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Abstract
In this study we present an efficient new hybrid metaheuristic

for solving size optimization of truss structures. The proposed
ANGEL method combines ant colony optimization (ACO), ge-
netic algorithm (GA) and local search (LS) strategy. In the pre-
sented algorithm ACO and GA search alternately and coopera-
tively in the solution space. The powerful LS algorithm, which is
based on the local linearization of the constraint set, is applied
to yield a better feasible or less unfeasible solution when ACO or
GA obtains a solution. Test examples show that ANGEL can be
more efficient and robust than the conventional gradient based
deterministic or the traditional population based heuristic meth-
ods in solving explicit (implicit) optimization problems. ANGEL
produces highly competitive results in significantly shorter run-
times than the previously described approaches.
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1 Introduction
Most structural engineering optimization problems are highly

nonlinear and non-convex. The problem is typically large, and
the evaluation of the functions and gradients is expensive due to
their implicit dependence on design variables. The traditional
engineering optimization algorithms ([3–5, 9–11, 13]) are based
on nonlinear programming methods that require substantial gra-
dient information and usually seek to improve the solution in the
neighbourhood of a starting point. Many real-world engineering
optimization problems, however, are very complex in nature and
quite difficult to solve using these algorithms. If there is more
than one local optimum in the problem, the result may depend
on the selection of an initial point, and the obtained optimal so-
lution may not necessarily be the global optimum. The compu-
tational drawbacks of existing numerical methods have forced
researchers to rely on metaheuristic algorithms based on simula-
tions to solve engineering optimization problems. The common
factor in metaheuristic algorithms is that they combine rules and
randomness to imitate natural phenomena.

This paper describes a hybrid metaheuristic for engineering
optimization problems with continuous design variables. The
proposed ANGEL method has been inspired by the discrete
meta-heuristic method [2], which combines ant colony opti-
mization (ACO), genetic algorithm (GA), and local search strat-
egy (LS). In the presented algorithm ACO and GA search alter-
nately and cooperatively in the solution space. The powerful LS
algorithm, which is based on the local linearization of the con-
straint set, is applied to yield a better feasible or less unfeasible
solution when ACO or GA obtains a solution.

The presented continuous algorithm can be easily adopted for
various types of optimization problems including the traditional
explicit function minimization problems. According to the sys-
tematic simplification, the hybrid algorithm is based only three
operators: random selection (ACO + GA), random perturbation
(ACO), and random combination (GA). In the algorithm the tra-
ditional mutation operator is replaced by the local search pro-
cedure as a form of mutation. That is, rather than introducing
small random perturbations into the offspring solution, a gradi-
ent based local search is applied to improve the solution until a
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local optimum is reached. The main procedure of the proposed
meta-heuristic method follows the repetition of these two steps:
(1) ACO with LS and (2) GA with LS. In other words, firstly
generates an initial population, after that, in an iterative process
ACO and GA search alternately and cooperatively on the cur-
rent solution set. The initial population is a totally random set.
The random perturbation and random combination procedures
which are based on the normal distribution, call the random se-
lection function, to select a “more or less good” solution from
the current population using the inverse method. The higher the
fitness values of a solution, the higher the chance that it will be
selected by the function.

Our fitness function is based on the following assumptions:

1 Any feasible solution is preferred to any infeasible solution.

2 Between two feasible solutions, the one having better objec-
tive function value is preferred.

3 Between two unfeasible solutions, the one having smaller
constraint violation is preferred.

The random perturbation procedure uses the continuous in-
verse method to generate a new solution from the old one. The
random combination procedure generates an offspring solution
from the selected mother and father solutions. Using the con-
tinuous inverse method, the offspring solution is generated from
the combined distribution, where the combined distribution is
the weighted sum of the parent’s distributions. The two pro-
cedures are controlled by the standard deviation. The higher
the standard deviation, the higher the variability of the search-
ing process is. According to the progress of the searching pro-
cess the variability is decreasing step by step. In other words,
the “freedom of diversification” is decreasing but the “freedom
of intensification” is increasing. The procedures use a uniform
random number generator in the inverse method. We have to
mention, that in our algorithm in the GA phase, an offspring
not necessarily will be the member of the current population,
and a parent not necessarily will die after mating. The reason is
straightforward, because our algorithm uses a very simple rule:
If the current design is better than the worst solution of the cur-
rent population than the worst one will be replaced by the better
one.

