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Abstract
Kinematic orbits provide a time series of independent posi-

tions, which are a good base for gravity field recovery. Gravity
field recovery using the energy integral requires numerical dif-
ferentiation in order to get velocity information for kinetic en-
ergy. This paper deals with numerical differentiation methods
to test the most effective method for velocity determination of a
LEO (Low Earth Orbiter).
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1 Introduction
In the wake of the New Gravity Satellite era due to the launch

of CHAMP and GRACE and in the future that of the GOCE [1],
processing methods of enormously large orbit data became on
the focus of geodetic interest. The input data are something else
than any time before: some millions of continuous position data
per satellite per year. The huge number of data arises from the
continuous observation from these satellites to the GPS system.
This can be done due to the much higher altitude of the GPS
satellites (20 000 km) compared to that of the gravity satellites
(between 250 and 500 km). The latter is often referred to as
Low Earth Orbiter, i.e. LEO. The GPS-LEO constellation as
described above in technical terms is called High-Low Satellite-
to-Satellite Tracking (High-Low SST).

So some million position-data of LEOs are the basis of global
gravity field determination techniques. The concept behind the
solutions is that the satellites are in free-fall in the gravity field
of the Earth. After modelling and removing all further force
sources (e.g. gravitation of Sun and Moon and other planets,
direct and indirect tides, surface forces (atmospheric drag, solar
radiation pressure)) the remaining orbit is a trajectory in space,
which is governed purely by the gravity field of the Earth. So
the task is ‘only’ to determine the force behind the motion.

For the purpose conservation laws can be applied success-
fully. Newton’s equation of law states the conservation of forces
in a closed system. Applying it for a satellite would require in-
formation on the acceleration along the orbit. That means the
use of a numerical differentiation technique twice on the orbit.
Another option is the use of energy conservation law. The en-
ergy conservation law in an Earth-fixed coordinate system reads

H =
1
2

ẋ2
−

1
2

(ω × x)2
− Vpot (1)

with H noting the Hamiltonian, ω is the angular velocity of
the Earth rotation, x is the position and Vpot is the poten-
tial. This law depends on position, x (in the centrifugal term,
1/2 (ω × x)2 and implicitly in the potential term, Vpot ) and on
velocity, ẋ (in the kinetic energy term, 1/2ẋ2). Having an or-
bit, i.e. a time series of positions, the use of eq. (1) require
derivation of velocities. In this study we focus on the velocity
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determination for the purpose of solving a gravity field model
by the energy conservation law.

2 Kinematic, Dynamic and Reduced-Dynamic Orbits
One can distinguish three different methods of orbit determi-

nation of a LEO using high-low GPS tracking. Kinematic orbits
are derived using only geometrical relationships, dynamic or-
bits are derived by adjusting gravity field parameters to the orbit
and reduced-dynamic orbit use a given gravity model but some
additional free parameters are introduced, too, in order to im-
prove the fit of the model to the observations. Since dynamic
and reduced-dynamic orbits are derived with use of a gravity
field, their positions and velocities are strongly dependent on
the chosen model. Therefore gravity inversion from a dynamic
or reduced dynamic orbit will necessarily reflect the input grav-
ity field.

In order to exclude such a dependency, kinematic orbits are
preferable over the dynamic orbits for gravity field analysis.
However kinematic orbits provide no information on velocity.
These should be derived numerically from the positions.

In case of kinematic orbits, positions are derived epoch by
epoch, almost independently of each other. This means that po-
sition errors are almost uncorrelated (at least, compared to the
correlation between different epochs of a dynamic orbit). They
exhibit an irregular pattern, when compared to a dynamic or
reduced-dynamic orbit. In particular the high-frequency terms
(signal and noise as well) are much smoother in the latter case.
An example of typical differences of kinematic and reduced-
dynamic orbits is shown in Fig. 1. There are clearly jumps
detectable in the figure. These jumps are, actually, some cm
over an orbit length of 200 km; practically these jumps are only
visible in the position residuals (i.e. kinematic minus reduced-
dynamic positions). Since the reduced-dynamic orbit is very
smooth, these jumps are mainly contributed by the kinematic or-
bit. Very likely these jumps are due to loss of phase connection
between the GPS satellites and the receiver. These jumps occur
between independently derived arcs of the orbit, reflecting the
uncertainty of estimation of ambiguity parameters. In general,
the continuous parts of the kinematic orbit contains useful infor-
mation: purely geometrical relative positions. This can be used
for velocity estimation. However, at the jumps, the edges of
continuous arcs should not be employed for deriving kinematic
velocities, however this is out of the scope of this paper.

