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Abstract
After more than 40 years of interruption new field observa-

tions have been made by an E-54 type torsion balance (TB)in the
Csepel-island. These TB measurements were accompanied by a
detailed gravimetric survey of each station with LCR gravime-
ters. Both vertical (VG) and horizontal (HG) gravity gradients
were determined at each TB station for VG interpolation and
reliability tests.

Vertical gradient of gravity cannot be measured directly by
the Eötvös TB. However, we successfully interpolated VG dif-
ferences in the network of TB measurements following the idea
originally due to Haalck. Reliability tests by comparing HG
and VG gravimetric and TB measurements were also performed.
Our recent paper discusses first results of these TB and gravi-
metric measurements which are scheduled to be continued in the
future as well.
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1 Introduction
The purpose of the research presented in this paper is to

use Hungarian torsion balance (TB) measurements in improved
gravity field determination for Hungary in addition to a number
of (about 300000) gravity data determined by gravimetry. There
are about 60000 torsion balance stations in Hungary that have
been measured primarily for prospecting of raw materials. Our
previous studies e.g. Tóth, 2007 [7] and geodetic processing of
torsion balance measurements made by Loránd Eötvös himself
showed that these measurements are suitable for gravity field
determination. Also, it is possible to generate all functional of
the gravity field by combining TB data with gravimetry. In order
to verify these theoretical results in practice and to compare the
two (gravimetric and gradiometric) gravity field determination
techniques several tests have been made.

2 Determination of the horizontal gradient of gravity
We measured a test network of 300 m x 300 m spacing both by

the balance and gravimeters in a flat terrain about 60 km south
from Budapest, at the southern part of the Csepel-island. Dis-
tribution of points on the test area can be seen on Fig. 1. The

Fig. 1. Location of the torsion balance stations on the test area

horizontal gradients of gravity HG determined by gravimeters
and torsion balance are denoted by gs and Wzs respectively:
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where gx , gy and Wzx , Wzy are the N − S and E − W compo-
nents of the horizontal gradients of gravity (the positive x-axis
points towards North and positive y-axis points towards East)
and in an arbitrary direction of u according to the usual notation
[9]:

Wzu =
∂2W
∂z∂u

=
∂g
∂u

= gu .

Gravimetric measurements were performed with double star
method (P-N-P-E-P-S-P-W-P-. . . ) each of the four compass
points (N , E , S, W ) were located at 5 m distance from the centre
point P (Fig. 2). 1g values between these points were divided
by 5 m to yield components of HG in µGal/m. Standard errors

Fig. 2. Gravimetric HG measurements by double star method

of gs were calculated from repeated measurements according to
the formula

σgs =

√
σ 2

gx
+ σ 2

gy
.

We used LCR gravimeters equipped with electronic levels and
capacitance beam position indicator (CPI) electronics, and read-
ings were taken by interpolation method on a digital multimeter
with external R-C filter [3].

The mean standard deviation of our gravimetric measure-
ments by LCR gravimeters for the horizontal gradients of grav-
ity was ±5 µGal (1 µGal =10−8 m/s2). This is better than the
usual accuracy of gravity field measurements. The lower error
can be attributed to the fast relocation of the instrument between
measurement points with negligible adverse mechanical effects,
and also to the fact that only minimal dial turning was necessary
before taking readings. Gravity measurements on certain sites
after several days with different weather circumstances were re-
peated (see Table 1 points 22 and 33). Under favourable con-
ditions (point 33) we found a good agreement, whereas for en-
tirely different circumstances (point 22) the discrepancies were
higher.

We make a remark, however, for the rating of these results.
The external conditions were very unfavorable for the TB mea-
surements. The temperature in the observation hut increased
rapidly by 7-8˚C during the measurement and in certain days
reached even 40˚C whereas the vertical temperature gradient

Tab. 1. Horizontal gravity gradients on the test area (gs from measurements
of gravimeters, Wzs from torsion balance observations in Eötvös Unit*) and
1Hmax are the maximum height differences all around the points up to the
horizontal distance of 100 m.

