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Abstract
The aim of this research is to introduce a new type of stochas-

tic optimal topology design method with iterative solution tech-
nique. The paper presents stochastic topology design procedure
and compares the achieved results with optimal obtained topolo-
gies on deterministic way. The standard mathematical program-
ming problem is based on a minimum volume design procedure
subjected to a bounded compliance constraint given in stochas-
tic form. In the numerical method an optimality criteria proce-
dure is used.
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1 Introduction
Recently the topology optimization is very popular topics in

the expanding field of optimal design but the majority of the
papers deal with deterministic problems or reliability analy-
sis. The reason for introducing stochastic programming theory,
more generally, probabilistic notation is to attempt to consider
in a more rational way the fact that the precise strength of a
structure is not known, among the constraints there are proba-
bilistic inequalities and perhaps even more importantly, that the
loadings applied to the structure are not known with any degree
of precision. There is an extensive and expanding literature in
this area. Marti made significant achievements in this expanding
field [1]-[4]. His Phd student, Stöckl gives a very wide study
on stochastic optimization by mathematical programming [5].
Melchers used significant simplification in his optimality crite-
ria based reliability design [6]. Recently Kharmanda et al. [7]
have integrated the reliability analysis into a deterministic topol-
ogy optimization problem by the introduction of the reliability
constraint into the standard SIMP procedure, but this one is fun-
damentally different from the presented method here.

The aim of this research is to introduce a new type of proba-
bility based topology design iterative procedure and to compare
the obtained results with optimal topologies calculated on de-
terministic way. This paper is a revised and extended version of
reference [12]. The paper is divided into three parts: the first part
deals with the deterministic topology optimization briefly, the
second part presents the probabilistic based design and the third
part compares the topologies obtained by the use of stochastic
and deterministic approach.

Introducing the deterministic problem an iterative technique
(SIMP) and the connected numerical examples will be discussed
briefly. The object of the design (ground structure) is a rectangu-
lar disk with given loading and support conditions. The material
is linearly elastic. The design variables are the thicknesses of
the finite elements. To obtain the correct optimal topology some
filtering method (the ground elements are subdivided into fur-
ther elements) has to be applied to avoid the so-called “checker-
board pattern” [10]. The optimization problem is to minimize
the penalized weight of the structure subjected to a given com-
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pliance and side constraints.
In the proposed probabilistic topology optimization method:

the minimum penalized weight design of the structure is sub-
jected to compliance constraint which has uncertainties and side
constraints. The compliance design is very often applied in the
field of topology optimization due to its simple formulations but
there are a significant number of researchers who state that the
method is not acceptable in practice due to the uncertainties of
the compliance. This study makes an attempt to get closer to the
reality in case of compliance design. If the compliance value is
given by the distribution function, the mean value and variance,
then the deterministic topology problem can be modified and the
compliance constraint is substituted by a probability constraint.
This probabilistic expression can be used as a constraint in the
original problem. By the use of the first order optimality crite-
ria a redesign formula of the stochastically constrained topology
optimization problem can be derived.

The new classes of optimal topologies with their analytical
and numerical confirmation are presented. The standard FEM
computer program with quadrilateral membrane elements is ap-
plied in the numerical calculation. Through the numerical ex-
amples the paper compares the deterministic optimal topologies
and optimal topologies obtained in case of uncertain situations.

2 Optimization problem
2.1 Deterministic problem determination
The deterministic compliance design procedure is known

from literature (e.g. Lógó [8]). For illustration purposes, by
the use of the FEM, let us consider the following simple case:

• the linearly elastic, 2D structure (disk) is subdivided into
(g = 1, . . ., G) ground elements with constant thicknesses
(tg) which are either tg = tmin = 0 or tg = tmax = 1, such
that each ground element (g) contains several sub-elements
(e=1,. . . ,Es), whose stiffness coefficients are linear homoge-
neous functions of the ground element thickness tg . Practi-
cally it means that the meshing consists of two parts, a pri-
mary and a secondary one.

• single static loading,

• given boundary conditions and

• compliance constraints.

The above-normalized formulation is equivalent with the prob-
lems with a different prescribed maximum thickness tg = tmax.
Due to the linear relations this is done by multiplying all loads
by tmax, whilst stresses, strains and displacements do not alter
their values.