3 Methods
First of all, we tested some numerical methods for taking the

derivatives. We have tested (1) numerical differentiation, then
we considered different (2) interpolation techniques followed
by differentiation using (a) interpolation by fitting a higher or-
der polynomial, (b) interpolation by cubic splines, (c) Newton-
Gregory interpolation, and (3) smoothing methods followed by
differentiation, such as (a) smoothing by a higher order polyno-
mial, (b) smoothing by cubic spline functions.
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Fig. 1. Kinematic and reduced-dynamic position differences of the CHAMP
satellite.

3.1 Numerical differentiation
Numerical differentiation in its simplest version takes the tan-

gent of the positions at every point derived from two adjacent
points:

ẋi+1/2 =
xi+1 − xi

ti+1 − ti
(2)

The tangent determined linearly from two points, the i + 1th
and the i th points, provides an estimation of the derivative at the
midpoint, i.e. at the i +1/2th epoch. The derivatives derived this
way, therefore, have to be shifted to discrete points, epochs with
integer indexes. This is done by linear interpolation. For uni-
formly distributed time series, i.e. dt = ti+1 − ti = constant ,
the velocity reads

ẋi =
ẋi+1/2 + ẋi−1/2

2
=

xi+1 + xi−1

2 · dt
. (3)

3.2 Interpolation by Fitting a Higher Order Polynomial
Let us define an n −1th order polynomial at an arbitrary point

i of the time series

xi = an−1tn−1
i + an−2tn−2

i + · · · + a2t2
i + a1ti + a0. (4)

An n − 1th order polynomial can unequivocally be fitted to n
consecutive points by solving the coefficients of the polynomial,
ai , with i = 0,. . . , n − 1, because the number of unknowns and
the number of equations are equal. Then the time derivative can
be analytically derived as

ẋi = (n−1)an−1tn−2
i +(n−2)an−2tn−3

i +· · ·+2a2ti +a1. (5)

In this study we have used 7th order polynomial for deriving
velocities, using 8 points for the estimation of the coefficients.
The polynomial estimation is done piece-wise: in any i th point
the neighbouring points i − 3th, i − 2th,. . . , i + 3th, i + 4th are
used for estimating the polynomial. At the end of arcs, i.e. in
the first three and the last four points of a continuous arc, the
velocity is estimated from the polynomial derived in the fourth
and in the last-minus-fifth points, respectively.
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3.3 Interpolation by Cubic Splines
In general, a cubic spline is a set of piece-wise cubic poly-

nomials with certain boundary conditions. Since it is an in-
terpolation technique, at discrete points of the curve the spline
function, g(t), is equal to the corresponding value of the time
series, g(ti ) = xi . The function is ‘piece-wise’, i.e. an epoch-
by-epoch piece-wise function, so every cubic function is valid
only within one interval of the time series (i.e. between ti+1 and
ti ), i.e. g(ti ) = x(t) for ti ≤ t < ti+1.

We are interested in those piece-wise cubic functions, that ful-
fil the following properties: The cubic function must be (1) con-
tinuous, i.e. g(ti )− = g(ti )+ at every i . It should satisfy (2) the
first and (3) the second derivatives as well, i.e. ġ(ti )− = ġ(ti )+
and g̈(ti )− = g̈(ti )+. These properties provide continuity at
the edges of the pieces, i.e. at the discrete points. (4) The third
derivative should be equivalent with the step function. There-
fore it is also continuous in [ti , ti+1] for any discrete i , but
the lower limit and the upper limit are not necessarily equal,
g̈(ti )− , g̈(ti )+.

