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Abstract
Support vector machines (SVM) with wavelet kernel has been

applied to the correcting gravimetric geoid using GPS/levelling
data. These data were divided into a training and a validation
set in order to ensure the extendability of the approximation of
the corrector surface. The optimal parameters of the SVM were
considered as a trade-off between accuracy and extendability
of the solution in order to avoid overlearning. Employing 194
training points and 110 validation points, SVM provided an ap-
proximation with less than 3 cm standard deviation of the error
and nearly perfect extendability.
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1 Introduction
The accuracy of the gravimetrical geoid can be significantly

improved using GPS/levelling measurements. The new, ad-
justed geoid can be constructed as the gravimetric one plus the
so called corrector surface, the difference between the gravimet-
ric and the GPS/levelling geoid.

Recently, wide variety of higher-order parametric and non-
parametric surfaces have been used as corrector surfaces, such as
polynomial models by Fotopoulos and Sideris 2005 [4], spline
interpolation by Featherstone 2000 [2] and Zaletnyik et al 2007
[13], least squares collocation (LSC) by Iliffe et al 2003 [5],
kriging by Nahavandchi and Soltanpour 2004 [8], combined
least squares adjustments by Fotopoulos 2005 [3], and various
other surfaces. Most recently Zaletnyik et al. 2007 [14] em-
ployed thin plate spline (TPS) surface, solving the problem via
finite element method. Suffice it to say, there are numerous
surface-fitting options, each with their own advantages and dis-
advantages, which will not be discussed nor debated here.

Concerning application of soft computing technique Kav-
zoglu and Saka 2005 [6] and Lao-Sheng Lin 2006 [7] em-
ployed artificial neural network (ANN) for approximating the
GPS/levelling geoid instead of the corrector surface itself. Both
of them applied feed-forward ANN with the standard sigmoid
activation functions and different number of hidden layers. Za-
letnyik et al. 2007 [13] also used ANN but with radial bases
activation function (RBF) and regularization in the training
phase. Soltanpour et al 2006 [11] used second generation
wavelets to approximate corrector surface directly. This tech-
nique let extend the classical wavelet approximation, which re-
quires regularly spaced/sampled data, for unregularly spaced
dataset, Sweldens 1997 [12].

Another soft computing technique is represented by the sup-
port vector machines (SVM), which are learning algorithms that
have many applications in pattern recognition and nonlinear re-
gression. In this study we propose to apply support vector ma-
chine with wavelet kernel for modelling the corrector surface.
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2 Support Vector Machines for Regression
The problem of regression is that of finding a function which

approximates mapping from an input domain to the real num-
bers based on a training sample. We refer to the difference be-
tween the hypothesis output and its training value as the residual
of the output, an indication of the accuracy of the fit at this point.
We must decide how to measure the importance of this accuracy,
as small residuals may be inevitable while we wish to avoid large
ones. The loss function determines this measure. Each choice
of loss function will result in a different overall strategy for per-
forming regression. For example least square regression uses
the sum of the squares of the residuals.

Although several different approaches are possible, we will
provide an analysis for generalization of regression by introduc-
ing a threshold test accuracy, beyond which we consider a mis-
take to have been made. We therefore aim to provide a bound on
the probability that a randomly drawn validation point will have
accuracy less than ∈. One way of visualizing this method of as-
sessing performance is to consider a band of size ± ∈ around the
hypothesis function any training points lying outside this band
are considered to be training mistakes, see Fig. 1.

Fig. 1. Linear ∈-insensitive loss function L∈(x, y, f )

Therefore we can define a so called ∈-insensitive loss func-
tion. The linear ∈-insensitive loss function L∈(x, y, f ) is de-
fined by

L∈(x, y, f ) = (|y − f (x)|)∈ = max (0, |y − f (x)| − ∈)

(1)
where f is a real-valued function on a domain X ⊂ <

n , x ∈ X
and y ∈ <. Similarly the quadratic ∈-insensitive loss is given
by

L∈

2 (x, y, f ) = (|y − f (x)|)2
∈ . (2)

