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Abstract
This paper presents the single- and multiobjective optimiza-

tion of a welded stringer-stiffened cylindrical steel shell.
A column fixed at the bottom and free on the top is constructed

of stringer-stiffened cylindrical shell and loaded by axial com-
pression as well as by a horizontal force acting on the top.
Halved rolled I-section stringers are welded outside of the shell
by longitudinal fillet welds. The shell is loaded by a compression
force NF and a horizontal force HF . The horizontal displace-
ment of the top (w) is limited. The stiffening is economic when
the shell thickness can be decreased in such a measure that the
cost savings caused by this decreasing is higher than the addi-
tional cost of stiffening material and welding. Variables are the
shell thickness as well as dimension and number of stringers.
We have considered three objective functions: (1) material cost,
(2) cost of forming the shell elements into the cylindrical shape,
assembly and welding, (3) painting cost. The original Parti-
cle Swarm Optimization (PSO) algorithm was modified to han-
dle multiobjective optimization techniques and to find discrete
values of design variables. It was built into a program system,
where several singleobjective and multiobjective techniques like
min-max, different versions of global criterion, weighted min-
max, weighted global criterion, pure and normalized weighting
techniques are available.
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1 Introduction
In the optimum design of stiffened circular cylindrical shells

the basic question is whether a stiffened thin shell or an un-
stiffened thick shell is more economic. In our recent research
we have answered this question comparing the costs of the two
structural versions each optimized for minimum cost. In these
studies the shell diameter has been kept constant [1]. It was
shown that an optimum diameter could be found for stiffened
and unstiffened versions. Depending on the horizontal deforma-
tion limit, the stiffened shell is usually more economic than the
unstiffened one.

The preliminary calculation shows that, in the case of exter-
nal pressure the cost increases when the shell diameter increases
and vice versa. On the other hand, in the case of bending of
stringer-stiffened shells an optimum diameter can be found. Our
previous calculations showed, that both the stiffened and unstiff-
ened versions had an optimum radius, in our numerical problem
Ropt = 2700 mm.

Cost difference was considerable only for radii smaller than
the optimum, thus, the stiffening was economic only for these
radii. For radii larger than the optimum, the difference between
the thicknesses and between the costs was small, since the un-
stiffened shell can be realized with larger radius and not too large
thickness.

It could also be seen that, for both structural versions the
stress constraint was active for radii larger than Ropt and the
deflection constraint governed for radii smaller than Ropt .

Recent studies [2–4] have shown that the economy of stiff-
ened shells depends on loads (compression, bending or external
pressure), design constraints (buckling, deflection of the whole
structure) as well as the type and position of stiffeners (ring-
stiffeners, stringers or orthogonal stiffening, stiffeners welded
outside or inside of the shell).

As a part of our systematic research related to stiffened cylin-
drical shells, in the present study a column is investigated sub-
ject to an axial compression and a horizontal force acting on the
top of the column (Fig.1). The column is fixed at the bottom
and free on the top. It is shown that a shell stiffened outside
with stringers can be economic, when a constraint on horizon-
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tal displacement of the column top is active. In order to de-
crease the welding cost of stiffeners, their cross-sectional area
is increased, i.e. halved rolled I-section (UB) stiffeners are used
instead of flat ones. The halved I-sections are advantageous,
since the web can be easier welded to the shell than the flange.
It should be mentioned that stringer-stiffening can also be eco-
nomic in those cases, when the corresponding unstiffened ver-
sion needs too thick shell (more than 40 mm).

The cross-section of the stiffened shell is constant along the
whole height. Constraints on local shell buckling, on stringer
panel buckling and on horizontal displacement are taken into
account. The buckling constraints are formulated according to
the DNV design rules [5]. The cost function to be minimized
includes the cost of material, forming the shell elements into
cylindrical shape, assembly, welding and painting.

In order to demonstrate the economy of the stiffened shell, the
unstiffened version was also optimized in our previous work [1].

