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Abstract
In this paper, a genetic algorithm is proposed for discrete min-

imal weight design of steel planar frames with semi-rigid beam-
to-column connections. The frame elements are constructed
from a predetermined range of section profiles. Conventionally,
the analysis of frame structures is based on the assumption that
all connections are either frictionless pinned or fully rigid. Re-
cent limit state specifications permit the concept of semi-rigid
connection of the individual frame members in the structural
design. In a frame with semi-rigid joints the loading will create
both a bending moment and a relative rotation between the con-
nected members. The moment and relative rotation are related
through a constitutive law which depends on the joint proper-
ties. The effect, at the global analysis stage, of having semi-rigid
joints instead of rigid or pinned joints will be that not only the
displacements but also the distribution of the internal forces in
the structure must be modified. In this study, a simplified beam-
to-column connection is presented which was specified in EC3
Annex J. In order to capture the changes in the nodal force and
moment distribution in terms of joint flexibility, the ANSYS finite
element analysis is applied. The structural model is formulated
as a combination of 3D quadratic beam elements and linear tor-
sional springs. Present work deals with the effects of joint flex-
ibility to the optimal design problem. The design variables –
including joint properties – are discrete. Results are presented
for sway frames under different load conditions.
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1 Introduction
It is well known that real beam-to-column connections pos-

sess some stiffness, which falls between the extreme cases of
fully rigid and ideally pinned. In the engineering practice, the
traditional approaches to the design of frames are concisely de-
scribed as continuous framing with rigid joints and/or simple
framing with pinned joints. However, the connection behaviour
significantly affects the displacements and internal force distri-
bution of framed structures.

There is a large amount of work dealing with the effect of
semi-rigid joints on the optimal design of frame structures. Fully
analytical and numerical solutions as well have demonstrated
that in actual framed structures, pinned connections possess
a certain amount of stiffness, while rigid connections possess
some degree of flexibility [1, 6, 7, 10, 11]. Recently, the Euro-
pean Code (EC 3) for design of steel structures [4,5] has adopted
semi-rigid steel framing construction. The proposed approach
to frame design, i.e. semi-continuous framing using semi-rigid
joints, is then outlined; how it is to be distinguished from the tra-
ditional approaches is explained and the potential benefits (sci-
entific and economic) for its use are raised.

It is now well recognized that assuming joints to be rigid or
pinned may neither be accurate nor result be economical. Sim-
ply the fast that a joint has sufficient strength does not mean that
it has sufficient stiffness to be reasonable to be modelled as rigid.
Many joints, often assumed to be rigid exhibit an intermediate
behaviour between the "rigid" and "pinned" states. Eurocode 3
Part 1-1 has taken this fact into account and in doing so opened
the way to what is now known as "the semi-rigid approach".

In the semi-rigid approach, the behaviour of the joints is taken
into account at the outset, i.e. when the components are sized at
the preliminary design range, and the sizing takes account of
the joint behaviour as well. The initial global analysis includes
an approximate estimate of the joint characteristics (stiffness,
strength and rotation capacity), and which can be refined later,
as one does for the member sizes, in the final analysis. The joint
is usually represented as a rotational spring at the extremity of
the member (usually the beam) which characterizes the joint be-
haviour. Available models can represent the moment-rotation
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characteristic only, which is sufficient for the majority of struc-
tural joints in frames (see in EC3 Annex J.).

The aim of this study is to determine the effects of semi-
rigid connection in optimal design of frame structures. The de-
sign variables are the member sections where column and beam
members are distinguished. The properties of the connection
spring will be changed as well during the process in a predeter-
mined range of spring rotational stiffness.

In this study, a genetic algorithm method is applied for dis-
crete minimal weight design of steel structures with semi-rigid
connection.

Recently GA methods are very popular and have been used
for sizing, shape, and topology optimization of structures. The
GA methods are search algorithms that are based on the con-
cepts of natural selection and natural genetics. The core char-
acteristics of GAs are based on the principles of survival of the
fittest and adaptation. The GA methods operate on population
of set of design variables. Each design variable set defining a
potential solution is called a string. Each string is made up of
series of characters as binary numbers, representing the discrete
variables for a particular solution. The fitness of each string is
a measurement of performance of design variables defined by
the objective function and constraints. GA methods consist of a
series of three processes: coding and decoding design variables
into strings, evaluating the fitness of each solution strings, and
applying genetic operators to generate the next generation of so-
lution strings. Most GA methods are variation of the simple GA
proposed by Goldberg and Samtani [3], which consists of three
basic genetic operators: reproduction, crossover, and mutation.
By varying these parameters, the convergence of the problem
may be altered. Much attention has been focused on finding the
theoretical relationship among these parameters. Rajeev and Kr-
ishnamoorty [9] applied GA for optimal truss design and trans-
mission tower. They presented all the computations for three
successive generations. In a previous work of the first author
[2] applied a GA for discrete minimal weight design problem of
space trusses with plastic collapse constraints.