Support vector regression (SVR) uses an admissible kernel,
which satisfies the Mercer’s condition to map the data in in-
put space to a highdimensional feature space in which we can
process a regression problem in linear form. Let x ∈ <

n and
y ∈ <, where <

n represents input space, see Cristianini and
Shawe-Taylor 2003 [1]. By some nonlinear mapping 8, the vec-
tor x is mapped into a feature space in which a linear regressor
function is defined,

y = f (x, w) = 〈w, 8(x)〉 + b. (3)

We seek to estimate this f function based on independent uni-
formly distributed data {{x1, y1}, ..., {xm, ym}}, by finding w

which minimizing the quadratic ∈-insensitive gosses, with ∈,
namely the following function should be minimize

c
m∑

i=1

L∈

2 (xi , yi , f ) +
1
2

(‖w‖)2
→ min (4)

where w is weight vector and c is a dimensionless constant pa-
rameter. Considering dual representation of a linear regressor in
(3), f (x) can be expressed as

f (x) =

m∑
i=1

βi yi 〈8(xi ), 8(x)〉 + b (5)

what means that the regressor can be expressed as a linear com-
bination of the training points. Consequently using an admissi-
ble kernel, a kernel satisfying the Mercer’s condition, Paláncz et
al 2005 [10], we get

f (x) =

m∑
i=1

βi yi K (xi , x) + b =

m∑
i=1

αi K (xi , x) + b. (6)

By using Lagrange multiplier techniques, the minimization
problem of (4) leads to the following dual optimization problem

maximize W (α) =

m∑
i=1

yiαi− ∈

m∑
i=1

|αi |

−
1
2

m∑
i, j=1

αiα j

(
K (xi , x j ) +

1
c δi j

) (7)

subject to
m∑

i=1
αi = 0.

Let

f (x) =

m∑
i=1

α∗

i K (xi , x) + b∗, (8)

where α∗ is the solution of the quadratic optimization problem
and b∗ is chosen so that f (xi ) = yi− ∈ −

α∗
i

c for any α∗

i > 0.
For samples are inside the ∈-tube, {xi : | f (xi ) − yi | <∈}, the

corresponding α∗is zero. It means we do not need these samples
to describe the weight vector w. Consequently

f (x) =

∑
i∈SV

α∗

i K (xi , x) + b∗ (9)

where
SV = { i : | f (xi ) − yi | ≥ ∈} . (10)

These xi sample vectors, {xi : i ∈ SV }, that come with nonva-
nishing coefficient α∗ are called support vectors.

3 Wavelet Kernel
In our case, we select wavelet kernel for n = 2, which pro-

vides better local characterization than other kernels, see Zhang
et al. 2004 [15] and was proved to be very efficient in many
regression problems, e.g. Paláncz et al. 2005 [10].

Wavelet kernel with a ∈ <
1 and all compact X ⊂ <

n ,

K (x, z) =

n∏
i=1

(
cos

[
1.75

xi − zi

a

]
exp

[
−

(xi − zi )
2

2a2

])
.

(11)
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4 Dataset for the numerical computations
The original gravimetric geoid was modelled via third order

spline approximation, which provides a fairly good approxima-
tion, a fitting with 1 - 2 cm error in height, see Zaletnyik et al.
2007 [13].

Fig. 2. The Hungarian gravimetric geoid

For modelling the corrector surface, there are 304
GPS/levelling data available. One part of these data was em-
ployed as training set (194 measurements), the other part was
used as validation set (110 measurement), see Fig. 3.

Fig. 3. GPS/levelling data - the training set (circles), and the validation set
(triangles)

5 Parameter Study
In order to achieve an efficient fitting, one should find the op-

timal parameter of the applied kernel function (a) as well as
the proper values of c and ∈. Parameter investigations showed
that with increasing values of c and ∈, the regression error (root
mean square error, RMSE) decreases on the training and the val-
idation set, too. In our case c = 400 and ∈= 10−3 proved to
be reasonable values, while for greater values the changes of
RMSE’s are negligable.

However the value of the parameter a has a strong influence
on the quality of the approximation. Table ?? shows the change

of the sum of RMSE’s (that of training and validation set, respec-
tively) as well as the ratio of these RMSE’s, namely introducing

η =
RM SEV

RM SEt
(12)

a ratio indicates how realiably can we extend our regression
model for not measured data. The ideal value is 1. If η >>

1, then so-called overlearning effect takes place.