2 Problem formulation
The investigated structure is a supporting column loaded by

an axial and horizontal force (Fig. 1). The horizontal displace-
ment of the top is limited by the reasons of serviceability of the
supported structure. Both the stiffened and unstiffened shell ver-
sion are optimized and their cost is compared to each other. In
the stiffened shell outside longitudinal stiffeners of halved rolled
I-section (UB) are used. The cost function is formulated accord-
ing to the fabrication sequence.

Given data are as follows: column height L , factored ax-
ial compression force NF , factored horizontal force HF , yield
stress of steel fy , cost factors for material, fabrication and paint-
ing km , k f , kp. The unknowns are the shell thickness tas well as
the height h and number ns of halved rolled I-section stiffeners.
The shell radius R is constant at this calculation.

The characteristics of the selected UB profiles are given in
Table A1 in the Appendix.

In order to calculate with continuous values the geometric
characteristics of an UB section (b, tw, t f ) are approximated
by curve-fitting functions as follows: h approximately equals to
the first number of the profile name (Table Curve 2D [7]).

The approximate functions are given in Appendix.
The surface to be painted is

AL/2 = h1 + 2b, h1= h − 2t f . (1)

As = h1tw/2 + bt f (2)

3 The stiffened shell
3.1 Constraints
3.1.1 Shell buckling (unstiffened curved panel buckling)
The sum of the axial and bending stresses should be smaller

than the critical buckling stress

σa + σb =
NF

2Rπ te
+

HF L
R2π te

≤ σcr =
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Fig. 1. A column constructed as a stiffened cylindrical shell loaded by a
compression force NF and a horizontal force HF . Cross-section and a detail
of the cross-section with outside stiffeners of halved rolled I-section. The hori-
zontal displacement of the top (w) is limited

where the reduced slenderness

λ2
=
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σEa
+

σb

σEb

)
; te = t +
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te is the equivalent thickness. The elastic buckling stress for the
axial compression is

σEa = Ca (1.5 − 50β)
π2 E
10.92

(
t
s

)2

(5)

Ca = 4

√
1 +

(
ρaξ

4

)2

; Z =
s2

Rt
0.9539 (6)

ρa = 0.5
(

1 +
R

150t

)−0.5

; ξ = 0.702Z (7)

The elastic buckling stress for bending is

σEb = Cb (1.5 − 50β)
π2 E
10.92

(
t
s

)2

(8)

Cb = 4

√
1 +

(
ρbξ

4

)2

(9)

ρb = 0.5
(

1 +
R

300t

)−0.5

(10)

Note that the residual welding distortion factor 1.5 − 50β = 1
when t >9 mm. The detailed derivation of it is treated in [8].
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3.1.2 Stringer panel buckling

σa + σb ≤ σcr p =
fy√

1 + λ4
p

(11)

λ2
p =

fy

σEp
; σEp = C p

π2 E
10.92

(
t
L

)2

(12)

C p = ψp

√
1 +

(
0.5ξp

ψp

)2

; Z p = 0.9539
L2

Rt
(13)

ξp = 0.702Z p; γs = 10.92
Ise f

st3 (14)

ψp =
1 + γs

1 +
As

2set

; (15)

Since the effective shell part se (Fig.1) is given by DNV with a
complicate iteration procedure, we use here the simpler method
of ECCS [9]

sE = 1.9t

√
E
fy

(16)

if sE < s se = sE

if sE > s se = s
Ise f is the moment of inertia of a cross section containing the

stiffener and a shell part of width se(Fig. 1). For a stiffener of
halved rolled I-section it is

Ise f = set z2
G+

tw
12

(
h1

2

)3

+
h1tw

2

(
h1

4
− zG

)2

+bt f

(
h1

2
− zG

)2

(17)

zG =
h2

1tw/8 + h1bt f /2
h1tw/2 + bt f + set

(18)

3.1.3 Horizontal displacement

wh =
M L2

3E Ix0
≤ wallow =

L
φ

(19)

φ is selected as 1000. In our case the horizontal displacement
limit is 15 mm. It causes a large rigidity at the structure.