The proposed algorithm is tested for a wide range of bench-
mark problems. Validation results for two examples, which are
manageable within the scope of this paper, are presented herein.
The first problem is a challenging explicit function minimization
problem with two variables and two inequality constraints and
four boundary conditions. The feasible region of the problem
is a very narrow crescent-shaped region (approximately 0.7%
of the total search space) with the optimal solution lying on a
constraint. The second problem is a well-known 10-bar truss
with 10 independent design variables, 20 boundary conditions
and 36 implicit constraints. The problem has several local op-
timum solutions and the global optimum of the problem is un-
known. These examples have been previously solved using a

variety of other techniques, which is useful to show the validity
and effectiveness of the new hybrid method. Numerical results
show that the proposed new hybrid method can be more efficient
and robust than the conventional gradient based deterministic
or the traditional population based heuristic methods in solv-
ing explicit (implicit) optimization problems. The proposed hy-
brid method produces highly competitive results in significantly
shorter run-times than the previously described approaches.

2 Problem formulations
Generally, a single-objective continuous structural engineer-

ing optimization problem can be written as follows:

F (X)→ min,

G j (X) ∈
[
G j , Ḡ j

]
, j ∈ {1, 2, . . . , M} ,

X i ∈
[
X i , X̄ i

]
, i ∈ {1, 2, . . . , N } .

where X = (X1, X2, . . . , X N ), X ∈ ��� is the vector of the
design variables, F (X) is the explicit objective function, G j ,
j ∈ {1, 2, . . . , M} are the implicit response variables of the in-
vestigated engineering structure, the design space ��� and its sub-
space 888, which is the space of the feasible designs, are defined
by boundary conditions:

��� =
{
X

∣∣X i ∈
[
X i , X̄ i

]
, i ∈ {1, 2, . . . , N }

}
,

888 =
{

X
∣∣X ∈ �, G j (X) ∈

[
G j , Ḡ j

]
j ∈ {1, 2, . . . , M}

}
.

In this context, “implicit dependence” means that to evaluate
the response variable values we have to solve the equilibrium
equation system of the investigated engineering structure in the
given point of the design space, which is usually a large nonlin-
ear equation system, therefore the function evaluation process
may be really very expensive.

In the algorithm, a design is represented by the set of
{W, λ, X, φ}, where W is the weight of the structure, λ is the
maximal feasible load intensity factor, X is the current set of
the cross-sectional areas for member groups and shifting vari-
ables. The φ is the current fitness function value. The mini-
mal weight design problem is formulated in terms of member
cross-sections, member stresses, and constrained by the local
and global stability. The structural model was a large deflection
truss. To avoid any type of stability loss even a structural col-
lapse, a path-following approach [1] is proposed for structural
response variable computation. The applied measure of design
infeasibility is defined as the maximal load intensity factor sub-
ject to all of the structural constraints. The computational results
of the proposed hybrid metaheuristic method reveal the fact that
the proposed method produces high quality solutions.

3 The proposed continuous metaheuristic method
3.1 The algorithm
The presented continuous hybrid metaheuristic algorithm can