Tab. 1. The result of the parameter study in case of c =400 and ∈= 10−3

a RM SEt [cm] RM SEV [cm] RM SEtotal [cm] η

0.50 0.50 2.06 1.28 4.12

1.00 1.64 1.94 1.79 1.18

1.50 2.15 2.37 2.26 1.10

2.00 2.31 2.57 2.44 1.11

2.50 2.59 2.74 2.66 1.06

Fig. 4 shows the corrector surface in case of a= 0.5 when the
total error is small RM SEtotal (= 1.28) but η = 4.12 is high.

Fig. 4. Corrector surface in case of typical overlearning (a= 0.5)

This result indicates that one should make a trade-off be-
tween extendability (η) and regression error (RM SEtotal). In
our case we selected a = 2.5, which ensures small η and accept-
able RMSE as well as smooth regression surface, see Fig. 5.

6 The model for the corrector surface
Using these parameter values (c = 400 and ∈= 10−3m and

a=2.5) the computation with the wavelet kernel Eq. (11) was
carried out. We used the Mathematica implementation of SVM
regression, see Paláncz 2005 [9].
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Tab. 2. Corrector Surface approximated by SVM

Training set Validation set

Method SD [cm] Min [cm] Max [cm] RM SEV [cm] SD [cm] Min [cm] Max [cm] RM SEV [cm] η

SVM regression 2.60 -7.74 6.47 2.59 2.75 -7.68 5.59 2.74 1.06

Fig. 5. Smooth and extendable corrector surface

The analytical form of the corrector surface is

1H = −0.0370989
−8.52042 e−0.08(47.2429−ϕ)2

−0.08(16.4483−λ)2

· cos[0.7(47.2429 − ϕ)] cos[0.7(16.4483 − λ)]
−11.4187 e−0.08(47.0987−ϕ)2

−0.08(16.5562−λ)2

· cos[0.7(47.0987 − ϕ)] cos[0.7(16.5562 − λ)]
+ ......

−6.64333 e−0.08(48.0101−ϕ)2
−0.08(22.5098−λ)2

· cos[0.7(48.0101 − ϕ)] cos[0.7(22.5098 − λ)]
−4.17322 e−0.08(48.1296−ϕ)2

−0.08(22.5491−λ)2

· cos[0.7(48.1296 − ϕ)] cos[0.7(22.5491 − λ)]
−1.67954 e−0.08(47.9176−ϕ)2

−0.08(22.762−λ)2

· cos[0.7(47.9176 − ϕ)] cos[0.7(22.762 − λ)] .
(13)

Table 1 shows that the standard deviation (SD) on the training
as well as on the validation set is about 2.6 - 2.8 cm, which from
practical point of view is acceptable and which is also important,
that extendability coefficient is very good, near to unity. In the
table RMSE- root mean squared error - is the square root of the
mean of the error vector of the measurement points,

RM SE =

√
Mean

∑
i

(1H(ϕi , λi ) − 1Hi )
2 (14)

The resulted corrector surface now is very smooth, see Fig. 5.

7 Adjusted Geoid
In order to get the corrected geoid, the corrector surface

should be added to the original geoid surface, see Fig. 6.

Fig. 6. Adjusted geoid with the training and validation points

8 Conclusions
SVM with quadratic ∈-insensitive loss function was applied

to constructing corrector surface for gravimetrical geoid, using
GPS/levelling data. Employing wavelet kernel it turned out, that
only the kernel parameter a has considerable influence on the
quality of the approximation, while the SVM parameters c and
∈ do not play important role in this case. The optimal parame-
ters of the SVM were considered as a trade-off between accuracy
and extendability of the solution in order to avoid overlearning.
Employing 194 training points and 110 validation points, SVM
provided an approximation with less than 3 cm standard devia-
tion of the error and nearly perfect extendability. The corrector
surface can be described via analytical form and directly im-
plemented in a high level language, like C, in order to get high
performance evaluation.

In the future, the investigation of the application of other type
of kernel can be reasonable.
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