Hayalioglu and Degertekin [6] presented a genetic algorithm
for optimum design of non-linear steel frames with semi-rigid
connections subjected to displacement and stress constraints of
AISC-ASD specifications. The authors [6] concluded that more
economical frames can be obtained by adjusting the stiffness of
the connections.

This study presents a discrete optimal design problem for
steel frames with semi-rigid connection based on the recommen-
dation of EC 3 while European cross sections are selected for
frame members.

2 The Discrete Optimization Problem
Recently, several works have attended to optimal design of

steel frames with semi-rigid connections. Here we will refer to
some of the results e.g. papers of Hayalioglu and Degertekin
[6], Jármai and Farkas [7], Xu and Grierson [10], and Xu [11].

The total cost is defined by Xu and Grierson that includes the
structural cost and the connection cost as well. In this study,
contrary to the papers mentioned above, the objective function
will be the least weight of the structure because the total cost
strongly depends on the actual price of raw materials and the
actual cost of manufacturing.

2.1 Semi-rigid Frame Analysis
In general, there are two different ways to incorporate con-

nection flexibility into computer-based frame analysis.
In this paper, the idea of Xu 12 will be adopted where the

maximum bending moment of semi-rigid beams under an ap-
plied member load has been considered for the variation of the
rotational stiffnesses of end connections. The minimum value
of the maximum moments which can be achieved by adjusting
connection stiffness was presented and proved. He demonstrated
that the cross-sectional member sizes based on this minimum
value of the maximum moment will correspond to the least-
weight solution for any values of connection stiffness.
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Fig. 1. Semi-rigid member

The end-fixity factor rq defines the stiffness of the beam-to-
column connection in terms of the beam moment of inertia:

rq =
1

1 +
3E Iz
Sq L

, . . . . . . .(q = 1, 2) (1)

where Sq is the end-connection spring stiffness, and E Iz/L is
the flexural stiffness of the attached member. For pinned con-
nections, the rotational stiffness of the connection tends to zero
and the value of the end-fixity factor is equal to zero as well.
For rigid connections, the end-fixity factor is equal to (rq = 1),
and in case of a more realistic design, the semi-rigid connec-
tion results in a value between 1 and zero. The elastic stiffness
matrix of a member i with two semi-rigid end-connections hav-
ing stiffness modulus Sq (q = 1, 2) can be represented by the
following stiffness matrix which is modified by a semi-rigid cor-
rection matrix:

Ki = KSi + KCi (2)

where Ki is the stiffness matrix of member i with semi-rigid
end-connections. The matrices KSi and KCi have the following
forms:

KSi =



E A
L 0 0 −

E A
L 0 0

0 12E I
L3

6E I
L2 0 −

12E I
L3

6E I
L2

4E I
L 0 −

6E I
L2

2E I
L

E A
L 0 0

SY M 12E I
L3 −

6E I
L2

4E I
L


(3)
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KCi =

1 0 0 0 0 0
0 4r2−2r1+r1r2

4−r1r2

2Lr1(1−r2)
4−r1r2

0 0 0
0 6(r1−r2)

L(4−r1r2)
3r1(2−r2)

4−r1r2
0 0 0

0 0 0 1 0 0
0 0 0 0 4r1−2r2+r1r2

4−r1r2

2Lr2(1−r1)
4−r1r2

0 0 0 0 6(r1−r2)
L(4−r1r2)

3r2(2−r1)
4−r1r2


(4)

where E is Young’s modulus, and L , A, I are the length, cross-
sectional area, and moment of inertia of the member, respec-
tively. The end-fixity factors r1 and r2 are defined by Eq. 2.

The semi-rigid frames are more flexible than rigid steel
frames. Therefore, in this study a stability analysis is required.
The structural design constraints defined in the following sub-
sections are extended by a structural stability analysis as well.