Among these sets of continuous piece-wise cubic functions
the natural cubic spline is that particular one, which minimizes
the second derivative, that is∫ tn

t0
g̈(t)dt = min . (6)

It minimizes the curvature of the function g(t).
Finding the one and only solution of g(t) satisfying the con-

tinuity properties and the minimum condition, one ends up with
cubic functions for every single interval [ti , ti+1], for any i it
reads

g(t) = ai t3
+ bi t2

+ ci t + di (7)

for ti ≤ t < ti+1. The derivative can then be derived analyti-
cally as

ġ(t) = 3ai t2
+ 2bi t + ci . (8)

The exact formulations solving for the vectors of coefficients (a,
b, c and d) can be found in [6].

3.4 Newton-Gregory Interpolation
An n − 1th order polynomial at an arbitrary point i of a time

series reads (cf. subsection 3.2, (Eq.) 4) xi = an−1tn−1
i +

an−2tn−2
i + · · · + a2t2

i + a1ti + a0. This equation contains n
unknowns, the coefficients ai from i = 0,. . . , n − 1. By consid-
ering n neighbouring points, one can solve for these coefficients.
In an equivalent form it can be written as

xi = a0 + a1(ti − t1) + a2(ti − t1)(ti − t2) + · · ·

+ an−1(ti − t1)(ti − t2) . . . (ti − tn−1), (9)

where t1, t2,. . . , tn−1 are the known values of the interpolation
(i.e. the existing entries of the time series) and ti is the ‘run-
ning’ point, at which the interpolation should be evaluated. It is
equivalent with the polynomial in that both forms describe the
orbit with powers of t up order n − 1 and n coefficients ai . The

number of unknowns, ai , is n, so that we can unequivocally de-
termine them by considering n neighboring points of the time
series.

The solution can be obtained by solving for the increasing
orders of i . The coefficients at the first points are

a0 = x1, a1 =
x2 − x1

t2 − t1
, a2 =

x3−x1
t3−t1

−
x2−x1
t2−t1

t3 − t2
. (10)

The 0th coefficient, a0, is equal to x itself and can be explained
as the 0th gradient of x . The a1 coefficient is the first order
gradient, while a2 is the gradient of the second order gradient.
Therefore the nth coefficient can be generalized as the nth gra-
dient of the function.

By assuming equidistant abcissae, t , the solution gets simpler,
since any ti+1−ti time difference is a constant, h, and it redefines
the nth order gradient as an nth order difference of the function
in the nominator and the nth power of the time difference, h, and
the factorial of the order in the denominator:

ai =
1
n!

1n x0

hn (11)

After obtaining the coefficients using the equation above, the
first derivative of a general j th tag of the interpolation formula,
a j−1(ti − t1)(ti − t2) . . . (ti − t j−1) becomes

a j−1[(ti − t2)(ti − t3) . . . (ti − t j−1)

+ (ti − t1)(ti − t3) . . . (ti − t j−1) + · · · (12)

+ (ti − t1)(ti − t2) . . . (ti − t j−2)];

or equivalently in a compact notation

a j−1

j−1∑
k=1

j−1∏
f =1

(ti − t f ) (13)

for f , k.
In this study we used 7 adjacent points for the interpolation.

In order to represent the numerical simplicity of this method, we
show the solution of the first time derivative of the function x ,

ẋi =
1

60h
(−xi−3 + 9xi−2 − 45xi−1 + 45xi+1 − 9xi+2 + xi+3).

(14)

3.5 Smoothing by a Higher Order Polynomial
In general, the ‘smoothing’ method is the same what we call

‘interpolation’ using a higher order polynomial (cf. section 3.2),
with a solution for the derivative ẋi = (n − 1)an−1tn−2

i [1] +

(n − 2)an−2tn−3
i + · · · + 2a2ti + a1 (cf. eq. (5)).

The only difference is that now N > n points are used for
fitting the n − 1th order polynomial piece-wise to the time se-
ries. Since in this case we have N − n equations, more than the
number of unknowns, the system of equations can be solved by
least squares adjustment.

