separately for the three characteristic
buckling types, namely: global, distortional and local capacity.
The member resistance will be simply the minimum of the three
predicted capacities. The prediction of the global, distortional
and local resistances is realized by simple equations, given sep-
arately for column and beam problems.

4.2 Column formulae
In case of columns, the Pne global Eq. (16), Pnl local Eq. (17)

and Pnd distortional Eq. (18) capacities are given as follows:

Pne =


(

0.877
λ2

c

)
Py if λc > 1.5(

0.658λ2
c

)
Py if λc ≤ 1.5

(16)

Pnl =


(

1 − 0.15
(

Pcrl
Pne

)0.4
) (

Pcrl
Pne

)0.4
Pne if λl > 0.776

Pne if λl ≤ 0.776
(17)

Pnd =


(

1 − 0.25
(

Pcrd
Py

)0.6
) (

Pcrd
Py

)0.6
Py if λd > 0.561

Py if λd ≤ 0.561
(18)

where the slendernesses Eq. (19) are:

λc =
√

Py/Pcre, λl =
√

Pne/Pcrl and λd =
√

Py/Pcrd

(19)
and Pcrl, Pcrd and Pcre are the critical axial forces for local, dis-
tortional and global buckling, respectively, and Py is the squash
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load of the cross-section, which is equal to the product of the
cross-sectional area and the yield strength.

Thus, the design capacity of the member for axial compres-
sive force is the minimum of the predicted capacities:

Pn = min(Pne, Pnl, Pnd). (20)

4.3 Beam formulae
In case of beams the procedure is the same, with some differ-

ences in the formulae see Eqs. (21)-(23).

Mne =


Mcre if Mcre < 0.56My
10
9 My

(
1 −

10My
36Mcre

)
if 2.78My ≥ Mcre ≥ 0.56My

My if Mcre > 2.78My
(21)

Mnl =


(

1 − 0.15
(

Mcrl
Mne

)0.4
) (

Mcrl
Mne

)0.4
Mne if λl > 0.776

Pne if λl ≤ 0.776
(22)

Mnd =


(

1 − 0.22
(

Mcrd
My

)0.5
) (

Mcrd
My

)0.5
My if λd > 0.673

My if λd ≤ 0.673
.

(23)
where the slendernesses Eq. (24) are:

λl =
√

Mne/Mcrl and λd =
√

My/Mcrd (24)

and Mcrl, Mcrd and Mcre are the critical bending moments for lo-
cal, distortional and global buckling, respectively, and My is the
yield moment of the cross-section, which is equal to the product
of the elastic section modulus and the yield strength.

Thus, the design capacity of the member for bending moment
is the minimum of the predicted capacities:

Mn = min(Mne, Mnl, Mnd). (25)

It is to note that the above formulae are validated for the most
frequently applied cold-formed cross-sections, including a wide
range of C ad Z sections, Hat sections and Rack sections.

5 Numerical studies
5.1 Background
In this paper unsymmetrical Z-section members are studied.

The examined cases are defined by utilizing the conclusions of
earlier numerical studies on the proposed mode identification
method. These earlier numerical studies have been carried out
on C-shaped columns, presented in [14, 15], where the appli-
cability of the proposed method is proven for compressed C-
sections. As it was demonstrated, the proposed identification
method in its current form is applicable provided (i) the cross-
section discretization is dense enough, (ii) the end supports are
similar to or more rigid than a pinned supports, (iii) the minimal

half-wave length of the cFSM base functions is not smaller than
approximately twice the length of the shell finite elements, and
(iv) the typical buckling length of the considered buckling mode
is not smaller than the minimal half-wave length of the cFSM
base functions considered.

5.2 The analyzed Z-members
The most important data of the analyzed models are summa-

rized in Table 2.
Three member lengths are considered: 800, 2000 and

3600 mm. The cross-section dimensions are as follows: web
height is 198 mm, flange widths are 64 and 72 mm, lip lengths
are 19.8 mm; thickness is 2 mm, and the lips are perpendicular
to flanges. (Note, the dimensions are for the mid-line, and sharp
corners are employed.) Steel material is assumed with a Young’s
modulus of 210 000 MPa and Poisson’s ratio of 0.3. (Note, these
data follow those of specimens of an experimental program, car-
ried out in the Structural Laboratory of the Budapest University
of Technology and Economics, see [24].)

Two types of loading are considered: a concentric axial com-
pressive force (applied as uniformly distributed pressure at the
column ends) and a uniform bending moment (applied as lin-
early distributed loading at the beam ends).