2.2 Definition of the Discrete Design Problem
The least weight design problem of frame structures with

semi-rigid connections, considering only flexural behaviour, un-
der applied loads can be defined as a discrete optimization prob-
lem in terms of the member sections, Ai and in terms of the
rotational stiffnesses of end connections, Sq . The design vari-
ables Ai are selected from a discrete set of the predetermined
Ai ∈ B =

{
B1, B2, ..., B N }

cross-sectional areas of column el-
ements, A j ∈ C

{
C1, C2, ..., C N }

cross-sectional areas of beam
elements such that minimize the total weight, while Sq rotational
stiffnesses of end connections are changing in between a given
equidistance range of Sq ∈ S =

{
S1, S2, ..., SE}

values.
The objective function is

W
(

Ai , A j
)

→ min!, (5)

i = 1, 2, ..., n j = 1, 2, ..., m

where n is the number of column and m is the number of beam
elements, q is the number of joints, N is the number of cross sec-
tional catalogue values for columns, M is the number of cross
sectional catalogue values for beam elements, and E is the num-
ber of rotational stiffness value series.

The discrete minimal weight design is subjected to size, dis-
placement, and stress constraints. In order to satisfy the design
constraints listed above, we have to determine the displacements
and internal force distribution of the framed structure in terms of
member cross sections and connection stiffness of joint springs.
The structural model and related formulas are concerned in sev-
eral papers. The detailed description of the theoretical back-
ground could be found in book of Chan and Chui [1].

In this study, for structural analysis, the ANSYS Release
9.0 finite element program is applied. The structural model is
formulated as a combination of 3D quadratic beam elements
and linear torsional springs. The frame is defined in x and y
plane. Therefore, ux and u y displacements, θz rotation, Fx and
Fymember forces, and Mz bending moment will be considered
in the 3D coordinate system.

2.3 Displacement Constraints
The displacement constraints are

uk = ūk < 0, k = 1, 2, ..., p (6)

where uk is the actual displacement value of the beam or column
elements, ūk is its upper bound and p is the number of restricted
displacements.

2.4 Bending and Axial Tension Constraints of the Columns
and Beams
Constraints for normal stresses are computed from the max-

imal value of bending moments and from the related normal
forces or from the maximal value of axial forces and related
bending moments.

N
fy A

+
Mz

fy Wz
≤ 1, (7)

where N is the actual axial force of the beam (Fx ) or column
(Fy) elements, Mz is the bending moment, and fy is the yield
stress, modified by the partial safety factor.

2.5 Bending and Axial Compression Constraints of the
Columns and Beams
The frames are defined in the x, y, and z global co-ordinate

system where z is the bending axis. The frame members are
loaded by bending and axial forces. Therefore, the overall flex-
ural and torsional buckling constraints are formulated according
to Eurocode 3. We have to satisfy the following buckling con-
straints about the axis z:

N
χz fy A

+ kz
Mz

χLT fy Wz
≤ 1, (8)

where χz is the overall buckling factor for the axis z, χT is the
lateral-torsional buckling factor, kz is a modification factor in
terms of the axial force effect.

The overall buckling factor χz for the axis z is

χz =
1

φz +

√
φ2

z − λ2
z

,

(9)

where
φz = 0.5

[
1 + αz

(
λz − 0.2

)
+ λ

2
z

]
,

(10)

αz =


0.21 h1/b1 > 1.2

if
0.34 h1/b1 ≤ 1.2

.

(11)

The slenderness ratio of the column is

λz =
2H

rzλE
,. (12)

and the slenderness ratio of the beam is

λz =
1.3L
rzλE .

(13)
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where

λE = π

√
E
f
. . . rz =

√
Iz

A
. (14)

The lateral-torsional buckling factor χT is

χT =
1

φT +

√
φ2

T − λ
2
T

, (15)

where
φT = 0.5

[
1 + αT

(
λ T − 0.2

)
+ λ 2

T

]
, (16)

and

αT =


0.49 h1/b1 > 2

i f
0.34 h1/b1 ≤ 2

.

(17)

The relative lateral-torsional factor is computed from the follow-
ing formula:

λT =

√
Wz f
Mcr

, (18)

where Mcr in case of columns is replaced by

Mcr = 11.132π2 E
Ix

H

√
Iω
Ix

+
H2G It

π2 E Ix
, (19)

and in case of beams by

Mcr = 11.132π2 E
Iy

L

√
Iω
Iy

+
L2G It

π2 E Iy
. (20)

The kz factor is computed from the following formula replaced
by the above defined variables:

kz = 0.9
[

1 + 0.6λz
N

χz f A

]
.