In this study we fit a 7th order polynomial to 12 adjacent
points and the derivative is determined at the middle point, then
the whole procedure is moved one epoch further (moving win-
dow) for determining velocity at the next epoch.
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3.6 Smoothing by Cubic Splines
Splines were originally used for interpolation, described in

section 3.3. They can be applied to smoothing by leaving a
certain interval for the ordinate (position) of the spline at ev-
ery epoch. Therefore in general the minimality criterion defined
for spline interpolation is extended by a smoothing criterion.

Similarly to the interpolation, we consider a group of piece-
wise cubic functions, which are continuous; the continuity holds
on the first and the second derivatives as well, i.e. g(ti )− =

g(ti )+, ġ(ti )− = ġ(ti )+ and g̈(ti )− = g̈(ti )+ at every i , and the
third derivative is the step function, so g̈(ti )− , g̈(ti )+.

Among these functions we define the smoothing cubic spline
by extending the minimality criterion of the spline interpolation
with an additional one for smoothing. So, the smoothing cubic
spline should minimize the second derivative∫ tn

t0
g̈(t)dt = min, (15)

such that
n∑

i=0

(g(ti ) − xi

δ xi

)2
≤ S. (16)

The smoothing criterion is defined as a function of the vari-
ance of the offset between the real- and the smoothed ordinates,
g(ti ) − xi , weighted by the standard deviation, δ xi , and kept
under a chosen smoothing parameter, S.

Finding the one and only solution of g(t), the derivative of
the function can be obtained as

ġ(t) = 3ai t2
+ 2bi t + ci . (17)

The exact formulations for the determination of the coefficients
can be found in [6]. Further discussions on smoothing splines
are given in [5].

4 Numerical Tests
For tests we have chosen one single day of the CHAMP kine-

matic orbit, day 200 (equivalent to 19th, July) of 2002 [7]. The
day has been chosen by chance, and the data of this day by visual
screening was found to be ‘typical’ among ‘good’ data, which
means consistent data during the day with small data gaps only.

4.1 Accuracy Test on Positions
The first test is application of the numerical methods without

taking the derivative, in order to test the numerical limitations of
the techniques. So comparison of the approximated kinematic
positions and the real position has been performed. As for the
interpolation techniques, no relevant differences between them
is expected; differences show numerical errors of these methods.
For the smoothing methods the differences of the signals depend
on the arbitrary chosen smoothing parameter, which is in case of
the cubic spline smoothing defined directly, while in case of the
polynomial fitting it is explicitly governed by the choice of the
number of points and the order of the polynomial. The optimal

Tab. 1. RMS of kinematic position residuals obtained by different mathe-
matical methods.

RMS position residual [m]

Numerical derivation 1.9463
Spline interpolation 0.0
Polynomial fitting (interpolation) 1.3018 × 10−6

Newton-Gregory interpolation 1.4228 × 10−7

Smoothing Splines 2.1276
Polynomial smoothing 4.8747

Tab. 2. Optimal scale factor for the smoothing parameter of the smoothing
splines. The term ‘position residuals’ refer to kinematic minus smoothed po-
sitions, while ‘velocity residuals’ refers to reduced-dynamic minus smoothed
velocities.

Scale RMS position RMS velocity

factor residual [m] residual [mm/s]

10 0.8667 0.3336
40 1.7360 0.3334
60 2.1276 0.3334

100 2.7497 0.3335
150 3.3714 0.3335
200 3.8965 0.3337

smoothing parameter for the smoothing spline is discussed later
in this section.

Table 1 shows the RMS of the differences of analytically de-
rived and real kinematic positions. The small RMS values of
the interpolation techniques show that the methods are correctly
implemented. The results for smoothing methods show that the
room left for smoothing is in the range of some meters.