As far as boundary conditions (BC) are concerned, in most
of the analyzed cases they are defined to simulate pinned and
free-to-warp end restraints. In case of shell finite elements such
a condition can be realized in multiple ways (at least approxi-
mately). Here a rather theoretical solution is applied in order
to closely imitate FSM conditions, i.e., to ensure coincidence
with the mechanical assumptions underlying the FSM base func-
tions. Namely, the following degrees of freedom (DOF) are re-
strained: transverse translational DOF of all the nodes at both
column ends, and longitudinal translational DOF of the nodes at
the middle of the member. (Note, this special restraining is still
not perfectly identical to the one of FSM, since rotational DOF
are not restrained, and since it is really only coincident with the
boundary conditions for the case of one half-wavelength, i.e.,
m = 1.)

Two types of other support conditions are also used. One is to
model the case of a bolted or screwed connection to the mem-
ber web, which ensures restraint against the out-of-plane and
in-plane translations of the web nodes (referred as LW, standing
for “local web”). The other one is a pinned-pinned end con-
dition (basically similar to FSM), but an additional spring in
lateral direction and torsional spring is introduced at middle of
the member at the web-to-flange intersection of the model (one
side only) to consider the restraining effect of an attached struc-
tural element. The three boundary conditions are demonstrated
in Fig. 3.

5.3 cFSM base functions for the Z members
Some of the orthogonal modes (i.e., cFSM base functions)

are presented in Fig. 4, where the characteristic deformed cross-

Per. Pol. Civil Eng.66 Attila László Joó / Sándor Ádány



Tab. 2. Summary of the analyzed Z-members Model Length N M Boundary Cross-section # of Additional

[mm] condition discretization element spring at

(flange/web/lip) long. half-span

1 800 Yes - FSM 3-5-1 52 -

2 800 Yes - FSM 3-5-1 26 -

3 800 Yes - LW 3-5-1 26 -

4 800 - Yes FSM 3-5-1 26 -

5 800 - Yes FSM 3-5-1 52 -

6 800 - Yes FSM 3-5-1 78 -

7 2000 Yes - FSM 3-5-1 66 -

8 2000 Yes - FSM 2-4-1 108 -

9 2000 - Yes FSM 3-5-1 66 -

10 2000 - Yes FSM 2-4-1 108 -

11 3600 Yes - FSM 3-5-1 118 -

12 3600 - Yes FSM 3-5-1 118 -

13 2000 Yes - FSM 2-4-1 66 Yes

a) b) c)

Fig. 3. Boundary conditions: a) FSM-like support, b) LW type support, c) FSM-like support with additional springs
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section shapes are shown. Note, these modes are in basic ac-
cordance with the ones used in GBT even though they are not
identical to those.

As it is clear from the derivation of base functions, they are
characterized by not only the deformed cross-section shape, but
also by longitudinal wave-length. To illustrate this, Fig. 5 shows
the base functions for one global buckling mode (namely: flex-
ural mode) for various half-wave lengths (namely: m = 1 to
5).

5.4 Finite element buckling analysis
For the linear buckling analysis the Ansys finite element soft-

ware is applied [25]. The considered Z beams/columns are mod-
eled by shell finite elements, namely: 4-node 24-DOF rectan-
gular shell finite elements are used (called SHELL63 in Ansys
terminology). The element numbers used in the models varied
from 468-2124, depending on the member length and the mesh
density.

To ensure accurate numerical results, flanges and web are nec-
essary to discretize. Based on the conclusions of earlier studies,
two mesh densities are considered: a finer mesh with 3 inter-
mediate/sub nodes in each flange, 5 in the web and 1 in the lip
(option 3-5-1) and a rare mesh with 2, 4 and 1 node, respec-
tively (option 2-4-1). In the longitudinal direction various el-
ement lengths are tested. It is obvious that more elements in
the longitudinal direction means more accurate numerical re-
sults. However, since buckling modes with very short buckling
lengths (e.g., less than the widest plate element of the cross-
section) rarely have practical relevance, it has been found that
a relatively rare longitudinal discretization provides better com-
putational efficiency while does not significantly reduces the nu-
merical accuracy.

In the presented study usually the first 100 buckling modes
and corresponding critical values have been determined. It is
to note, however, that this number could significantly reduced,
since the first 30-50 modes are found to be enough for practical
purposes.

Table 3 presents the critical load factors for the first 20 buck-
ling modes for model #9, i.e., 2000-mm-long pinned-pinned
beam subjected to uniform end-moment. (Note, the GDLO par-
ticipation percentages are also given, as will be discussed in the
subsequent Section.)