be easily adopted for various types of optimization problems in-
cluding the traditional explicit function minimization problems.
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According to the systematic simplification, the hybrid algorithm
is based only three operators: random selection (ACO + GA),
random perturbation (ACO), and random combination (GA). In
the presented continuous hybrid metaheuristic algorithm, the
traditional mutation operator is replaced by the local search pro-
cedure as a form of mutation. That is, rather than introducing
small random perturbations into the offspring solution, a gradi-
ent based deterministic local search is applied to improve the
solution until a local optimum is reached. The main procedure
of the proposed hybrid metaheuristic follows the repetition of
these two steps: (1) ACO with LS and (2) GA with LS. In other
words, firstly the hybrid metaheuristic generates an initial pop-
ulation, after that, in an iterative process ACO and GA search
alternately and cooperatively on the current solution set. The
initial population is a totally random set. The random pertur-
bation and random combination operators, which are based on
the normal distribution, use a tournament selection operator, to
select a “more or less good” solution from the current popula-
tion using the well-known continuous inverse method. It is well
known that the population-based heuristics are usually designed
for unconstrained optimization only. In order to tackle the con-
strained optimization the constrained optimization problem has
to be converted into an artificial unconstrained one by adopting a
constraint-handling approach. The pseudo-code of the proposed
hybrid metaheuristic method is indicated in Fig. 1.

3.2 The parameter of the algorithm
The algorithm has three global parameters: Population-

Size, Generation, LocalSearchIterations, and a “tunable” pa-
rameter pair

{
R, R

}
. The progress of the iterative search-

ing process, in the function of the current generation in-
dex (Generation), is controlled by function R (Generation),
where R ≤ R (Generation) ≤ R (it has an effect similar to
that of the pheromone evaporation rate in ACO). Our algorithm,
according to its “robust” nature, is not so sensitive to the “fine
tuning” of these parameters. In other words,

{
R, R

}
can be kept

“frozen” in the algorithm, which results in a practically tuning-
free algorithm.

According to progress of the searching process, the “free-
dom of diversification” is decreasing step by step: R →

R (Generation)→ R.
The smaller the value of R (Generation) the smaller the ef-

fect of the current modification (perturbation or combination) is.
In the presented algorithm, the searching process is controlled
by two logical variables: RandomPhase and AntColonyPhase.
In the starting RandomPhase, the algorithm generates a totally
random initial population. In the subsequent phases, ACO and
GA search alternately, depending on the value of variable Ant-
ColonyPhase. In the presented very simple pseudo-code, the
first function (in top-down order), namely C ← U (Cmin, Cmax),
is a uniform random number generator, which generates a real
random value C according to the following relation: Cmin

≤

C ≤ Cmax. This function is used in the generation of the totally

random initial population (Generation = 0).
The Random Perturbation(Generation) and

RandomCombination(Generation) procedures call the{
Design, X Design}

← RandomSelection function, to select a
“more or less good” design from the current population using
the well-known discrete “inverse” method. The higher the
fitness value φ, the higher the chance is that the design will be
selected by the function. The essence of the discrete inverse
method is shown in Fig. 2. The selected design is identified by
its index: 1 ≤ Design ≤ PopulationSize.

The functions use generator U (Cmin, Cmax ) in the al-
gorithm of the inverse method and a CurrentY ←

I nter polation(StartingX, EndingX, Current X)

function for linear interpolation. The subroutine
{F, X, φ} ← LocalSearch(X) is the central element of
our algorithm, which is based on the local linearization of the
feasibility constraints.

The algorithm, in an iterative process, minimizes the objec-
tive increment needed to get a better (e.g. a lighter feasible
or less unfeasible) discrete solution. The local search proce-
dure calls a fast and efficient “state-of-the-art” interior point
solver (BPMPD) to solve the linear programming problems.
The subroutine W orst ← W orst DesignSelection selects the
worst design from the current population. If the current de-
sign is better than the worst than the worst one will be re-
placed by the better one. The algorithm maintains the dynam-
ically changing {F∗, X∗} set. The pseudo-code of subroutine
{X} ← Random Perturbation(Generation) is presented in
Fig. 3.

The subroutine uses the continuous inverse method to gen-
erate the perturbed mean from the selected distribution. The
essence of the continuous inverse method for random perturba-
tion is shown in Fig. 4.

The pseudo-code of subroutine
{X} ← RandomCombination(Generation) is presented in
Fig. 5. The subroutine uses the continuous inverse method to
generate the child’s mean from the combined distribution of the
selected mother and father distributions. The combined distri-
bution is the weighted sum of the parent’s distributions. The
essence of the continuous inverse method for combination is
shown in Fig. 6.