4.2 The Optimal Smoothing Parameter for a Smoothing by
Cubic Splines
The smoothing extent is known to depend on the length of the

time series [5], and also on the amplitude of the signal (sec. 3.6).
The smoothing parameter was defined as a linear function of the
length of the arcs, S = scale_factor × length(arc). We ap-
plied several smoothing spline functions to kinematic positions
with different smoothing parameters, and the zeroth derivative
(position) and determined the first derivative (velocity) of the
smoothed function. Table 2 shows the RMS of the smoothed
positions/velocities as function of the scale-factor, compared to
the real kinematic positions/reduced-dynamic velocities, respec-
tively. (In case of the velocity we have no value to compare the
results to). A loose assumption: we assume that under-smoothed
velocities would provide high RMS of the velocity residuals
since all the noises are included, while over-smoothed veloci-
ties would again mean high RMS of the residuals, since parts of
the signal is smoothed away. So the smoothed velocities are as-
sumed to be the most realistic if they are the most similar to the
reduced-dynamic velocities. This way we found the scale factor
of 60 being the most accurate for the test day.

Keep in mind that the smoothing parameter is a function of the
amplitude of the signal as well. Later on (see the next section)
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Tab. 3. RMS of kinematic velocity residuals obtained by different mathe-
matical techniques. No reference orbit.

RMS velocity residual [mm/s]

Numerical derivative 129.765 [m/s]

Spline interpolation 0.3334
Polynomial fitting (interpolation) 0.3350
Newton-Gregory interpolation 0.3102
Smoothing Splines 0.3334
Polynomial smoothing 0.2219

when the smoothing is applied to position residuals (a much
smaller signal), the smoothing parameter is defined as tenth of
the length of the arc. Defining that smoothing parameter is
more uncertain, since there is no possibility to define a refer-
ence for optimisation. In that case the reduced-dynamic veloci-
ties cannot be used for minimising the velocity residuals, since
in the remove-restore step of kinematic velocity determination
the reduced-dynamic orbit is used as the reference orbit (cf. sec-
tion 4.3). Thus the smoothing parameter is defined empirically,
by screening the smoothed and the real kinematic position resid-
uals.

In Table 2 the RMS of the position residuals are increas-
ing with increasing scale factors. This feature suggests that by
smoothing not the high-frequency noise but the low-frequency
signal is minimised. Fig. 2a shows a sequence of the un-
smoothed and the smoothed position residuals. Unfortunately
the high-frequency information is unaltered, but the whole sig-
nal moves away from the reduced-dynamic positions (since the
position residuals goes away from zero by increasing smoothing
parameter). Fig. 2b shows the unsmoothed and the smoothed
position residuals when the smoothing is done on position resid-
uals. The figure shows that in this case the different smoothing
parameters control different wavelengths of the smoothing, as
to be expected. This figure shows the non-spectral-filter char-
acteristics of the smoothing spline function: in case of a signal
with a characteristically large amplitude at a certain frequency
(i.e. the orbital frequency), the smoothing spline minimises the
curvature at that frequency. However, in case of a nearly white
spectral distribution of the data the smoothing starts to minimise
at the highest frequencies.

4.3 Velocity from the Full Position Signal
Different interpolation and smoothing techniques for taking

analytically the derivative of the position are first applied to
purely kinematic positions. Fig. 3 shows the velocity residuals,
i.e. the differences of the reduced-dynamic and the kinematic
velocities. The following table (Table 3) shows the RMS of the
velocity residuals.

Interpolation techniques provide all comparable accuracy
for velocities. Newton-Gregory interpolation out-performed
slightly the other techniques. As for the smoothing techniques,
certain improvement was expected, which was actually deliv-
ered by the smoothing polynomial (0.2219 mm/s). A range of
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Fig. 3. Kinematic velocity residuals (i.e. minus reduced-dynamic velocity).
For this solution no reference orbit was applied. (Abscissa: epochs [30 s], ordi-
nate: velocity [mm/s]).

degrees of smoothing was tested for the smoothing spline, how-
ever those failed to improve the accuracy of the velocities com-
pared to the spline interpolation (cf. also section 4.1).

4.4 Velocity from Residual Position Signal
With the hope of improving the accuracy, we have tried to re-

duce the amplitude of the signal by making use of a reference
orbit in a remove-restore way. After removing the reference or-
bit, we took the derivatives on residuals (having an amplitude of
some cm – instead of some thousands of km signal of the orig-
inal position in the Earth-fixed system), finally adding back the
residual kinematic velocity to the velocity of the reference orbit.