Similar tables have been generated for all the 13 analyzed
models and for the first 100 buckling modes. It would not
be possible neither reasonable to give all these tables in de-
tail, therefore, only some characteristic and interesting buck-
ling modes are presented. The buckled shapes are demonstrated
in Figs. 6-8 for the selected models and buckling modes, for
member lengths 800, 2000 and 3600 mm, respectively. (Note,
3D views are shown on the top part of the figures, while cross-
section deformations are shown on the bottom part.) The criti-
cal forces/moments (together with the GDLO participations) are
summarized in Table 4.

It might be interesting to point out some similarities and dif-
ferences between the FSM and FEM solutions. For example,
one might observe that the first FEM buckling mode for the
2000-mm-long beam is a practically pure distortional mode (Ta-
ble 3), with three longitudinal waves as shown in Fig. 7. d),
thus, with a characteristic buckling length of approx. 670 mm.
The FSM-calculated signature curve for bending (see Fig. 1)
clearly shows that the buckling mode is distortional for this spe-
cific length, as well as the good coincidence of the critical load
factors is found. Similar observations apply for the second FEM
buckling mode (lateral-torsional buckling, see also Fig. 7. e), or
the 6th FEM buckling mode (pure local buckling, see also Fig 7.
f). At the same time there are several FEM buckling modes with-
out obvious FSM counterparts, e.g., where various mode classes
are combined (with different half-wave lengths).

5.5 Mode participation calculation
Mode participation calculation has been completed for all the

cases and all the buckling modes, by solving the linear system of
equations Eq. (11), then by using Eq. (13). Some of the results
are shown in Tables 3 and 4. Based on the completed mode
identification calculations the following remarks are to mention.

Generally, it may be observed that the calculated GDLO par-
ticipation percentages are in accordance with the engineering
judgment. In most of the buckling modes L contribution is sig-
nificant, for shorter columns or beams almost all (if not all) the
practically relevant buckling modes are local modes.

Calculation of the c linear combination factors, i.e., solving
Eq. (12) has been completed by using MatLab [26]. In case
of large number of degrees of freedom (such as in the case of
longer member) the size of the problem means significant com-
putational difficulty and computation time. (This problem could
be solved by reducing the number of considered cFSM base
function, e.g. not using all the cFSM base functions for the ap-
proximation of the FEM buckling mode, but by neglecting local
base functions with small transverse waves and/or by neglecting
some or all the O base functions. This reduction of modal base
system, however, has not been applied in the presented study.)

In case of LW type supports, i.e., when web nodes are re-
strained only, the mode identification does not work properly.
This finding is in full agreement with the conclusions of pre-
vious studies, LW support condition being “less rigid” than a
hinge. The obvious reason the mode identification fails to work
for these BC-s is the assumed longitudinal shape functions of the
cFSM base functions, which clearly do not satisfy these types of
BC-s, see Eq. (1). It is almost sure that the mode identification
method can be generalized by using base functions worked out
for different longitudinal shape functions.

It is worth to highlight two cases analysed for bending mo-
ment, as shown in Fig. 7. c) and g). Both are for simple pinned-
pinned beam, but part c) is without, while part g) is with extra
springs at middle of the member. As one would expect: the
applied (relatively light) springs hardly influence the local and
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Fig. 4. Four global, two distortional and the first six local modes (displaced/deformed cross-sections)

Fig. 5. A global (flexural) base function with various half-wave lengths

a) b) c) d)

Fig. 6. Selected buckling modes of member length 800 mm: modes 1, 11 of model #1, mode 1 of model #3 and #6
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a) b) c) d) e) f ) g)

Fig. 7. Selected buckling modes of member length 2000 mm: modes 1, 26, 28 of model #8, modes 1, 2, 6 of model #9 and mode 40 of model #13

a) b) c) d)

Fig. 8. Selected buckling modes of member length 3600 mm: modes 1, 39, 50 of model #11 and mode 1 of model #12
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Tab. 3. Critical values and GDLO participations
for the first 20 buckling modes of model #9 (i.e.,
2000-mm-long simple supported beam)

Mode # Critical load factor Global [%] Distort. [%] Local [%] Other [%] Error [%]