The pseudo-code of subroutine
S← Standard DeviationEstimation(C, R) is presented in
Fig. 7. In order to establish the value of the standard deviation in
generation Generation, we calculate the average absolute dis-
tance from the selected design to other designs in the current
population, and we multiply it by the parameterR. The parame-
ter R > 0, which is the same for all the dimensions, has an effect
similar to that of pheromone evaporation rate in ACO [13]. The
higher the value of the parameter, the higher the variability of
the searching process is.
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∗F  ←  F : RandomPhase ←  True : AntColonyPhase ←  False 

For Generation = 0 To Generations  

If Generation > 0 Then RandomPhase   ←False : AntColonyPhase ←  Not AntColonyPhase 

For Member = 1 To PopulationSize  

If RandomPhase Then X ←  RandomReal ( XX  , ) 

If AntColonyPhase Then  

X ←  RandomPerturbation (Generation) 

Else 

X ←  RandomCombination (Generation)  

End If 

{F, X, φ } ←  LocalSearch(X)  

If RandomPhase Then 

F(Member) ←  F : X (Member) ←  X: φ (Member) = φ 

Else 

Worst ←  WorstDesignSelection  

If φ > φ(Worst) Then F(Worst) ←  F: X (Worst) ←X: φ (Worst)= φ 

End If 

If φ ∗ < φ  Then F ∗ ←  F : X∗ ←  X: φ ∗ = φ  

Next Member 

Next Generation 

Exit Width {F∗, X∗, φ ∗ } 

 

 
Fig. 1. The pseudo-code of the continuous algorithm
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Fig. 2. The essence of the discrete inverse method

 

RandomPerturbation(Generation)  

R ←  Interpolation( 1, R , Generations, R , Generation ) 

Random ←  RandomMemberSelection  

S(Random) ←  StandardDeviationEstimation(X(Random), Random, R) 

For J = 1 To N 

Density (J) ←  GaussDensity(X(J), S(J))  

X(J) ←  ContinuousInverseMethod (Density (J)) 

Next J 

Return With {X} 

 

 

Fig. 3. The pseudo-code of subroutine: {X} ← Random Perturbation(Generation)
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Fig. 4. The continuous inverse method for random perturbation

RandomCombination(Generation)  

R ←  Interpolation(1, R , Generations, R , Generation) 

Mother ←  RandomMemberSelection  

XM ←X( Mother) 

SM ←  StandardDeviationEstimation(X(  Mother), Mother, R) 

Father ←  RandomMemberSelection  

XF ←  X( Father) 

SF ←  StandardDeviationEstimation(X(  Father), Father, R)  

For J = 1 To N  

Density ←  CombinedDensity(XM(J), SM(J), φ (Mother), XF(J), SF(J), φ (F ather)) 

X(J) ←  ContinuousInverseMethod( Density )  

Next J 

Return Width X 

 

 
Fig. 5. The pseudo-code of subroutine: X ←

RandomCombination(X, Generation)
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Fig. 6. The continuous inverse method for random combination

3.3 Local search iteration for a feasible design
The local search iteration for feasible design is given by the

following way:

1F
(
1X1, ...1X j , ...1X N

)
→ min,

G1
(
X1, X2, ...X j , ...X N

)
+

N∑
j=1

∂G1
(
X1, X2, ...X j , ...X N

)
∂ X j

∗1X j ∈
[
G1, Ḡ1

]
,

...

Gi
(
X1, X2, ...X j , ...X N

)
+

N∑
j=1

∂Gi
(
X1, X2, ...X j , ...X N

)
∂ X j

∗1X j ∈
[
Gi , Ḡi

]
,

...

G M
(
X1, X2, ...X j , ...X N

)
+

N∑
j=1

∂G M
(
X1, X2, ...X j , ...X N

)
∂ X j

∗1X j ∈
[
G M , Ḡ M

]
,

1X1 ∈
[
1X1, 1X̄1

]
,

...

1X i ∈
[
1X i , 1X̄ i

]
,

...

1X N ∈
[
1X N , 1X̄ N

]
.