The weight (W ) of the structure is given by

W =

G∑
g=1

γg Agtg. (1)

Where γg is the specific weight and Ag the area of the ground
element g.

The compliance constraint can be expressed as

uTKu − C ≤ 0; (2)

where K is the system stiffness matrix, u is the nodal displace-
ment vector associated with the load F. In Eq. (2) the nodal dis-
placement vector u is calculated from the Ku=F linear system.

The side constraints can be stated as

−tg + tmin ≤ 0; ( f or g = 1, ..., G) ;

tg − tmax ≤ 0; ( f or g = 1, ..., G) .
(3)

In order to suppress the intermediate thicknesses, the weight cal-

culation formulation is replaced by W̃ =

G∑
g=1

γg Agt
1
p

g , where p

is the penalty parameter and p ≥ 1. This gives the exact weight
value for tg =0 and tg =1 in case any p value. The use of the
penalty parameter has similar effect in the later formulations as
its role was in the classical optimality criteria method.

The deterministic optimization problem is to minimize the
penalized weight of the structure which is subjected to a given
compliance and side constraints.

W̃ =

G∑
g=1

γg Agt
1
p

g = min!

subject to


uTKu − C ≤ 0;

−tg + tmin ≤ 0; ( f or g = 1, ..., G) ,

tg − tmax ≤ 0; ( f or g = 1, ..., G) .

(4)

2.2 Stochastic problem determination
Let us suppose that in case of probabilistic design the lower

and upper compliance bounds are random variables and they
follow normal distribution. They are given by their distribu-
tion functions 8 (C1), 8 (C2), mean values and variances (Cmin,
σmin, Cmax, σmax), respectively. The compliance constraint has
the modified form

P(C1 ≤ uTKu ≤ C2) ≥ q; (5)

where q ≥ 0 is the given probability value. Substituting Eq. (5)
in Eq. (4) one can obtain the following optimal design formula-
tion:

W̃ =

G∑
g=1

γg Agt
1
p

g = min! (6.a)

subjectto


q − P(C1 ≤ uTKu ≤ C2) ≤ 0;

−tg + tmin ≤ 0; (for g = 1, ..., G) ,

tg − tmax ≤ 0; (for g = 1, ..., G) .

(6.b-d)

Let us suppose that C1 and C2 are independent random vari-
ables, so Eq. (6.b) can be written as

P
(

C1 ≤ uTKu
)

P
(

uTKu ≤ C2

)
≥ q . (7)
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Then the minimum penalized weight problem subjected to prob-
abilistic constraint is defined as follows:

W̃ =

G∑
g=1

γg Agt
1
p

g = min! (8.a)

subject to


q − P(C1 ≤ uTKu)P(uTKu ≤ C2) ≤ 0;

−tg + tmin ≤ 0; (for g = 1, . . . , G) ;

tg − tmax ≤ 0; (for g = 1, . . . , G) .

(8.b-d)

To simplify the probabilistic constraint (8.b) the following stan-
dardized forms [9] can be introduced for the random variables:

q − P
(

C1 − Cmin

σmin
≤ x

)
P
(

y ≤
C2 − Cmax

σmax

)
≤ 0; (9)

where

x =
uTKu − Cmin

σmin
and y =

uTKu − Cmax

σmax
.

The density functions and the distribution functions are the
following:

dsx =
e−

x2
2

√
2π

, dsy =
e−

y2
2

√
2π

, drx =

x∫
−∞

e−
z2
2

√
2π

dz, dry =

∞∫
y

e−
z2
2

√
2π

dz.

By the use of the standardized forms of the random variables
constraint (8.b) can be written as follows:

q −

x∫
−∞

e−
z2
2

√
2π

dz

∞∫
y

e−
z2
2

√
2π

dz ≤ 0; (10)

The final form of minimum penalized weight problem subjected
to probabilistic constraint is defined as follows:

W̃ =

G∑
g=1

γg Agt
1
p

g = min! (11.a)

subject to


q −

x∫
−∞

e−
z2
2

√
2π

dz
∞∫
y

e−
z2
2

√
2π

dz ≤ 0;

−tg + tmin ≤ 0; (for g = 1, . . . , G);

tg − tmax ≤ 0; (for g = 1, . . . , G).