1 1.20 1.03 90.62 4.04 4.31 0.01

2 1.38 84.56 5.16 1.02 9.26 0.00

3 1.42 8.56 64.81 22.56 4.07 0.19

4 1.43 4.82 56.30 35.46 3.42 0.32

5 1.45 3.13 22.57 72.26 2.03 1.41

6 1.46 0.69 6.82 91.28 1.21 0.38

7 1.46 1.43 17.52 79.46 1.59 0.63

8 1.47 0.94 15.00 82.57 1.49 0.48

9 1.47 0.72 6.20 91.85 1.23 0.75

10 1.49 1.22 15.63 81.64 1.52 0.97

11 1.49 1.20 10.05 87.31 1.44 0.45

12 1.51 0.54 9.19 88.99 1.28 1.12

13 1.52 0.54 13.84 84.23 1.39 1.21

14 1.53 0.95 19.11 78.37 1.57 0.39

15 1.55 0.55 5.72 92.47 1.26 1.98

16 1.57 0.42 8.60 89.69 1.29 2.65

17 1.58 1.65 9.99 86.59 1.77 0.59

18 1.60 0.12 6.32 92.18 1.39 2.62

19 1.62 0.48 12.05 85.93 1.54 4.24

20 1.63 0.85 74.09 18.40 6.65 0.06

Tab. 4. Critical values and GDLO participations
for the selected buckling modes

Length [mm] Model Mode # Crit. factor G [%] D [%] L [%] O [%] Error [%]

800

1 1 0.29 0.36 6.68 91.86 1.11 0.01

1 11 0.61 6.08 79.79 10.65 3.49 0.00

3 1 0.18 0.38 3.92 27.88 67.82 36.04

6 1 1.29 1.04 93.43 3.28 2.24 0.01

2000

8 1 0.29 0.55 5.38 92.83 1.23 0.02

8 26 0.58 6.08 74.91 14.13 4.88 0.01

8 28 0.59 74.71 13.31 1.79 10.19 0.01

9 1 1.20 1.03 90.62 4.04 4.31 0.01

9 2 1.38 84.56 5.16 1.02 9.26 0.00

9 6 1.47 0.69 6.82 91.28 1.21 0.38

13 40 0.92 76.26 12.43 2.60 8.71 0.01

3600

11 1 0.19 53.14 0.11 0.14 46.61 0.54

11 39 0.50 64.56 1.05 0.61 33.77 0.08

11 50 0.59 5.49 75.33 12.31 6.87 0.03

12 1 0.41 90.74 0.43 0.09 8.74 0.00
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distortional buckling modes and critical forces, but significantly
change the global buckling mode and significantly increase the
critical force for the global mode (i.e., load factor is increased
by the springs from 0.58 to 0.92).

Finally, it is interesting to highlight the non-negligible contri-
bution of O modes in case of seemingly global buckling, which
can be traced back to the fact that the applied mode class defi-
nition does not allow transverse extension of the plate elements
except in O modes. (For more details see [11].)

5.6 Design resistances
Design resistances are calculated for both the column and

beam problems, for all the three lengths, and in case of the 2000-
mm-long beam also for the restrained middle section case where
FSM buckling mode cannot be calculated due to the restrictions
of the method. The resistance calculation is completed by using
DSM formulae, as summarized in Sec. 4.

First, the nominal pure critical values are to be determined,
as summarized in Table 5. The nominal pure critical values
are given as determined by FEM (via the mode identification
method) and as determined by regular FSM analysis. It can be
observed that there is no significant difference between the val-
ues provided by the two methods, which statement is in accor-
dance with the conclusions of previous studies.

It is interesting to note that in case of the shortest 800-mm-
long members global buckling occurs at very high critical values
only. That is why neither FSM nor FEM analysis gave a defi-
nite critical value for global buckling. According to the logic of
DSM, however, this does not cause any practical problem in the
calculation, since very large critical force/moment means that
the actual buckling mode is not a potential failure mode. Practi-
cally, a sufficiently large critical value can be assumed to ensure
that the predicted global resistance will be equal to the squash
load or yield moment.

Having the pure critical forces/moments determined, the re-
sistances can be predicted separately for the three characteristic
mode classes, by using Eqs. (16)-(20) and (21)-(25). The re-
sults of the calculations are summarized in Table 6. As it can
be seen from the table, the proposed design approach based on
FEM buckling modes identified by cFSM base functions leads
to practically the same design resistances as the more classical
approach based on regular FSM calculation. It is to highlight,
however, that the proposed FEM-based approach is potentially
more general, which is demonstrated by the partially restrained
2000-mm-long column problem, which cannot be handled (or
can be handled with significant approximation) with the FSM-
based approach. The FEM based design approach suggests that
the applied light springs at the middle of the column yields to
a non-negligible resistance increase, due to the increased resis-
tance to global (flexural) buckling.