StandardDeviationEstimation(X(CurrentMember), Curren tMember, R) 

For J = 1 To N 

S(J) ←  0 

For Member = 1 To PopulationSize  

If Member <> CurrentMember Then  

S(J) ←  S(J) + Abs(X(Member) - X(CurrentMember))  

End If 

Next Member 

S(J) ←  max( R ∗ S(J) / (PopulationSize - 1), R ) 

Next J 

Return Width S 

 

 

Fig. 7. The pseudo-code of subroutine:
{S} ← Standard DeviationEstimation

(X (Current Member), Current Member, R)
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3.4 Local search iteration for an infeasible design
The local search iteration for infeasible design is given by the

following way:

M∑
i=1

(
1Gi +1Ḡi

)
→ min,

G1
(
X1, X2, ...X j , ...X N

)
+

N∑
j=1

∂G1
(
X1, X2, ...X j , ...X N

)
∂ X j

∗1X j

∈
[
G1 −1G1, Ḡ1 +1Ḡ1

]
,

...

G1
(
X1, X2, ...X j , ...X N

)
+

N∑
j=1

∂G1
(
X1, X2, ...X j , ...X N

)
∂ X j

∗1X j

∈
[
G1 −1G1, Ḡ1 +1Ḡ1

]
,

...

G M
(
X1, X2, ...X j , ...X N

)
+

N∑
j=1

∂G M
(
X1, X2, ...X j , ...X N

)
∂ X j

∗1X j

∈
[
G M −1G M , Ḡ M +1Ḡ M

]
,

1X1 ∈
[
1X1, 1X̄1

]
,

...

1X i ∈
[
1X i , 1X̄ i

]
,

...

1X N ∈
[
1X N , 1X̄ N

]
.

4 Test results
4.1 A narrow crescent shaped feasible region example
The optimization problem above a narrow crescent feasible

region has been presented by Deb [3], and Lee and Geem [8].
The problem definition is given by the following objective func-
tion and inequality constraints:

F (X) =
(

X2
1 + X2 − 11

)2
+

(
X1 + X2

2 − 7
)2
→ min,

G1 (X) = 4.84− (X1 − 0.05)2
− (X2 − 2.5)2

≥ 0,

G2 (X) = −4.84+ X2
1 − (X2 − 2.5)2

≥ 0,

0 ≤ X1 ≤ 6, 0 ≤ X2 ≤ 6.

The compared results are presented in Tab. 1. The best solu-
tion is given by the value of the objective function and optimal
coordinates: F (X) = 13.59084, X∗ = (2.246826, 2.381864).

4.2 A multiple local minima example – ten-bar truss opti-
mization
The well known benchmark problem is determine by the

following side constraints and material properties: X i ∈

3

60

6

3
 

Fig. 8. The narrow crescent-shaped feasible domain

Tab. 1. Compared designs for the narrow crescent-shaped feasible region
example

Methods
Optimal design Objective

Methods
variables function

X1 X2 F(X)

Deb (GA with PS (R=0.01))* Unavailable Unavailable 13.58958

Deb (GA with PS (R=0.01))* Unavailable Unavailable 13.59108

Deb (GA with TS-R)* Unavailable Unavailable 13.59085

Lee and Geem (HS)** 2.246840 2.382136 13.590845

Present study 2.246826 2.381864 13.590842

Note: PS method (Powell and Skolnick’s constraint handling method);

TS-R method (tournament selection)

*K Deb [3];**K S. Lee, Z. W. Geem [8].

[0.1, 35.0] j ∈ {1, 2, ..., 10}, E = 107; ρ = 0, 1; σmax =

±25; umax = ±2.
In the algorithm, a design is represented by the set of
{W, λ, X, φ}, where W is the weight of the structure, λ is the
maximal load intensity factor, X is the current set of the cross-
sectional areas for member groups, and φ is the current fitness
function value. The minimal weight design problem is formu-
lated in terms of member cross-sections, member stresses, and
constrained by the local and global stability. The structural
model was a large deflection truss. To avoid any type of sta-
bility loss even a structural collapse, a path-following approach
(see [1]) is proposed for eigenvalue computation.