(21)

The buckling constraints about the x axis for the column and
about the y axis for the beam elements are as follows:

N
χn fy A

≤ 1, (22)

where N is the actual axial force of the beam (Fx ) or column
(Fy) elements,χn is the overall buckling factor related to the x
axis for the column and about the y axis for the beam elements.

The overall buckling factor χn for the axis n = x of beam
elements and n = y for the column elements is

χn =
1

φn +
√

φ2
n − λ2

n ,

(23)

where
φn = 0.5

[
1 + αn

(
λn − 0.2

)
+ λ

2
n

]
,

(24)

αn =


0.21 h1/b1 > 1.2

i f
049 h1/b1 ≤ 1.2

.

(25)

The slenderness ratio of the column is

λy =
2H

ryλE ,

(26)

and the slenderness ratio of the beam is

λx =
1, 3L
rxλE .

(27)

3 The Optimization Procedure
3.1 The Applied Genetic Algorithm
The genetic algorithm (GA) is an efficient and widely applied

global search procedure based on a stochastic approach. All of
the recently applied genetic algorithms for structural optimiza-
tion have demonstrated that genetic algorithms can be powerful
design tools (see e.g. [2, 3, 8], and [9]).

The crossover operation creates variations in the solution pop-
ulation by producing new solution strings that consist of parts
taken from selected parent solution strings. The mutation oper-
ation introduces random changes in the solution population. In
GA, the mutation operation can be beneficial in reintroducing
diversity in a population. In this study, a pair of parent solu-
tions is randomly selected, with a higher probability of selection
being ascribed to superior solutions.

The two parents are combined using a crossover scheme that
attempts to merge the strings representing them in a suitable
fashion to produce an offspring solution. Offspring can also be
modified by some random mutation perturbation. The algorithm
selects the fittest solution of the current solution set, i.e. those
with the best objective function values. Each pair of strings re-
produces two new strings using a crossover process and then
dies.

3.2 The Steps of the Applied Algorithm
Generations = 500
PopulationSize = 500
SwapProbability = 0.1
MutationProbability = 0.1
CrossoverProbability = 0.5
Call ProblemDefinition
For Agent = 1 to PopulationSize

Call RandomAgentGeneration (Agent)
Call PathFollowingMethod
Call BestFeasibleSolutionUpdate

Next Agent
For Generation = 1 to Generations

Call PopulationOrderingByFitness (PopulationSize)
Call FittestParentPairSelection (CrossoverProbability)
Call Crossover (SwapProbability)
For Each Child: Call Mutation (MutationProbability)

Call PathFollowingMethod
Call BestFeasibleSolutionUpdate

Next Generation

4 Numerical Examples
The effects of semi-rigid connections are observed to the op-

timal design of steel frames. Two examples of planar frames are
studied here. In this paper, a simple-bay frame (shown in Fig. 2)
and a two-bay frame were considered where the objective func-
tion is the minimal weight (volume) of the structure subjected
to the sizing, displacement, and stress constraints including the
member buckling as well. The design variables are discrete vari-
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ables of the cross section of beam and column members. Ac-
cording to the structural symmetry requirements, symmetrical
members are grouped into the same variables.

Tab. 1. Catalogue values of beam section types

Section h b tw t f A It Iz Iy Iω
type [cm] [cm] [cm] [cm] [cm2] [cm4] [cm4] [cm4] [cm6]