For reference orbits purely dynamic orbits have been deter-
mined, making use of the EIGEN-1S and the TEG-4 models,
both up to degree and order of 120. The reduced-dynamic
CHAMP orbit was also used as a reference orbit. The reduced-
dynamic CHAMP orbit was based on the EIGEN-2 gravity
model. The dynamic and reduced-dynamic positions were com-
pared to the kinematic positions; the RMS of the position resid-
uals was 1.1233 m, 1.1091 m and 0.0311 m for the dynamic
EIGEN-1S, dynamic TEG-4 and reduced-dynamic EIGEN-2 or-
bits, respectively. Comparisons also has been done for the ve-
locities: the EIGEN-1S and the TEG-4 velocities differ from the
reduced-dynamic velocities with an RMS of 1.5826 mm/s and
1.3562 mm/s, respectively.

Figs 4, 5b and 6 show the velocity residuals, the differences
of the kinematic and the reduced-dynamic velocities. Tables 6 –
6 show the RMS of the velocity residuals.

The results show no relevant dependence on the interpolation
techniques – reflecting that the numerical errors of these tech-
niques are less than 10−8-fold of the signal. It is noteworthy
that the accuracy of velocities are slightly worse than in case of
the no-reference-orbit velocity (cf. Table 3). This can be due to
the less smooth characteristics of the signal. Although the posi-
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Fig. 2. Smoothed kinematic position residuals vs.
real position residuals. Left frame: smoothing was
done on the full position signal. Right frame: smooth-
ing was done on position residuals.
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Fig. 4. Kinematic velocity residuals, applying an EIGEN-1S based dynamic
orbit for reference. (Abscissa: epochs [30 s], ordinate: velocity [mm/s]).
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Fig. 5. Kinematic velocity residuals, applying a TEG-4 based dynamic orbit
for reference. (Abscissa: epochs [30 s], ordinate: velocity [mm/s]).

tion residuals are drastically reduced, there is a large change in
the curvatures of the function.

Smoothing techniques: similarly to interpolation, there is no
significant change for the polynomial, however the smoothing
spline improves a lot. For the polynomial, one can get lower
RMS by altering the length of the arc for velocity estimation or

Tab. 6. RMS of kinematic velocity residuals obtained by different mathe-
matical approximation techniques. Reference orbit: reduced-dynamic, EIGEN-2

RMS velocity residual [mm/s]

Numerical derivation 129.765 [m/s]

Spline interpolation 0.3356
Polynomial fitting (interpolation) 0.3465
Newton-Gregory interpolation 0.3185
Smoothing Splines 0.1554
Polynomial smoothing 0.2253

RMS velocity residual [mm/s]

Numerical derivation 129.765 [m/s]

Spline interpolation 0.3384
Polynomial fitting (interpolation) 0.3492
Newton-Gregory interpolation 0.3213
Smoothing Splines 0.1541
Polynomial smoothing 0.2269

RMS velocity residual [mm/s]

Numerical derivation 129.767 [m/s]

Spline interpolation 0.3394
Polynomial fitting (interpolation) 0.3505
Newton-Gregory interpolation 0.3220
Smoothing Splines 0.1456
Polynomial smoothing 0.2255

the order of the polynomial according to the less smoothed sig-
nal and its much smaller magnitude. A possible explanation of
the large improvement using the smoothing splines in a remove-
restore sense is the nearly white spectral distribution of the sig-
nal. This should be analysed in the frequency domain (cf. [3]).
Another possible explanation is that during the remove-restore
step, the reference orbit affects the solution. Let us consider
an obvious example for a false smoothing in a remove-restore
step, where the output is dominated by the reference orbit. If
one over-smoothes the position residuals, all the velocity resid-
uals are smoothed to zero. Then the restore step adds zero to
the reference orbit, providing the reference velocities without
any change. We should prove therefore, (1) how our results dif-
fer from the reference, and (2) whether similar velocities result
when different reference orbits are used.
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Fig. 6. Kinematic velocity residuals, applying the EIGEN-2 based reduced-
dynamic orbit for reference. (Abscissa: epochs [30 s], ordinate: velocity
[mm/s]).