(11.b-d)

2.2.1 Lagrange function
Using the Lagrange multipliers υ, αg , βg and slack variables

h1, h2g , h3g for the constraints in problem (11), the following
Lagrange function can be written:

L
(
tg, υ, αg, βg, h1, h2g, h3g

)
=

G∑
g=1

γg Agt
1
p

g + υ

(
q −

x∫
−∞

e−
z2
2

√
2π

dz

∞∫
y

e−
z2
2

√
2π

dz + h2
1

)
+

G∑
g=1

αg

(
−tg + tmin + h2

2g

)
+

G∑
g=1

βg

(
tg − tmax + h2

3g

)
(12)

2.2.2 Kuhn-Tucker conditions
Neglecting the details, one can obtain

∂L
∂tg

=
1
p
γg Agt

1−p
p

g + ν

(
dsx · dry

σ 2
min

+
dsy · drx

σ 2
max

)
×(

∂uT

∂tg
Ku + uT ∂K

∂tg
u + uT K

∂u
∂tg

)
− αg + βg = 0;

(g = 1, . . . , G). (13.a)

Due to the symmetry of the stiffness matrix K and other simpli-
fication Eq. (13.a) can be replaced by the following relation

∂L
∂tg

=
1
p
γg Agt

1−p
p

g − ν

(
dsx · dry

σ 2
min

+
dsy · drx

σ 2
max

)
×

Es∑
e=1

u
T

ge

∂Kge

∂tg
uge − αg + βg = 0;

(g = 1, . . . , G) , (13.b)

where the subscript ge refers to the e-th finite element of the g-th
ground element.

If the “normalized” element stiffness matrix is K̃ge (e.g. cal-
culated for a unit thickness (tg = 1)), then due to the linear
relation the element stiffness matrix Kge for the actual thickness
tg is expressed as Kge = tgK̃ge and ∂Kge

∂tg
= K̃ge. Introducing

the following notation Rg = t2
g

Eg∑
e=1

uT
geK̃geuge the Eq. (13.b)

becomes very simple

1
p
γg Agt

1−p
p

g − υ

Rg

(
dsx·dry
σ 2

min
+

dsy·drx
σ 2

max

)
t2
g

− αg + βg = 0;

(g = 1, . . . , G). (13.c)

Continuing the further derivations:

∂L
∂ν

= q −

x∫
−∞

e−
z2
2

√
2π

dz ·

∞∫
y

e−
z2
2

√
2π

dz + h2
1 = 0; (14.a)

∂L
∂h1

= 2νh1 = 0; (14.b)

∂L
∂αg

= −tg + tmin + h2
2g = 0; (15.a)

∂L
∂h2g

= 2αgh2g = 0; (15.b)

∂L
∂βg

= tg − tmax + h2
3g = 0; (16.a)

∂L
∂h3g

= 2βgh3g = 0; (16.b)

Omitting the details from Eqs. (13.c), (14.a-b), (15.a-b) and
(16.a-b) the values of the Lagrange multipliers, slack variables
and the thickness values tg can be calculated iteratively.
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As it is in COC type methods, before the calculation of the
Lagrange multiplier ν, one needs to define two sets of the thick-
nesses: a set of active and a set of passive thicknesses.

There exist three possibilities:
If tmin < tg < tmax (or by other words, the ground element is

“active”, g ∈ A) then αg = βg = 0 and by (13.c) the following
formula can be obtained

tg =

υpRg

(
dsx ·dry

σ 2
min

+
dsy·drx
σ 2

max

)
Agγg


p

p+1

(17)

In case of tg = tmin, αg ≥ 0, h2g = 0 and (13.c) becomes

tg ≥

υpRg

(
dsx ·dry

σ 2
min

+
dsy·drx
σ 2

max

)
Agγg


p

p+1

(18)

This means that if (17) gives a tg-value which is smaller than
tmin then (13.c) is satisfied by tg = tmin. Similarly, in case of
tg = tmax, βg ≥ 0, h3g = 0 and then (13.c) implies

tg ≤

υpRg

(
dsx ·dry

σ 2
min

+
dsy·drx
σ 2

max

)
Agγg


p

p+1

(19)

This allows tg = tmax when (17) gives a tg-value which is greater
than tmax. If tg = tmin or tg = tmax we call the ground element
“passive” (g ∈ P).