In earlier calculations we determined that the deflection limit
has a great effect on the dimensions, if they are strong enough.
This is an approximate calculation. For earthquake safe design
more precise calculation is needed to consider the sway, or in-
terstorey drift limit.

The exact calculation of the moment of inertia for the hori-
zontal displacement uses the following formulae (Fig. 1):

The distance of the center of gravity for the halved UB section
is

z A =
h1tw/2

(
h1/4 + t f /2

)
h1tw/2 + bt f

(20)

The moment of inertia of the halved UB section is expressed by

Ix = bt f z2
A +

tw
12

(
h1

2

)3

+
h1tw

2

(
h1

4
− z A

)2

(21)

The moment of inertia of the whole stiffened shell cross-section
is

Ix0 = πR3t + Ix
∑

sin2
(

2π i
ni

)
+(

h1tw
2

+ bt f

) (
R +

h1 + t f

2
− z A

)2 ns∑
i=1

sin2
(

2π i
ns

)
(22)

In earthquake calculations the used ratio between vertical and
horizontal forces is 10 in this case. This is an approximation.
For more precise calculation different factors should be consider
according the Eurocode 8 to determine the proper value of hori-
zontal force.

M = HF L/γM ; γM = 1.5; HF = 0.1NF (23)

At calculation of the deformation we should exclude the partial
safety factors, introduced at stress calculation. That is, why we
divide by γM in Eq. (23).

Numerical data: NF = 6x107 N, fy = 355 MPa, L = 15 m,
R = 2700 mm, φ = 1000, E = 2.1x105.

3.2 The cost function
Fabrication sequence:

1 Fabrication of 5 shell elements of length 3 m without stiff-
eners. For one shell element κ axial butt welds are needed
(GMAW-C) (K F1). For R <1909 κ = 2, for 1909< R <2865
κ = 3 and for 2865< R <3819 κ = 4.

2 The cost of forming of a shell element into the cylindrical
shape is also included (K F0).

3 Welding of the whole unstiffened shell of 5 elements with 4
circumferential butt welds (K F2).

4 Welding of ns stiffeners to the shell with double-sided
GMAW-C fillet welds. Number of fillet welds is 2ns . (K F3).

The material cost is

KM = kM15ρV1 + kM2ρns As L/2 (24)

V1 = 3000 × 2Rπ t; ρ = 7.85 × 10−6kgmm−3.

kF = 1.0$/min, kM1 = 1.0$/kg. (25)

The cost of forming of a shell element into the cylindrical shape
according to [4] is

K F0 = kF2eµ;µ = 6.8582513 − 4.527217t−0.5
+

+0.009541996 (2R)0.5 (26)

K F1 =

kF

[
2

√
κρV1 + 1.3 × 0.1520 × 10−3t1.9358 (2 × 3000)

]
(27)
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where 2 is a difficulty factor expressing the complexity of the
assembly and κ is the number of elements to be assembled

κ = 2; V1 = 2Rπ t × 3000; 2 = 2 (28)

K F2 =

kF

(
2

√
25ρV1 + 1.3 × 0.1520 × 10−3t1.9358

× 4 × 2Rπ
)

(29)

K F3 = kF

(
2

√
(ns + 1) ρV2 + 1.3 × 0.3394 × 10−3a2

W 2Lns

)
(30)

The fillet weld size is aw = 0.3tw, awmin = 3 mm.

V2 = 5V1 + ns As L/2 (31)

The fabrication cost is

K F = 5K F1 + 5K F0 + K F2 + K F3 (32)

The cost of painting is

K P = kP (4RπL + nS AL L/2) ; kP = 14.4 × 10−6$/mm2.