IPE 80 8 4.6 0.4 0.5 7.64 0.7 80.1 8.5 119

IPE 100 10 5.5 0.4 0.6 10.32 1.2 171 15.9 354

IPE 120 12 6.4 0.4 0.6 13.21 1.7 317.8 27.7 894

IPE 140 14 7.3 0.5 0.7 16.43 2.5 541.2 44.9 1989

IPE 160 16 8.2 0.5 0.7 20.09 3.6 869.3 68.3 3977

IPE 180 18 9.1 0.5 0.8 23.95 4.8 1317 100.9 7459

IPE 200 20 10.0 0.6 0.9 28.48 7.0 1943.2 142.4 13053

IPE 220 22 11.0 0.6 0.9 33.37 9.1 2771.8 204.9 22762

IPE 240 24 12.0 0.6 1.0 39.12 12.9 3891.6 283.6 37575

IPE 270 27 13.5 0.7 1.0 45.95 15.9 5789.8 419.9 70849

IPE 300 30 15.0 0.7 1.1 53.81 20.1 8356.1 603.8 126333

IPE 330 33 16.0 0.8 1.1 62.61 28.1 11770 788.1 199877

IPE 360 36 17.0 0.8 1.3 72.73 37.3 16270 1043.5 314645

IPE 400 40 18.0 0.9 1.3 84.46 51.1 23130 1317.8 492147

IPE 450 45 19.0 0.9 1.5 98.82 66.9 33740 1675.9 794245

IPE 500 50 20.0 1.0 1.6 115.52 89.3 48200 2141.7 125425

IPE 550 55 21.0 1.1 1.7 134.42 123.2 67120 2667.6 189315

IPE 600 60 22.0 1.2 1.9 155.98 165.4 92080 3387.3 285858

The applied material is given according to the European Stan-
dard prEN (Fe E 510) steel with a modulus of elasticity of 210
000 MPa and a yield stress of 355 MPa. The Poisson factor is
0.3, and the material density is 7850 kg/m3. The cross sections
are selected from the European section profiles. In the presented
example the beam and column profiles are distinguished, and the
cross sections have been selected from the catalogue of Table 1,
and Table 2. The applied loads are p = 5 kN/m, and P = 50 kN,
according to the Fig. 2.

In this study, for structural analysis and for the optimal design
problem, the ANSYS Release 9.0 finite element program was
applied. The structural model is formulated as a combination of
3D quadratic beam elements and linear torsional springs. The
frame is defined in x, and y plane. The design constraints are
formulated in 3D coordinate system using formulas (6)-(27).

Beam-to-column connections are varying from ideally-
pinned to fully-rigid behaviour. The changes of the rotational
stiffness of beam-to-column connections play a relevant role
in the optimal design problem while the structural response is
changing as well. In order to expose this effect to the optimal
design, the connection stiffness ratio (Sq L/E Iz) related to the
beam element and the end-fixity factor is applied which was in-
troduced and defined by Xu [11, 12] first time. The end-fixity
factors r1 and r2 are defined by Eq. (1).

For pinned connections, the rotational stiffness of the con-
nection tends to zero and the value of the end-fixity factor is
equal to zero as well. For rigid connections, the end-fixity fac-
tor is equal to (rq = 1), and in case of a more realistic de-
sign, the semi-rigid connection results in a value between 1 and

Tab. 2. Catalogue values of column section types

Section h b tw t f A It Iz Iy Iω
type [cm] [cm] [cm] [cm] [cm2] [cm4] [cm4] [cm4] [cm6]