2.2.3 Optimality criteria and the final iterative formulas
If a ground element is “active”,(g ∈ A) then Eq. (13.c) can

be written as follows

1 − ν

(
dsx·dry

σ 2
min

+
dsy·drx
σ 2

max

) Es∑
e=1

u
T

ge

∂Kge
∂tg

uge

1
p γg Agt

1−p
p

g

= 0;

(g = 1, . . . , G). (20.a)

By words it means that in case of optimal solution the stochas-
tically modified average strain energy variation of all active ele-
ments are same and constant. This expression eq. (20.a) can be
called as optimality criteria of the stochastic compliance design.

According to the simplification in Eq. (13.c) the Eq. (20.a) is
equivalent with the following expression

1 − ν

Rg

(
dsx·dry

σ 2
min

+
dsy·drx
σ 2

max

)
1
p γg Agt

1+p
p

g

= 0;

(g = 1, . . . , G). (20.b)

The value of the Lagrange multiplier ν during the iteration pro-
cess may be found from Eq. (20.b) by minimizing the sum of

the squares of the residuals at iteration n:

Resn =

G∑
g=1

1 − ν

Rg

(
dsx·dry

σ 2
min

+
dsy·drx
σ 2

max

)
1
p γg Agt

1+p
p

g


2

(21)

Since the thickness value for passive elements (g ∈ P) is given,
the “effect” of the zero thickness elements can be handled in Eq.
(21) and for active elements (g ∈ A), it can be calculated by the
use of (21), then at iterate (n) the Lagrange multiplier ν can be
formed as follows:

νn =

G∑
g=1

 Rg,n−1

(
dsx·dry

σ 2
min

+
dsy·drx
σ 2

max

)
1
p γg Agt

1+p
p

g,n−1


G∑

g=1

 Rg,n−1

(
dsx·dry

σ 2
min

+
dsy·drx
σ 2

max

)
1
p γg Agt

1+p
p

g,n−1


2 , (22)

where Rg,n−1 = t2
g,n−1

Eg∑
e=1

uT
geK̃ge uge was calculated by the

results of the (n − 1)-th iterate.
If the probabilistic compliance constraint is active in problem

(8.a-d) (e.g. satisfies the equality sign) the following form holds

x∫
−∞

e−
z2
2

√
2π

dz

y∫
−∞

e−
z2
2

√
2π

dz − q = 0 (23)

where x and y are given by (9). This equation can be used as a
termination condition.

The optimal solution can be obtained by evaluating iteratively
the thickness values tg and the Lagrange multiplier ν from (17)
and (22).

2.2.4 Stochastic SIMP algorithm
The Applied stochastic SIMP Algorithm can be defined as fol-

lows:

1 Specify the Max and Min value of tg , (tg max = 1 , tg min =

10−6).

2 Specify the Cmin, σmin, Cmax, σmax values.

3 Specify a maximum of C (compliance), of say
C = Cmax + 4 · σmax.

4 Specify design domain, including supports and loading.

5 Set the penalty value, p = 1, later this value will be incre-
mented to p = 1.25, 2, etc.

6 Carry out FEM.

7 Extract displacement field for entire structure uT .
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8 Calculate elemental compliance C̄e and Rg with displacement
vector based on current element solution set tg , but using the
stiffness matrix for the elements as if it had tg=1.

C̄e = {ue}
T
[
K̃e

]
{ue} .

9 Calculate the densities (dsx, dsy), and probability values (drx,
dry).

10 Calculate step length multiplier νnew:

νnew =

G∑
g=1

 Rg,old

(
dsx ·dry

σ 2
min

+
dsy·drx
σ 2

max

)
1
p γg Agt

1+p
p

g,old


G∑

g=1

 Rg,old

(
dsx ·dry

σ 2
min

+
dsy·drx
σ 2

max

)
1
p γg Agt

1+p
p

g,old


2 .

11 Calculate new element solution set:

tg,new =

υnew p
(

Rg,old

(
dsx ·dry

σ 2
min

+
dsy·drx
σ 2

max

))
Agγg


p

p+1

,

where v is the step length multiplier calculated in step 11.

12 Determine the set of active and passive elements by the fol-
lowing element limit set:

tg,new = tmin if tg,new ≤ tmin = 10−6
; e ∈ P,

tg,new = tmax if tg,new ≥ tmax = 1; e ∈ P,

tg,new = tg,new if tmin ≤ tg ≤ tmax ; e ∈ A.

13 Calculate the probability value Pnew =

x∫
−∞

e−
z2
2

√
2π

dz
∞∫
y

e−
z2
2

√
2π

dz.