(33)
The total cost is

K = KM + K F + K P (34)

The optimum design process has the following three main
phases:

1 preparation: selection of candidate structural versions defin-
ing the main characteristics to be changed, formulation of de-
sign constraints and cost function,

2 solution of the constrained function minimization problem by
using efficient mathematical methods,

3 evaluation of results by designers, comparison of optimized
versions, formulation of design rules, incorporation in expert
systems.

4 The Particle Swarm Algorithm
There is a great number of methods available for single ob-

jective optimization as it was described in Farkas & Jármai
[10]. Methods without derivatives like: Complex [11], Flex-
ible Tolerance, and Hillclimb. Methods with first derivatives
such as: Sequential Unconstrained Minimization Technique
(SUMT), Davidon-Fletcher-Powell, etc. Methods with second
derivatives such as: Newton, SQP. There are also other classes
of techniques like optimality criteria methods, or the discrete
methods like Backtrack, the entropy-based method (Jármai [12],
Farkas et al. [13]). Multicriteria optimization is used when more
objectives are important to find the compromise solution (Osy-
czka [14]).

The general formulation of a single-criterion non-linear pro-
gramming problem is the following:

minimize f (x)x1, x2, ..., xN (35)

subject to g j (x) ≤ 0, j = 1, 2, ..., P (36)

hi (x) = 0i = P + 1, ..., P + M (37)

f (x) is a multivariable non-linear function, g j (x) and hi (x)
are non-linear inequality and equality constraints, respectively.

In the last two decades some new techniques appeared e.g. the
evolutionary techniques, the genetic algorithm, Goldberg [15],
the differential evolution technique (Storm [16], Storn & Price
[17]), the particle swarm algorithm (Kennedy & Eberhart [18]),
the ant colony technique (Dorigo et al. [19, 20]). Some other
high performance techniques such as leap-frog with the ana-
logue of potential energy minimum (Snyman [21–23]), similar
to the FEM technique, have also been developed.

A number of scientists have created computer simulations of
various interpretations of the movement of organisms in a bird
flock or fish school (Millonas [24]). The Particle Swarm Opti-
mization (PSO) algorithm was first introduced by Kennedy [25].
The algorithm models the exploration of a problem space by a
population of individuals; the success of each individual influ-
ences their searches and those of their peers. In our implemen-
tation of the PSO, the social behaviour of birds is mimicked.
Individual birds exchange information about their positions, ve-
locities and fitness, and the behaviour of the flock is then influ-
enced to increase the probability of migration to regions of high
fitness (Kennedy & Eberhard [26]).

Particle swarm optimization has roots in two main component
methodologies. Perhaps more obvious are its ties to artificial life
in general, and to bird flocking, fish schooling, and swarming
theory in particular. It is also related, however, to evolutionary
computation, and has ties to both genetic algorithms and evolu-
tionary programming. Particle Swarm optimizers are similar to
genetic algorithms in that they have some kind of fitness mea-
sure and they start with a population of potential solutions, (none
of which are likely to be optimal) and attempt to generate a pop-
ulation containing fitter members.

In theory at least, individual members of the school can profit
from the discoveries and previous experience of all other mem-
bers of the school during the search for food. This advantage
can become decisive, outweighing the disadvantages of com-
petition for food items, whenever the resource is unpredictably
distributed in patches. Social sharing of information among con-
speciates offers an evolutionary advantage: this hypothesis was
fundamental to the development of particle swarm optimization.

Millonas [24] developed his models for applications in arti-
ficial life, and articulated five basic principles of swarm intelli-
gence. The first one is the proximity principle: the population
should be able to carry out simple space and time computations.
The second one is the quality principle: the population should
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be able to respond to quality factors in the environment. The
third one is the principle of diverse response: the population
should not commit its activities along excessively narrow chan-
nels. The fourth one is the principle of stability: the population
should not change its mode of behaviour every time the environ-
ment changes. The fifth one is the principle of adaptability: the
population must be able to change its behaviour mode when it is
worth the computational price.