6 Conclusions
In this paper a novel design approach is presented and illus-

trated by some numerical examples which demonstrate both its
advantages and difficulties.

The proposed design approach includes the following major
steps: (i) buckling analysis carried out on a realistic model of
the thin-walled member, by using shell finite element analysis,
(ii) determination of the cFSM base functions, (iii) identification
of the calculated multiple buckling modes which leads to the
lowest critical forces/moments separately for the characteristic
buckling modes, (iv) resistance prediction, which is proposed to
do by the direct strength method.

Compared to other design approaches the proposed design ap-
proach has some definite advantages. Since the linear elastic
buckling analysis is performed on a shell finite element model,
a realistic model of the structural member is possible, which,
potentially, can handle any irregularities (e.g., special support
conditions, certain cross-section changes, holes, various load-
ing, etc.) which cannot be handled by FSM. At the same time,
the mode identification is fully automatic, does not involve any
subjective decision from the engineer. It can be interesting to
mention that the proposed FEM-based design approach has po-
tential advantages even for regular cases (that could be handled
by FSM), since FEM buckling analysis typically leads to several
buckling modes where modes with different wave-lengths are
combined (which cannot happen in the semi-analytical FSM).
The ability of handling these combined modes is a definite ad-
vantage, even though it requires further research.

Comparisons on basic examples, as also presented in this pa-
per, justify the applicability of the method. C and Z section
beams and columns with various support conditions have been
tested with reasonable results. Nevertheless, further develop-
ment is necessary due to the difficulties and uncertainties as fol-
lows.

• The system of linear equations is relatively large. Potentially,
it could be reduced by applying smaller number of cFSM base
functions, by eliminating e.g., base functions of O mode class,
or some of the L mode class. Most likely a significant reduc-
tion of the problem size is possible, but it requires further
studies.

• At the moment the cFSM base functions are sine functions for
the transverse, cosine functions for the longitudinal displace-
ments, see Eq. (1), which limits the end support conditions to
hinged or “more rigid” supports. Other shape functions would
be necessary so that arbitrary boundary conditions could be
handled, which is an important area for further research.

• The proposed design method has the potential to handle mem-
bers with holes. One of the practical difficulties is that so far
only regular FSM and FEM meshes are used with identical
cross-section discretization. In case of members with holes a
more general FEM mesh is necessary, thus, independent FEM
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Tab. 5. Nominal pure critical forces/moments for the selected models

Length
Model

FSM/
Mode #

Pcre [kN]
Mode #

Pcrl [kN]
Mode #

Pcrd [kN]

[mm] FEM Mcre [kNm] Mcrl [kNm] Mcrd [kNm]

800

Column
FSM - 80.64 153.48

FEM - - 1 78.13 11 162.76

Beam
FSM - 26.51 20.50

FEM - - 2 23.19 1 20.77

2000

Column
FSM 158.29 80.64 153.48

FEM 27 157.36 1 78.05 26 154.27

Restrained column FEM 40 245.20 1 77.59 26 154.83

Beam
FSM 23.41 26.51 20.50

FEM 2 22.15 6 23.46 1 19.36

3600

Column
FSM 51.85 80.64 153.48

FEM 1 51.57 2 78.08 50 156.34

Beam
FSM 7.52 26.51 20.50

FEM 1 6.65 2 22.01 3 21.77

Tab. 6. Predicted resistances for the selected models

Length
Model

FSM/ Pne [kN] Pnl [kN] Pnd [kN] Pn [kN]

[mm] FEM Mne [kNm] Mnl [kNm] Mnd [kNm] Mn [kNm]

800

Column
FSM 265.26 149.40 156.63 149.40

FEM 265.26 147.72 160.97 147.72

Beam
FSM 14.11 14.11 12.49 12.49

FEM 14.11 14.06 12.55 12.55

2000

Column
FSM 131.54 94.82 156.63 94.82

FEM 131.00 93.51 157.01 93.51

Restrained column FEM 168.67 110.04 157.28 110.04

Beam
FSM 13.05 13.05 12.49 12.49

FEM 12.90 12.90 12.27 12.27

3600

Column
FSM 45.47 45.47 156.63 45.47

FEM 45.23 45.23 157.99 45.23

Beam
FSM 7.52 7.52 12.49 7.52

FEM 6.65 6.65 12.73 6.65
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and FSM meshes are unavoidable. This generalization does
not mean any theoretical challenge, but requires further de-
velopment work.

• The practical application of the method requires various ma-
trix manipulations, which ultimately requires special soft-
ware. At the moment such software is not publicly available,
but a user friendly computer program is under development
by the Authors.
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