The selection criterion is the following:

1 Any feasible solution is preferred to any unfeasible solution.

2 Between two feasible solutions, the one having a smaller
weight is preferred.

3 Between two unfeasible solutions, the one having a larger
load intensity factor is preferred.

Based on these criteria, fitness function φ (0 ≤ φ ≤ 2) is de-
fined as

φ =


2− W−W

W−W
λ = 1

i f
λ λ < 1
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Tab. 2. Compared designs* for 10-bar truss using continuous variables

Design variable
MPM HS GA

Present study
[14] [5] [11] [12] [4] [10] [6] [8] [9]

A1 30.420 31.35 33.43 30.670 30.500 30.730 30.980 30.150 30.703 30.31

A2 0.128 0.10 0.100 0.100 0.100 0.100 0.100 0.102 0.100 0.10

A3 23.410 20.03 24.26 23.760 23.290 23.930 24.170 22.710 24.744 23.26

A4 14.910 15.60 14.26 14.590 15.430 15.430 14.810 15.270 13.686 15.23

A5 0.101 0.14 0.10 0.100 0.100 0.100 0.100 0.102 0.101 0.10

A6 0.101 0.24 0.10 0.100 0.210 0.100 0.406 0.544 0.137 0.55

A7 8.696 8.35 8.388 8.578 7.649 8.542 7.547 7.541 8.348 7.48

A8 21.075 22.21 20.74 21.070 20.980 20.950 21.050 21.560 20.950 20.92

A9 21.080 22.06 19.69 20.960 21.820 21.840 20.940 21.450 21.323 21.61

A10 0.186 0.10 0.100 0.100 0.100 0.100 0.100 0.100 0.101 0.10

W (lb) 5084.9 5112. 5089. 5076.9 5080.0 5076.7 50667. 5057.9 5083.3 5055.

Note: 1 in2 = 6.452 cm2 ; 1 lb = 4.45 N. Ai , i = 1,2 ,...,10 (in2) are the cross-sectional areas.

*Previous studies listed above: mathematical programming methods (MPM): [14], [5], [11], [12], [4], [10], [6];

harmony search (HS): [8], and genetic algorithm (GA): [9].

360 in

360 in

100 kips 100 kips

1

246

35 1 2

3 4

5 6
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8

9

10

y

x

360 in

 

Fig. 9. The geometry of the ten-bar truss

The iteration histories for different computational test exam-
ples are presented in Figure 10–12 to demonstrate the effec-
tiveness of the applied local search procedure. The higher the
number of local search iterations, the higher the quality of the
solution method for a given population size and generation pa-
rameters.

5 Conclusions
In this work a new hybrid metaheuristic method was intro-

duced for continuous structural optimization. The proposed
method combines ant colony optimization (ACO), genetic al-
gorithm (GA), and local search (LS) strategy. The discrete min-
imal weight design problem is formulated in terms of member
cross-sections, member stresses, and constrained by the local
and global stability. The structural model was a large deflection,
geometrically nonlinear truss. In order to avoid any type of sta-
bility loss even a structural collapse, a path-following approach
is proposed for eigenvalue computation. The applied measure
of design unfeasibility is defined as the maximal load intensity
factor subject to all of the structural constraints. The computa-
tional results of the proposed hybrid method reveal the fact that
the proposed method produces high quality solutions.

5501

11174.222

5715.0955715.095

 

Fig. 10. Iteration history for the ten-bar truss without local search procedure.
(Generations:10; Population Size:50; Local Search Iteration:0)

5501

9333.539

5062.1415062.141

 

Fig. 11. Iteration history for the ten-bar truss with local search procedure.
(Generations:10; Population Size:50; Local Search Iteration:10)

A hybrid meta-heuristic method for continuous engineering optimization 992009 53 2
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5501

7313.621

 

Fig. 12. Iteration history for the ten-bar truss without local search procedure.
(Generations:11; Population Size:50; Local Search Iteration:100)
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