Point
gs Wzs

diff. [E]* remarks
1Hmax

[E]* [E]* [m]

E238 6.5 ± 8.4 1.7 ± 0.2 4.8 1.95

E208 8.4 ± 2.4 3.3 ± 0.6 5.1 2.16

11 6.4 ± 3.2 – 1.83

12 10.6 ± 5.6 5.2 ± 0.6 5.4 2.98

13 10.2 ± 12.6 2.3 ± 0.2 7.9 1.63

14 1.1 ± 2.2 0.4 ± 1.2 0.7 0.61

15 1.5 ± 2.8 2.8 ± 0.6 – 1.3 1.35

22 8.7 ± 5.4 –

22 5.8 ± 5.7 1.6 ± 0.2 4.2 repeated 2.51

23 6.3 ± 5.7 1.4 ± 0.6 4.9 1.52

24 4.5 ± 4.3 0.8 ± 0.5 3.7 1.49

25 3.8 ± 8.4 2.7 ± 0.5 1.1 2.63

26 2.5 ± 3.6 1.7 ± 0.5 0.8 2.31

33 4.8 ± 3.3 1.8 ± 0.2 3.0

33 4.1 ± 3.2 – repeated 1.60

34 0.5 ± 4.8 2.4 ± 1.0 – 1.9 1.24

36 5.0 ± 3.9 2.2 ± 0.5 2.8 1.44

44 5.5 ± 3.6 0.7 ± 0.3 4.8 1.96

45 4.9 ± 5.7 1.2 ± 0.4 3.7 0.52

54 2.4 ± 5.0 1.3 ± 0.6 1.1 1.38

mean std.: ± 5.0 mean diff.: 3.0

* 1E = 1 Eötvös Unit = 10−9 s−2

was 7-8˚C/m. The latter figure presumably caused adverse air
turbulence inside torsion wire protecting tubes.

Observations by the E-54 type torsion balance in 5 azimuths
have been made by taking visual readings and after this repeated
readings in the first two azimuths concluded the measuring se-
ries. First readings were taken 40-50 minutes after releasing the
arrester of torsion wires, and hereinafter the readings were taken
in a regular 40-minute pattern. The rotation of the beam was
provided by mechanical clockwork. It follows from the con-
struction of the double balance that each output quantity comes
from two – partly independent – observations. The final result
was the arithmetic mean referring for these two balances. The
standard deviations of horizontal gravity gradients determined
by the torsion balance were estimated from the differences and
the effect of the observer’s mass was also investigated (Figs. 3
and 4). This mass effect during a 2-minute observation time was
found to be about 0.4-0.6 E on average. These results were ob-
tained by using an automated CCD reading system.

The mean difference between gravimeter and torsion balance
measurements is 3 µGal/m and this figure is smaller than the
standard deviation of gravimeter measurements.

The last column of Table 1 contains maximum height dif-
ferences 1Hmax of the topographic survey carried out in 8 az-
imuths around each measurement site up to the maximum dis-
tance of 100 m. The maximum 1H for the cca 3 km2 test area is
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Fig. 3. Effect of observer’s mass on the torsion balance readings

Fig. 4. Magnified parts of the effect of observer’s mass on the torsion bal-
ance readings

3.67 m. Effect of the nearby terrain was negligible; the ground
was carefully leveled around each site.

From the comparison of TB and gravimetric determination of
the horizontal gravity gradient it can be concluded that by LCR
gravimeters equipped with electronic levels and CPI electronics
and readings taken on a digital multimeter it is impossible to
have a reliable determination of HG. It is still best determined
by the torsion balance.

3 Determination of gravity differences 1g by gravime-
try and the torsion balance
Gravity differences 1g between points were determined by

LCR gravimeters mentioned in the previous section. Measure-
ments were performed between 16 points at 4 different epochs
and measuring series – simultaneously with 2 LCR gravimeters.
These gravimeters were transported by a car between measure-
ment points and base stations of measuring series. (Since all
network points were mounted in plough-land, gravimeters were
constantly put under adverse mechanical stress - shock by the
transportation.)

The measurements were processed with tidal, instrument
height, barometric and drift corrections. (Non-modeled effects
– thermal and mechanical stress – were reckoned in the drift
correction.)

The gravity differences 1g shown in Table 2 are raw (non-
adjusted) values. It can be recognized from data in the differ-

ences (diff.) column that there is no scale bias between the two
gravimeters.