Basic to the paradigm are n-dimensional space calculations
carried out over a series of time steps. The population is re-
sponding to the quality factors pBest and gBest (gBest is the
overall best value, pBest is the best value for a particle). The
allocation of responses between pBest and gBest ensures a di-
versity of response. The population changes its state (mode of
behaviour) only when gBest changes, thus adhering to the prin-
ciple of stability. The population is adaptive because it does
change when gBest changes.

The original PSO algorithm, proposed by Kennedy and Eber-
hardt in 1995 [26], was inspired by the modelling of the so-
cial behaviour patterns of organisms that live and interact within
large groups. In particular, PSO incorporates swarming be-
haviours observed in flocks of birds, schools of fish, or swarms
of bees. A PSO algorithm is easy to implement in most program-
ming languages, since the core of the program can be written in
a few lines of code. It has been proven to be both fast and ef-
fective, when applied to a diverse set of optimization problems.
PSO algorithms are especially useful for parameter optimization
in continuous, multi-dimensional search spaces.

In performing a search in the multi-dimensional space asso-
ciated with the optimization problem of the form (35-37), the
PSO technique assigns direction vectors and velocities to each
member (particle) of the swarm at their current positions. Each
particle then “moves” or “flies” through the search space accord-
ing to the particle’s assigned velocity vector, which may be in-
fluenced by the directions and velocities of other particles in its
neighbourhood. These localized interactions with neighbouring
particles, propagate through the entire “swarm” of particles and
results in the swarm as a whole moving to regions of the space
closer to the solution of problem (35-37). The extent to which
a particular particle influences other particles is determined by
its so-called “fitness” along its trajectory of candidate solution
points. The “fitness” is a measure assigned to each potential so-
lution, and it indicates how good a particular candidate solution
is relative to all other solution points. Hence, an evolutionary
idea of “survival of the fittest” (in the sense of Darwinian evolu-
tion) comes into play, as well as a social behaviour component
through a “follow the local leader” effect and emergent pattern
formation [27].

A more precise and detailed description of the particular PSO
algorithm, as applied to penalty function formulation, and used
in this study now follows.

4.1 Basic PSO algorithm
Given M , kmax , Nmax . Set (time) instant k=0, Fb

i = Fg
=

Fg
be f ore = ∞. Initialize a random population (swarm) of M par-

ticles (swarm members), by assigning an initial random position
×

0
i (candidate solution), as well as a random initial velocityv0

i ,
to each particle i , i=1,2,. . . ,M . Then compute simultaneous
trajectories, one for each particle, by performing the following
steps.

1 At instant k, compute the fitness of each individual particle i
at discrete point xk

i , by evaluating F(xk
i ). With reference to

the minimization (35-37), the lower the value of F(xk
i ), the

greater the particle’s fitness.

2 For i=1,2,. . . ,M :
if F(xk

i ) ≤ Fb
i then set Fb

i = F(xk
i ) and pb

i = xk
i {best point

on trajectory i}
if F(xk

i ) ≤ Fg then set Fg
= F(xk

i ) and gb
= xk

i {best
global point}

3 If Fg < Fg
be f ore then set N = 1, else set N = N + 1.

4 If N > Nmax or k > kmax then STOP and set x* = gb;
else continue.

5 Compute new velocities and positions for instant k+1, using
the rule:
for i=1,2,. . . ,M:

vk+1
i := vk

i + c1r1(pb
i − xk

i )+ c2r2(gb
− xk

i ) (38)

xk+1
i := xk

i + vk+1
i (39)

where r1 and r2 are independently generated random numbers
in the interval [0,1], and c1, c2 are parameters with appropri-
ately chosen values.

6 Set k = k + 1 and Fg
be f ore = Fg ; go to step 2.

The technique is modified in order to be efficient in technical
applications. It calculates discrete optima, uses dynamic inertia
reduction and craziness for some particles [27].

The method is derivative free, and by its very nature the
method is able to locate the global optimum of an objective func-
tion. Constrained problems can simply be accommodated using
penalty methods.