5 Discussion
For investigating whether our kinematic velocities are inde-

pendent of the chosen reference orbit, the differently derived ve-
locities and the different reference velocities are compared with
each other. Table 7 contains RMS differences between velocities
of different origin. These are:

1 ‘EIGEN1 dyn.’: dynamic velocity, with EIGEN-1S model
used for precise orbit determination (POD).

2 ‘TEG dyn’: dynamic velocity, with TEG-4 model used for
POD.

3 ‘EIGEN2 red-dyn.’: reduced-dynamic velocity, with EIGEN-
2 model used for POD. (Note: the reduced-dynamic orbit fol-
lows very closely the kinematic orbits, therefore the residuals
are much smaller then in case of a dynamic orbit.)

4 ‘EIGEN1 kin.’: kinematic velocity, using ‘EIGEN1 dyn.’ as
reference for the velocity determination (cf. Table 6).

5 ‘TEG kin.’: kinematic velocity, using ‘TEG dyn’ as reference
for the velocity determination (cf. Table 6).

6 ‘EIGEN2 kin.’: kinematic velocity, using ‘EIGEN2 red-dyn.’
as reference for the velocity determination (cf. Table 6).

7 ‘no-ref. kin.’: kinematic velocity, derived from the full posi-
tion signal, no reference orbit applied (cf. Table 3).

We compare first the RMS differences of table 7 with each
other. They suggest no dependency of the kinematic veloci-
ties on the reference orbit. (1) Differences of the different dy-
namic velocities with each other and with the kinematic veloc-
ities (first 2 lines of the table) are the largest, showing some
1.0-1.6 mm/s RMS between them. Excluding the last column
(the no-reference orbit case) from the analysis one can recognise

Tab. 7. The RMS velocity differences between the different (reduced)-
dynamic and kinematic velocities [mm/s].

RMS [mm/s] TEG EIGEN2 EIGEN1 TEG EIGEN2 no-ref.

dyn. red-dyn. kin. kin. kin. kin.

EIGEN1 dyn. 0.9661 1.5189 1.5622 1.5268 1.5259 1.5622
TEG dyn. 1.3036 1.3125 1.3104 1.3115 1.3564
EIGEN2 rd. 0.1478 0.1458 0.1357 0.3876
EIGEN1 kin. 0.0615 0.0513 0.3399
TEG kin. 0.0475 0.3386
EIGEN2 kin 0.3396

the following: (2) The EIGEN2 reduced-dynamic RMS veloci-
ties are an order of magnitude smaller than the dynamic veloc-
ities (3rd line of the table, typically some 0.15 mm/s), (3) the
CHAMP kinematic velocities of different origin show a similar-
ity in size with each other (0.04-0.06 mm/s; cf. 0.0615, 0.0513
and 0.0475 in the table). Thus we conclude that the kinematic
velocities with different reference orbits used for velocity de-
termination (EIGEN1 kin., TEG kin.) provide similar RMS
values. Their size is smaller than any other kind of velocities
(dynamic, reduced-dynamic), cf. the 5th and the 6th columns.
The no-reference orbit solution is a different story. It shows a
0.35 mm/s RMS similarity to the other kinematic sets, which is
slightly smaller than RMS using the EIGEN2 reduced-dynamic
orbit.