Tab. 2. Unadjusted gravity differences of the test network

connection distance
1g 1g diff. mean

LCR-220 LCR-1919

[m] [mGal]

E238-12 451.961 0.318 0.342 – 0.024 0.330

12–11 298.924 – 0.369 – 0.371 + 0.002 – 0.370

11–13 599.540 1.105 1.085 + 0.020 1.095

13–14 298.737 0.593 0.578 + 0.015 0.586

14–15 298.043 0.528 0.529 – 0.001 0.528

15–E208 599.259 0.636 0.649 – 0.013 0.642

E238–E208 1437.610 2.834 2.797 + 0.037 2.816

23–24 299.136 0.314 0.324 – 0.010 0.319

24–25 300.904 0.264 0.233 + 0.031 0.248

25–26 300.060 0.230 0.287 – 0.057 0.258

36–34 602.220 – 0.645 – 0.664 + 0.019 – 0.654

34–33 299.760 – 0.190 – 0.195 + 0.005 – 0.192

33–22 356.443 – 0.812 – 0.780 – 0.032 – 0.796

12–23 424.380 1.295 1.256 + 0.039 1.276

23–33 298.010 0.407 0.438 – 0.031 0.422

54–44 424.265 – 0.364 – 0.328 – 0.036 – 0.346

Gravity differences 1g between stations can be evaluated
upon the assumption that distances and height differences are
small [10]. In this case horizontal gradients measured at two
sites can be replaced by their mean values along the connecting
line. Moreover, the effect of vertical gravity gradient on 1g was
not considered. Hence the following approximate formula for
obtaining the gravity difference 1g between two points A and
B can be written:

1gAB =
(Wzs)A + (Wzs)B

2
tAB .

Here (Wzs)A and (Wzs)B are the components of gravity gra-
dients along the direction of AB measured at the two points,
respectively, while tAB denotes the distance between the two
points. The result is expressed in mGal (1 mGal =10−5 m/s2).

When gravity differences 1g between the test network points
were computed as above, it was observed that the variation of
horizontal gravity gradients are not linear between the points.
Hence, we followed another approach for determining the fig-
ures shown in Table 3. First, a digital terrain model (DTM) with
grid spacing of 5m × 5m was constructed from 1:10000 scale
topographic maps and a topographic survey carried out with to-
tal stations. Second, a mass model and a reference mass model
with average height of the area were constructed from triangular
prisms with uniform 2000 kg/m3 density. Third, gravity gra-
dients were determined by forward gravity field modeling us-
ing formulas by Holstein, 2003 [5] for a grid with 50m × 50m
spacing, and subsequently these gradients were used for inter-
polation of the nonlinear change of gravity gradients between
several network points in Table 3. Finally, gravity difference 1g
was computed between two such points as a sum of individual
contributions 1gi .
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Tab. 3. Comparison of 1g from gravimetry and from torsion balance with
nonlinear correction over the network

connection 1g (gravimeter) 1g (TB) difference

[mGal] [mGal] [mGal]

E238-12 0.330 0.199 0.131

12–11 – 0.370 – 0.168 – 0.202

11–13 1.095 0.454 0.641

13–14 0.586 0.166 0.420

14–15 0.528 0.084 0.444

15–E208 0.642 0.323 0.319

E238–E208 2.816 1.057 1.759

23–24 0.319 0.176 0.143

24–25 0.248 0.053 0.195

25–26 0.258 0.208 0.050

36–34 – 0.654 – 0.116 – 0.538

34–33 – 0.192 – 0.218 0.026

33–22 – 0.796 – 0.313 – 0.483

12–23 1.276 0.457 0.819

23–33 0.422 0.158 0.264

To asses the accuracy of 1g from torsion balance measure-
ments the following factors should be considered:

1–the horizontal position error is 1-2 cm
2–the standard error of torsion balance measurements is 5-6 E
3–5 cm distance (tAB) error generates cca. 1.6 µGal error
4–5˚ azimuth error produces cca. 1.3 µGal error

We processed torsion balance observations at all of the 17
sites without drift and with assuming linear drift of the torsion
wires. The accuracy depends on several factors. One of these
is the visual readout error. If we estimate it to be about 0.2-0.3
scale division, it produces 0.8-1.1 E and 1.7-3 E error of gravity
gradients (Wzx , Wzy) and curvature values (W1g = Wyy − Wxx ,
2Wxy), respectively. The error due to the nonlinear drift of tor-
sion wires is more severe. Readings captured with a video cam-
era showed a nonlinear initial drift of 0.7 scale division, which
may readily produce an error figure twice of the above. The
accuracy achieved can be estimated from the sample standard
deviation of differences between the two balances of the dou-
ble balance. The following standard deviations and mean dif-
ferences were computed by processing 7 measurements in 5 az-
imuths with the linear drift model (Table 4).