The interactive decision support program system contains
several multiobjective optimization methods. They are the fol-
lowings:

Min-max method,
Global criterion method: type - 1,
Global criterion method: type - 2,
Weighted min-max method,
Weighted global criterion method,
Pure weighting method,
Normalized weighting method.
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Tab. 1. Different optima for the total cost, using different single objective optimization techniques

Method hs (mm) ns t (mm) Total cost ($) 2nd Material cost 3rd Fabrication cost 4th Painting cost

Flexible tolerance 257.2 25 21 79081.4 46463.6 22912.1 9705.6

Hillclimb 257.2 15 24 82361.4 49678.7 24632.6 8050.1

Davidon Fletcher Powell 257.2 17 23 81593.5 49014.2 23634.2 8945.0

Particle swarm optimization 257.2 24 21 78639.7 46283.1 22746.1 9610.6

Tab. 2. Multiobjective optima for the stringer stiffened shell

Method hs ns t 1st Total cost 2nd Material cost 3rd Fabrication cost 4th Painting cost

(mm) (mm) ($) ($) ($) ($)

1st objective 257.2 24 21 78639.7 46283.1 22746.1 9610.6

2nd objective 257.2 24 21 78639.7 46283.1 22746.1 9610.6

3rd objective 683.5 25 15 87516.6 56295.1 17691.4 13530.0

4th objective 257.2 5 26 85276.8 52840.0 24632.6 7804.1

Min-max 257.2 24 21 78629.7 46283.1 22746.1 9610.6

Weighted min-

max

257.2 24 21 78629.7 46283.1 22746.1 9610.6

Global criterion 1

exp. 3

308.7 23 21 79432.3 46994.2 22599.6 9838.6

Global criterion 2

exp. 2

257.2 21 22 80336.5 47738.9 23272.2 9325.4

Weighted global 257.2 21 22 80336.5 47738.9 23272.2 9325.4

Pure weighting 257.2 25 21 79081.4 46463.6 22912.1 9705.7

Normalized

weighting

257.2 24 21 78629.7 46283.1 22746.1 9610.6

5 Optimization and results
The Particle swarm optimizer has been built into an interac-

tive decision support program system (Jármai [28]) which con-
tains the following single objective optimization methods:

Flexible Tolerance (FT) method by Himmelblau [29],
Direct Random Search (DRS) [30],
Hillclimb (HI) method by Rosenbrock [31],
Davidon-Flecher-Powell (DFP) method by Rao [32],
Particle Swarm Optimization (PSO), Jármai et al. 2003,

[?33].
The efficiencies of these methods are different. All of them

use the same objective, constraints subroutines. For a problem
like this, which is highly non-linear, several local minima exist.
They find different ones. The advantage of Particle swarm opti-
mization is that it can find optimum for a nonconvex problem. It
has found the minimum cost structure. Table 1 shows the single
objective optima.

Description of methods is available in Jármai [28]. Weight-
ing coefficients are similar to all four objectives 0.25 each. The
objective functions are as follows:

Total cost of the structure in $, K (1st ),
Material cost of the structure in $, Km (2nd),
Fabrication cost of the structure in $, K f (3rd),
Painting cost in $, K p (4th).

Table 2 shows the different multiobjective optima. The mate-
rial cost is dominating, 55-65 % of the total cost. The other two
objectives are around 35-45 %. The height of stiffener is nearly

the same at all optima; the number of stiffeners and the shell
thickness is changing on an opposite way due to the necessary
stiffness. The greatest conflict is between the total and the paint-
ing costs. The painting cost minimum gives the greatest shell
thickness t .

The optimization is performed using the Particle Swarm
mathematical algorithm. The results are summarized in Table 2.

6 Conclusions
Cylindrical shells stiffened outside by stringers are economic

for axial compression and horizontal force with an active de-
flection constraint, but without a deflection constraint they are
uneconomic. In order to decrease the welding cost, the stiff-
eners should have cross-sectional area as large as possible and
should be welded to the shell with welds as small as possible,
thus the outside halved rolled I-section stringers are advanta-
geous for this purpose. It should be noted that cost savings can-
not be achieved by stringers welded inside of the shell.