What is the absolute accuracy of a CHAMP velocity set? This
question has been discussed at a workshop, the CHAMP Or-
bit Campaign in Potsdam held in 2002. The CHAMP reduced-
dynamic velocities of different institutes were found to differ
only about 0.1 mm/s. These sets of reduced-dynamic velocities
were derived by essentially independent techniques, so that we
can assume that 0.1 mm/s is a representative estimate of the ac-
curacy of these reduced-dynamic velocities. According to this
estimate, an accurate estimation of the kinematic velocities in
absolute sense should not differ from the reduced-dynamic ve-
locity (EIGEN2 red-dyn. in Table 7) by more than this thresh-
old. In Table 7 all estimates for velocity exceed the 0.1 mm/s
threshold, particularly the no-reference orbit case seems to be
unreliable (0.3876 mm/s). At this point we should discuss the
characteristics of these errors and their effect on the gravity anal-
ysis process. Probably the kinematic orbit contains systematic
as well as random errors. The kinematic velocities are affected
by errors of the kinematic positions. The different velocity es-
timation methods make the different epochs interdependent, be-
cause neighbouring points are involved in the velocity estima-
tion. In the next processing step the velocity errors are squared
in the energy integral when the disturbing potential is derived.
The spherical harmonic analysis is done by Least Squares Ad-
justment. The observation equations are an expansion of the
disturbing potential in terms of spherical harmonics. The dis-
turbing potential is the vector of observables, l. It is multiplied
by the inverse normal matrix, x = N−1l , solving for the vec-
tor of unknowns, x , the spherical harmonic coefficients. This
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multiplication with the inverse normal matrix corresponds to a
weighted summation of the observables over time. Random er-
rors of the disturbing potential largely cancel while systematic
errors are accumulated. Thus primarily the systematic errors of
the disturbing potential have notable effects on the solution. By
squaring the kinematic velocity errors for the computation of the
disturbing potential, no correlation between different epochs has
been taken into account. If the kinematic velocity errors are ran-
dom, then the disturbing potential is random too. However, it
is hard to assume that kinematic velocities are affected only by
random errors, since we include always several (minimum two)
neighbouring points for numerical derivation. So the numerical
derivation introduces systematic errors. Also probably the kine-
matic positions are affected by systematic errors as well from
the POD.

However there is no estimate available for the contribution of
the systematic and of the random part of the errors. The system-
atic errors of POD and of the numerical derivation may be small
compared to the signal, so velocities with a relatively high RMS
difference from the reduced-dynamic velocities do not necessar-
ily imply a bad solution for the spherical harmonic analysis. In
the case of the no-reference orbit velocity one surely knows that
(1) it is contaminated by the full error spectrum of the kinematic
positions and (2) it is independent of any a priori gravity field.

The second property is of particular importance. The first
one is interesting from a point of view of a probable weakness
of the remove-restore technique. That is, smoothing techniques
normally alter a certain bandwidth of the frequency spectrum.
This means that (1) at some frequencies, e.g. once and twice
per revolution, the velocity signal is dominated by the reference
velocity, while at others it is undisturbed, and due to this (2) we
introduce a systematic error by the smoothing. The first point
should be analysed by investigations in the frequency domain
[3], while the effect of the systematic errors can not really be
investigated. What can be done, however, is to perform the full
spherical harmonic analysis, and study the coefficients, whether
they show relevant correlation with the input gravity field(s).

6 Conclusion
Finally we have tested two different techniques for kinematic

velocity estimation. The difference is the way how the noise of
the kinematic orbit is treated. This was the concept of deriv-
ing two gravity models at the Technical University of Munich
(TUM) from CHAMP data.

We attempted to smooth out the noise by applying a smooth-
ing by cubic spline functions (3.6) on position residuals. In this
case we disturb the spectral characteristics of the orbit errors by
introducing a systematic error by the fitting of the spline func-
tion. In this case the reference orbit (reduced-dynamic EIGEN-
2 orbit) also affects the solution – the extent of its effect is not
known. Therefore further investigations should be done in the
frequency domain, and it has been discussed in a separate paper

[3]. Velocities of this kind were used for the TUM-1S gravity
model [4].

We also derived kinematic velocities by fitting a 7th order
polynomial to the kinematic positions with the Newton-Gregory
interpolation technique (3.4). In this case all noise is included,
however, at least its spectral characteristic is unchanged. This
solution should work out well, if the kinematic orbit errors are
dominated by random errors, and systematic errors of the inter-
polation are less relevant. These velocities were used for the
TUM-2Sp solution [2].

According to these two models, in the case of the CHAMP the
latter solution was more successful [2]. However, it is obvious
that this is case sensitive: for other satellites with less smooth
orbit a smoothing can effectively provide successful filtering of
the data.
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