14 If the probability value is Pnew < q and the active set has
changed in the previous iteration, go to step 8, else if active
set has not changed and the probability value is still Pnew < q
from pervious iteration, increase the penalty parameter p =

p + increment (step size is controlled), and go to step 6.

15 If the probability value is Pnew < q and all the elements are
passive increase the penalty limit and go to step 6 with p =

p + increment, else if the probability value is Pnew = q and
active set has not changed then stops.

Then we get the optimal solution of problem (11).
In topology optimization the checker board pattern frequently

happens. To avoid this as an optimal solution a simple procedure
was used which was suggested by Gáspár, Lógó, Rozvany [10].
The key point is that all the ground elements (a primary mesh-
ing provides the so-called ground elements) should sub-divide
into further finite elements (secondary elements). For the sub-
division it is enough to use 2 by 2 elements. Further number of
sub-elements cannot improve significantly the final result.

To speeding the iterative process it is common to use bi-level
algorithm [12] which means it is advised to use the deterministic
SIMP algorithm[8] until the calculated probability value reaches
a certain value (say 50% of q).

3 Numerical examples
A very often investigated test structure is a rectangular do-

main (Fig. 1) with two simple supports and a point load. The
height/length ratio is 0.5 and the supports are located at the bot-
tom of the left and right edges, respectively. The load (F1) is
constant (100 units) and located at middle of the bottom line.
The rectangular ground structure is dimensionless (40x20 units).
80x40 ground elements with 2x2 sub-elements are used. (Total
number of finite elements is 12800.) The Poisson’s ratio is 0.

 
20 20 

F1=100 

20 

Fig. 1. Rectangular design domain.

The exact analytical solution can be seen on Fig. 2. which
was proved by Rozvany [11] and the original topology comes
from Hemp’s work [13].

In the following, two cases are investigated, where at first the
deterministic problem is presented while secondly the stochastic
optimal topology is calculated.

3.1 Deterministic topology optimization
The penalty parameter p was run from p = 1 to p = 1.5 with

smooth increasing (increment is 0.1) and later to p = 2.5 with
increment=0.25. The compliance limit is 180000. The numeri-
cally obtained optimal topologies can be seen on Fig. 3 what is
in a good agreement with the analytical solution.

 Fig. 2. Analytical solution
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3.2 Stochastic topology optimization
In case of stochastic topology optimization there are several

data to describe the evolution of the compliance limits (C1, C2)

what are random variables. The mean values and the variances
are Cmin = 166000, σ1 = 3000, Cmax = 176000, σ2 = 2000.
The evolution of the normalized density functions can be seen
on Fig. 4. The required probability value is q =0.954 in Eq.
(11.a).

 
Fig. 3. Deterministic optimal topology

Applying the iterative procedure presented in Chapter 2.2.4
the optimal topology can be computed. It was 897 major itera-
tion steps to obtain the solution shown on Fig. 5. One can see
that the character of figure of the stochastic optimal topology
is in good agreement with the deterministic optimal topology.
The difference comes that the black and white solution (1-0) of
the deterministic topology becomes grey as it usually happen in
case of stochastic optimization. To stabilize the introduced it-
erative algorithm the first part of the calculation is based on the
deterministic algorithm until the calculated probability is differ-
ent from zero (to start with a feasible solution).

Fig. 4. Distribution functions

4 Conclusions
The stochastic optimization problem was solved. The intro-

duced algorithm provides an iterative tool which allows to use
thousands of design variables what is impossible by the use of
a conventional optimization program. By the use of secondary
meshing of ground elements the amount of the checker-board
pattern was neglected on acceptable level.

Fig. 5. Stochastic optimal topology

The present stage of the research shows that due to iterative
formulation of thicknesses of the ground elements obtained in
the stochastic problem it is advised to start the computation with
the deterministic SIMP algorithm and when the calculated prob-
ability of the solution is not zero, is needed to turn to the stochas-
tic algorithm. The data of the random variables in the problem
can create such cases where the problem is non-convex. The
“so-called grey” solution means that the probabilistic optimal
topology is naturally lighter than the corresponding determinis-
tic optimal topology, but the optimal shape of the structure is
practically the same. Some other advantage is that the designer
can take into consideration some initial design uncertainties with
the probabilistically given compliance limit.
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