Tab. 4. Mean and standard deviation of differences between the two bal-
ances at all of the 17 sites (1E = 1Eötvös Unit = 10−9s−2)

standard

deviation [E]

mean [E]

Wzx ± 5.3 3.8

Wzy ± 6.2 -4.1

W1 ± 4.8 -1.0

2Wxy ± 6.8 -0.4

Measurements of the two balances are not entirely indepen-

dent since the influence of certain environmental factors (e.g.
temperature) on the readings is expected to be about the same.
Having said that, however, the accuracy of TB measurements
can be estimated from the differences: mean standard deviation
of differences at 17 stations is ± 6 E (± 0.6 µGal/m) with sig-
nificant variation from one site to the other (extreme: ± 1.7 E
and ± 12.4 E). Absolute values of the estimated linear drift also
showed major variation of 0.1 – 1.7 scale division (s.d.) dur-
ing the 40 min readout interval. From inspection of Table 4 it
is evident that gradients of the two balances have a significant
non-zero mean. Miscalibration or a yet undiscovered factor can
be the culprit. A new calibration of the instrument is planned to
settle this issue.

Another source of errors is scale misreading. Site 14 may
be an example of this, since a linear drift model yielded worse
results than the no-drift model, and particularly at this site differ-
ences between the two balances of the double balance produced
an extremely high standard deviation of ± 12.4 E and the high-
est drift estimates (-1.7 and -0.9 s.d.).

As it has been mentioned, the observer’s mass effect is a sig-
nificant source of error, producing on average 0.4-0.6 E devia-
tion within a 2-min interval.

Several of the above errors are expected to be eliminated or
mitigated by automated reading, a more realistic drift model-
ing, a better thermal insulation of the observing hut and perhaps
thorough a suitable choice of the reading sequence.

Table 3 shows that a reasonable agreement was found at a
considerable number of sites between measured and interpolated
1g if nonlinear variation of horizontal gravity gradients were
taken into account. The cause of larger discrepancies of about
0.2 mGal in this table requires further investigation.

4 VG determinations in a network of torsion balance
(TB) measurements
It is well-known that vertical gradients of gravity (VG) can

not be determined directly from observations of the torsion bal-
ance.

Fig. 5. VG measurement
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Tab. 5. Observed VG data

site
linear approximation quadratic approximation

VG [mGal/m] STDV G VG [mGal/m] STDV G

11 – 0.3078 ± 0.041 – 0.3120 ± 0.041
12 – 0.3064 ± 0.008 – 0.3099 ± 0.005
13 – 0.3084 ± 0.011 – 0.3035 ± 0.006
14 – 0.3001 ± 0.005 – 0.2982 ± 0.003
15 – 0.3048 ± 0.013 – 0.3107 ± 0.006
22 – 0.3053 ± 0.008 – 0.3063 ± 0.005
23 – 0.3049 ± 0.009 – 0.3010 ± 0.005
24 – 0.3066 ± 0.006 – 0.3027 ± 0.002
25 – 0.3053 ± 0.012 – 0.3109 ± 0.006
26 – 0.3050 ± 0.017 – 0.3012 ± 0.009
34 – 0.3030 ± 0.012 – 0.3016 ± 0.009
E208 (35) – 0.3065 ± 0.008 – 0.3080 ± 0.009
44 – 0.3092 ± 0.011 – 0.3076 ± 0.006
45 – 0.3120 ± 0.018 – 0.3190 ± 0.009
B502 – 0.3189 ± 0.012 – 0.3202 ± 0.007
E238 – 0.3074 ± 0.006 – 0.3083 ± 0.007
mean – 0.3062 – 0.3067

There is a certain technique, however, whereby vertical gradi-
ents can be calculated at each TB measurement site if one or sev-
eral VG values are available in the network [7]. To verify this,
gravimetric vertical gradients were determined at the majority
of TB sites of the test network [2]. Measurements were made
by two LCR gravimeters at heights 50, 700 and 1300 mm above
the markers (Fig. 5). Table 5 shows the mean VG determined
by the two gravimeters for all the measured sites. Measurement
accuracy was strongly degraded by the effect of variable inten-
sity wind-forces (standard deviation (STD) of measurements af-
fected by intense wind-forces are indicated by boldface letters).