The decision support system, which contains several single
and multiobjective optimization techniques, is an efficient tool
for structural optimization. Using the same constraints, the opti-
mizers can find the optima. If these optima are similar, or close
to each other, the designer can be sure, that he has found, or is
close to the global optimum. Discrete solutions are useful for
the application of the results. The robustness of PSO is visible,
when the problem is non-convex. In this case the material cost is
dominant; the optima for the total and for the material cost min-
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imum are identical. Using different multiobjective optimization
techniques, different weighting coefficients, we can get a great
number of optima to get more information about the behaviour
of the structure.

The PSO technique was found to be a robust method also for
multiobjective optimization. Some of the objectives are in con-
flict. The material cost represents more than 60 % of the total
cost. Optimization for the cost of forming the shell elements into
the cylindrical shape, assembly and welding means a smaller
shell thickness and more and larger stiffeners. Optimization for
the painting cost means a thicker shell and less and smaller stiff-
eners.

Appendix
Approximate functions for dimensions t f , b and tw of UB

profile series in function of h.
t f :

y = a + bx + cx2 + dx3
+ ex4 + f x5 + gx6 + hx7 + i x8

a = −26.93816005910891D0
b = 0.7030053260773679D0
c = −0.005693338027675875D0
d = 2.383106288900282D-05
e = −5.605511692214832D-08
f = 7.662794440441443D-11
g = −5.902409222905948D-14
h = 2.267417977644635D-17
i = −2.999371468428559D-21

b:
y = a + bx +

c
x + dx2

+
e

x2 + f x3
+

g
x3 + hx4

+
i

x4 + j x5
+

k
x5

a = −1108926.658794802D0
b = 2054.96457373585D0
c = 394347552.4221416D0
d = −2.475920494568994D0
e = −91315532919.66857D0
f = 0.001858445891156483D0
g = 13189053888762.85D0
h = −7.856977790442618D-07
i = −1073670362507492D0
j = 1.422535840934241D-10
k = 3.744384150518803D+16

tw:
y = a + bx + cx2

+ dx3
+ ex4

+ f x5
+ gx6

+ hx7
+ i x8

a = 4.598131496764401D0
b = −0.1667245062310966D0
c = 0.002662252625070477D0
d = −1.662919418563092D-05
e = 5.425706060478163D-08
f = −1.003562929221022D-10
g = 1.063362615303672D-13
h = −6.028516555302632D-17
i = 1.419727611913505D-20

Tab. 3. Characteristics of the selected rolled UB profiles (Profil Arbed [6])

UB Profile h b tw t f AS Iy ×10−4

mm mm mm mm mm2 mm4

152×89×16 152.4 88.7 4.5 7.7 2032 834

168×102×19 177.8 101.2 4.8 7.9 2426 1356

203×133×25 203.2 133.2 5.7 7.8 3187 2340

254×102×25 257.2 101.9 6.0 8.4 3204 3415

305×102×28 308.7 101.8 6.0 8.8 3588 5366

356×127×39 353.4 126.0 6.6 10.7 4977 10172

406×140×46 403.2 142.2 6.8 11.2 5864 15685

457×152×60 454.6 152.9 8.1 13.3 7623 25500

533×210×92 533.1 209.3 10.1 15.6 11740 55230

610×229×113 607.6 228.2 11.1 17.3 14390 87320

686×254×140 683.5 253.7 12.4 19.0 17840 136300

762×267×173 762.2 266.7 14.3 21.6 22040 205300

838×292×194 840.7 292.4 14.7 21.7 24680 279200

914×305×224 910.4 304.1 15.9 23.9 28560 376400

1016×305×349 1008.1 302 21.1 40 444200 722300

1016×305×393 1016 303 24.4 43.9 500200 807700
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