HE120 A 11.4 12.0 0.5 0.8 25.34 6.0 606.2 230.9 6486

HE120 AA 10.9 12.0 0.4 0.5 18.55 2.8 413.4 158.8 4253

HE120 B 12.0 12.0 0.6 1.1 34.01 13.8 864.4 317.5 9431

HE120 M 14.0 12.6 1.3 2.1 66.41 91.7 2017.6 702.8 24880

HE140 A 13.3 14.0 0.5 0.9 31.42 8.1 1033.1 389.3 15086

HE140 AA 12.8 14.0 0.4 0.6 23.02 3.5 719.5 274.8 10226

HE140 B 14.0 14.0 0.7 1.2 42.96 20.1 1509.2 549.7 22514

HE140 M 16.0 14.6 1.3 2.2 80.56 120.0 3291.4 1144.3 54482

HE160 A 15.2 16.0 0.6 0.9 38.77 12.2 1673 615.6 31469

HE160 AA 14.8 16.0 0.4 0.7 30.36 6.3 1282.9 478.7 23794

HE160 B 16.0 16.0 0.8 1.3 54.25 31.2 2492 889.2 48038

HE160 M 18.0 16.6 1.4 2.3 97.05 162.4 5098.3 1758.8 108380

HE180 A 17.1 18.0 0.6 1.0 45.25 14.8 2510.3 924.6 60289

HE180 AA 16.7 18.0 0.5 0.8 36.53 8.3 1966.9 730.0 46427

HE180 B 18.0 18.0 0.9 1.4 65.25 42.2 3831.1 1362.8 93887

HE180 M 20.0 18.6 1.5 2.4 113.25 203.3 7483.1 2580.1 199805

HE200 A 19.0 20.0 0.6 1.0 53.83 21.0 3692.2 1335.5 108176

HE200 AA 18.6 20.0 0.5 0.8 44.13 12.7 2944.3 1068.5 84635

HE200 B 20.0 20.0 0.9 1.5 78.08 59.3 5696.2 2003.4 171413

HE200 M 22.0 20.6 1.5 2.5 131.28 259.4 10640 3651.2 347093

HE220 A 21.0 22.0 0.7 1.1 64.34 28.5 5409.7 1954.6 193506

HE220 AA 20.5 22.0 0.6 0.9 51.46 15.9 4170.2 1510.5 145809

HE220 B 22.0 22.0 1.0 1.6 91.04 76.6 8091 2843.3 295813

HE220 M 24.0 22.6 1.6 2.6 149.44 315.3 14600 5012.1 573830

HE240 A 23.0 24.0 0.8 1.2 76.84 41.6 7763.2 2768.8 328962

HE240 AA 22.4 24.0 0.6 0.9 60.38 23.0 5835.2 2077.0 240028

HE240 B 24.0 24.0 1.0 1.7 105.99 102.7 11260 3922.7 487675

HE240 M 27.0 24.8 1.8 3.2 199.59 627.9 24290 8152.6 1154493

HE260 A 25.0 26.0 0.8 1.3 86.82 52.4 10450 3667.6 517183

HE260 AA 24.4 26.0 0.6 1.0 68.97 30.3 7980.6 2788.0 383288

HE260 B 26.0 26.0 1.0 1.8 118.44 123.8 14920 5134.5 754853

HE260 M 29.0 26.8 1.8 3.3 219.64 719.0 31310 10450 1732251

HE280 A 27.0 28.0 0.8 1.3 97.26 62.1 13670 4762.6 786419

HE280 AA 26.4 28.0 0.7 1.0 78.02 36.2 10560 3664.2 591005

HE280 B 28.0 28.0 1.1 1.8 131.36 143.7 19270 6594.5 1131686

HE280 M 31.0 28.8 1.9 3.3 240.16 807.3 39550 13160.0 2524384

zero. In this examples, the rotational stiffnesses of end con-
nections are changing in between a given equidistance range of
Sq ∈ S = {1E4; 5E4; 1E5; 5E5; 1E6; 5E6;1E7; 5E7} values.

element, MAXROTZ – the maximal rotation. 
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HEB                                                                     HEB

pF

Figure 2. Semi rigid single-bay frame Fig. 2. Semi rigid single-bay frame
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Tab. 3. Results of the single-bay frame under

symmetric loading. (*Note: WZB1 and WZC1 – sec-
tion modulus of the beam and column of optimal so-
lution, TVOL – the total volume of the optimal solu-
tion, MAXMZB – the maximal bending moment of
the beam element, MAXROTZ – the maximal rota-
tion.)

rq 0.00955 0.04599 0.08794 0.42209 0.59362 0.92146 0.95912 0.99155

Sq 10000 50000 1.0E+05 5.0E+05 1.0E+06 5.0E+06 1.0E+07 5.0E+07

WZB1∗ 1.46E-04 1.46E-04 1.46E-04 1.09E-04 1.09E-04 7.73E-05 7.73E-05 7.73E-05

WZC1∗ 7.59E-05 7.59E-05 7.59E-05 7.59E-05 7.59E-05 7.59E-05 7.59E-05 7.59E-05

TVOL∗ 3.4E-02 3.4E-02 3.4E-02 3.1E-02 3.1E-02 2.8E-02 2.8E-02 2.8E-02

MAXMZB∗ 39621 38281 36922 29091 26615 20904 20511 20185

MAXROTZ∗ 3.84E-02 3.64E-02 3.44E-02 3.63E-02 3.18E-02 3.47E-02 3.36E-02 3.27E-02

Tab. 4. Results of the single-bay frame under un-

symmetrical loading (Note: WZB1 and WZC1 – sec-
tion modulus of the beam and column of optimal solu-
tion, TVOL – the total volume of the optimal solution,
MAXFXB – the maximal axial force of the beam el-
ement, MAXFYCA and MAXFYCB - the maximal
axial forces of the column elements, MAXMZB –
the maximal bending moment of the beam element,
MAXMZCA and MAXMZCB – the maximal bend-
ing moment of the column elements, MAXROTZ –
the maximal rotation.)

