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Abstract

Assuming linear displacements and constant strains and
stresses at infinity, our aim is to reformulate the equations of
the direct boundary element method for plane problems of elas-
ticity. We shall consider a body made of orthotropic material.
The equations we have reformulated make possible to attack
plane problems on exterior regions without replacing the region
in question by a bounded one.
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1 Introduction

As is well known a large literature studies plane problems for
orthotropic bodies, including for instance [9], [8]l, [[7] as well
as the books [1,[2]] and the references therein. However, as ex-
plained by Schiavone [10], the standard formulation for exterior
regions has the disadvantage that it is impossible to prescribe a
constant stress state at infinity.

The reason is that an assumption about the far field pattern
of the displacements is needed in order to establish an appro-
priate Betti formula and to prove uniqueness and existence for
the exterior Dirichlet and Neuman problems. Unfortunately, this
assumption excludes those problems from the theory for which
the displacements are linear while the strains and stresses are
constant at infinity.

To make progress on plane problems with such displace-
ments, we note that if the direct formulation reproduces this dis-
placement field, then the resulting strain and stress conditions
must also be constant at infinity. Consequently, plane problems
for the exterior regions can be attacked without replacing the re-
gion by a bounded one. The work in [[1 1] and [12] presents such
direct formulations by assuming constant strains and stresses at
infinity for an isotropic body. For exterior regions [11] refor-
mulates the classical approach to plane problems. For the same
class of problems but in a dual formulation [[12] sets up the equa-
tions of the direct method in terms of stress functions of order
one.

The present paper is an attempt to clarify how the formula-
tion changes if we apply the ideas presented in paper [11] to
orthotropic bodies.

2 Preliminaries

Throughout this paper x; and x, are rectangular Cartesian co-
ordinates, referred to an origin O. Greek subscripts are assumed
to have the range (1,2), summation over repeated subscripts is
implied. The doubly connected exterior region under considera-
tion is denoted by A, and is bounded by the contour £,. We stip-
ulate that the contour admits a nonsingular parametrization in
terms of its arc length s. The outer normal is denoted by 7, . In
accordance with the notations introduced, J,, is the Kronecker
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symbol, 9, stands for the derivatives taken with respect to x,
and €3, is the permutation symbol. Assuming plane problems
let u,, ex, and t,, be the displacement field and the in plane
components of strain and stress, respectively. For orthotropic
bodies the material constants are denoted by s11, S12 = $21, 522
and sg6.

For homogenous and orthotropic material the plane problem
of classical elasticity is governed by the kinematic equations

1
ep) = z(apuz +0,up), ()
Hooke’s law
f11 = cri1e11 + cnex,
1y = cize11 + e, ()
ty =t = 2ce6€12 ,
where
. 522 c . S12 . S11
1n=— R=C=——, C(3n=—
d’ d d’
- d = 2. 3
c66 = —, = 511522 — S{2 3)
566

and the equilibrium equations
1910y +b, =0 “)

which should be complemented with appropriate boundary con-
ditions not detailed here since they play no role in the present
investigations. The basic equation for u takes the form

(52)

[D,:] = [ } . (5b)

Let Q(&1,¢) and M (x1, x2) be two points in the plane (the
source point and the field point). We shall assume temporar-
ily that the point Q is fixed. The distance between Q and M
The small
circle as a subscript (for instance M, or Q,) indicates that the

D/, Uy + bp =0,
where the differential operator D,; has the form

611612+C66822
(c21 + c66) 0201

(c12 + c66) 0102
622622+C66512

is R, the position vector of M relative to Q is ry.

corresponding points, i.e., Q or M are taken on the contour.