The average VG over the test area is close to its normal (nom-
inal) value (0.3086 mGal/m) and the deviations reach only sev-
eral µGal/m for these sites.

5 Application of Haalck’s method
An original idea due to Haalck, 1950 [4] enables the deter-

mination of missing Wzz vertical gravity gradients VG from TB
measurements since third derivatives of the geopotential estab-
lishes the required link between observed and missing compo-
nents according to the following formulas:

Wzzx = −W1x − 2Wxyy

Wzzy = W1y − 2Wxyx

Wzzz = −Wxzx − Wyzy .

(1)

To consider the nonlinear variation of gravity gradients, we pre-
pared grids of gravity gradients with the aid of the digital ter-
rain model of the area with spacing of 50m × 50m. By nu-
merical differentiation of these grids the necessary derivatives
on the right hand side of (1) were computed, and at a constant
height z above the mean sea level – by numerical integration of
Wzzx , Wzzy using formulas of Vassiliou (1986) [8] – we obtained
Wzz . The map of the computed Wzz (in E units) can be seen in

Fig. 6, together with measurement sites and topographic survey
points. The correlation of computed vertical gradients VG with
the DTM of the area (Fig. 7) is remarkable. Several conclusions
can be drawn by testing the numerical solution procedure.

Fig. 6. Interpolated vertical gradients VG for the test area from TB measure-
ments and DTM. Units are E (1E = 1Eötvös = 10−9 s−2). Dots are topographic
survey points for TB sites

Fig. 7. DTM of the test area. Heights are in [m]. Dots are topographic
survey points for TB sites

Tab. 6. Observed VG by quadratic approximation, interpolated VG by
Haalck’s method and their differences

site
observed VG interpolated VG differences

[mGal/m]

11 -0.3120 -0.3120 0.0000

12 -0.3099 -0.3122 -0.0023

13 -0.3035 -0.3113 -0.0078

14 -0.2982 -0.3116 -0.0134

15 -0.3107 -0.3130 -0.0023

22 -0.3063 -0.3118 -0.0055

23 -0.3010 -0.3116 -0.0106

24 -0.3027 -0.3111 -0.0084

25 -0.3109 -0.3111 -0.0002

26 -0.3012 -0.3111 -0.0099

34 -0.3016 -0.3103 -0.0087

E208 (35) -0.3080 -0.3114 -0.0034

mean: -0.3055 -0.3115 STD: -0.006

From Table 6 it appears that interpolated vertical gradients
VG are considerably smaller (max./min. +27/28 E for the whole
area) than those obtained by gravimeters (cf. Table 5). This fact
can be attributed to the applied numerical differentiation scheme
(forming central differences), the transfer function of which cuts
down the signal at higher frequencies [1], or from the numerical
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integration procedure. The non-linear variation of vertical gra-
dients should also be a factor. The reconstruction of a function
from given gradient fields is a well-known problem e.g. in the
field of image processing and it leads to the numerical solution
of the 2D Poisson equation e.g. [6]. Hence we plan to investi-
gate several other reconstruction techniques to calculate of Wzz

from its known horizontal gradients.

6 Conclusions
Earlier theoretical investigations and geodetic torsion balance

measurements made by Lorand Eötvös showed that these mea-
surements are good for gravity field determination as well and
it is possible by combining torsion balance with gravimetry to
generate all functionals of the gravity field.

From the comparison of torsion balance and gravimetric de-
termination of the horizontal gradients of gravity it can be con-
cluded that it is impossible to have a reliable determination by
LCR gravimeters, it is still best determined by torsion balance.

Computing 1g from torsion balance measurements we real-
ized, the variations of horizontal gradients of gravity between
two points would not be supposed linear neither below of a few
hundred meters distance. However, generally better agreement
can be seen between the measured and the computed 1g taking
into account a digital terrain model for estimating the nonlinear
variation of the horizontal gravity gradients - but further investi-
gations are necessary to study the reason of the bigger discrep-
ancies.

Comparing the vertical gradients measured by gravimeters
and computing from torsion balance measurements various dif-
ferences can be seen. The reason may come from the applied
numerical differentiation scheme, or from the integration proce-
dure.
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