rq 4.6E-02 8.79E-02 0.42209 0.39521 0.76567 0.86728 0.9703 0.98493

Sq 50000 1.0E+05 5.0E+05 1.0E+06 5.0E+06 1.0E+07 5.0E+07 1.0E+08

WZB1 1.46E-04 0.15E-03 0.108E-03 0.19E-03 0.19E-03 0.19E-03 0.19E-03 0.19E-03

WZC1 3.1E-04 0.31E-03 0.31E-03 0.22E-03 0.17E-03 0.17E-03 0.17E-03 0.17E-03

TVOL 6.26E-02 6.26E-02 5.95E-02 5.4E-02 4.7E-02 4.7E-02 4.7E-02 4.7E-02

MAXFXB 25622 26197 29914 29276 31226 31648 32029 32080

MAXFYCA 19542 19136 17232 14179 10750 10275 9857.5 9802.8

MAXFYCB* 20458 20864 22768 25821 29250 29725 30143 30197

MAXMZB* 38207 36671 27323 34774 53671 56700 59387 59741

MAXMZCA 87721 85562 74531 62811 47259 44964 42941 42675

MAXMZCB 88615 87523 83329 70621 58741 57232 55919 55748

rotation 0.354E-01 0.32E-01 0.287E-01 0.14E-01 0.12E-01 0.11E-01 0.11E-01 0.11E-01

Tab. 5. Results of the two-bay frame – displace-

ments and buckling constraints (Note: MINUX,
MAXUX, MINUY, and MAXUY indicate the mini-
mal and maximal values of displacements. The buck-
ling constraints (BUCK) for beams and columns are
considered as well.)

SET SET 133 SET 133 SET 133 SET 108 SET 83 SET 108 SET 108 SET 108

DESIGN feasible feasible feasible feasible feasible feasible feasible feasible

MINUX .26E-03 .117E-02 .210E-02 .706E-02 .101E-01 .891E-02 .889E-02 .883E-02

MAXUX .26E-03 .117E-02 .210E-02 .706E-02 .101E-01 .891E-02 .889E-02 .883E-02

MINUY .96E-01 .922E-01 .878E-01 .914E-01 .10174 .531E-01 .489E-01 .454E-01

MAXUY .79E-30 .789E-30 .789E-30 .789E-30 .789E-30 .789E-30 .789E-30 .789E-30

BUCKC11 .19039 .24322 .29628 .57611 .74660 .66249 .65814 .65193

BUCKC12 .35076 .35096 .35149 .36038 .36810 .38620 .39033 .39421

BUCKC13 .18813 .23303 .27808 .51526 .65961 .58675 .58274 .57717

BUCKB11 .65705 .63801 .61745 .65869 .82926 .70973 .75255 .79129

BUCKB12 .65705 .63801 .61745 .65869 .77971 .47189 .45500 .44019

TVOL (OBJ) .61E-01 .606E-01 .606E-01 .544E-01 .485E-01 .544E-01 .544E-01 .544E-01

Relationship between end-fixity factor and total volume
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Figure 3. Results of the single-bay frame under symmetric loading 
Fig. 3. Results of the single-bay frame under symmetric loading

5 Conclusions
In this paper, a genetic algorithm was applied for discrete

minimal weight design of steel planar frames with semi-rigid
beam-to-column connections. The frame elements are con-
structed from a predetermined range of section profiles. Two
different catalogue values were determined for beam and col-

0,00E+00

1,00E+04

2,00E+04

3,00E+04

4,00E+04

5,00E+04

6,00E+04

7,00E+04

0 4,60E-02 8,79E-02 0,42209 0,39521 0,76567 0,86728 0,9703  0.98493

Relationship between end-fixity factor and total volume

Fig. 4. Results of the single-bay frame – under unsymmetrical loading
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Fig. 6. Results of the two-bay frame

umn sections. In this study, both the structural analysis and the
optimal design problem were solved, using ANSYS Release 9.0
finite element program.

The purpose of this study was to determine the effect of the
rotational stiffness of beam-to-column connection in the optimal
design while the structural response was changing. The results
obtained for single-bay and two-bay frame structures are shown
in Tables 3, 4, 5. The relationship between the optimal volume
and the end-fixity factor is presented in Figs. 3, 4, 6. The opti-
mal solutions highly depend on the structural geometry and on
the loading conditions. For discrete optimal design of two-bay
frame we obtained better solution in case of semi-rigid joints
than in case of rigid or pinned connections.
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