It is obvious that
ra(Ms Q):xa(M)_éa(Q):xa_é‘a- (6)

Let us introduce the following notations

A1+ A2 = (2s12 + s66) /522 5 @)
A1h2 = s11/522, (®)
Ay = S12 — Aa522,, )
pi:ﬂ.arlz—{—rzz, (10)

1

E N — 11
2% G = ia) 22 (b

For our later considerations we note that Egs.
imply

(7) and (§)

p-L

257 522

12)

2521 + 5 2521 + 8 K
o= 21 66:|:\/ 21 66 11

2527

The well-known singular fundamental solutions for the basic
Eq. (54) [[7,9] are given by the formulas

UnM, ) = D (Vaa3inpt = VizAing) .
) (VIT = V) rirs
Un(M, Q) = DA A arctan NN )
UM, Q) =Unn(M, Q),
A’lnp;  Ailnp,
U»n(M, Q)= —-D| — -
2 (M, Q) ( N 7T
and
2A A
T (M, Q) = [C L_ Vi 2](r1n1+r2n2),
Pt
Tio(M, Q) = D{(\/_A] J_Az)rlnz—
/’2
A A2 ron
/11 p «/_Pz ALY
(M, Q)= D’(M«/_Az ~2 fAl) ring —
,02
(«/_A2 \/_Al) ]
2n1 9
p P2
1A A
Tn(M, Q) = [C L_ 2 2] (riny +rana) , (14)
p;
where
(M) =Uu (M, Qe (Q), and 1, (M) = Ty (M, Q)ex(Q)

are the displacement vector and stress vector on a line element
with a normal n; = n;(M) to it at the point M due to the force

ex = ex(Q) at Q.

3 Basic formulas for exterior regions

Fig. (1| depicts a triple connected region A/, bounded by the
contours £,, L. and the circle £z with radius . R and center at
O. Here L, is the contour of the neighborhood A, of Q with ra-
dius R, while . R is sufficiently large so that the region bounded
by Lg covers both Ly, and L. If ;R — oo and R, — 0 then
clearly A, — A,.

Let u, (M) and g, (M) be sufficiently smooth — continuously
differentiable at least twice — but otherwise arbitrary displace-
ment fields on A,. The stresses obtained from these displace-
ment fields are denoted by #;, [u,(M)] and 1, [g,(M)] respec-
tively.

24 Per. Pol. Civil Eng.

Gyorgy Szeidl / Judit Dudra



Fig. 1.

Equation

g M M
[, L1200 (1 Do ) = 2200 (i Do ) | an =
%C [M/I(MO)ULK [g/; (MO)] e (Mo) — 85 (Mo)t) [”p (MO)] Ny (MO)] dsy, +
?{ﬁ [”/1 (Mo)tx [gp (Mo)] e (Mo) — 85 (Mo)t)x [”p (MO)] nK(Mo)] dspy, +

74[: (10 (Mot [8p (Mo)] e (Mo) — g3 (Mot [1p (Mo)] e (Mo)] sy,
JLR
(15)

in which M over a letter denotes derivatives taken with respect
to the point coordinates M and n, (M.,) is the outward normal,
is the primal Somigliana identity applied to the triple connected
region A/,

Let g,(Q) = U (M, Q)e,(Q), which is a non singular elas-
tic state of the plane in A,. We regard u;(M) as a different
elastic state in the region A,. Further we assume that u; (M) has
the far field pattern (asymptotic behaviour)

(M) = cic + e3p1Xp0 + exp(00)xp (16)

as xp or equivalently M tends to infinity. Here c, is a translation,
o is a rotation in finite, ¢, + €3, X, is the corresponding rigid
body motion, e,z(co) is a constant strain tensor at infinity and
exp(00)xp is the corresponding displacement field.

The stresses induced by the strains e,3(c0) can be obtained
by the Hooke law:

11(00) = c11e11(00) + cr2e22(00),
122(00) = c12€11(00) + ¢22€22(00) , a7

112(00) = 11(00) = 2ce6e12(00) ,

Substituting the above quantities into the Somigliana identity,

we obtain

M
[ [1200 (4 P vonr, ) -

M
(ﬂ Do ts (M)) Upe(M, Q)] Ayt ex(Q) =
- fﬁ [ (M) T3 (Mo, Q) — 13 (Mo)Use (Mo, Q)] dspg, e (Q)+

]4£ (13 (M) T (Mo, Q) — 1, (Mo)U e (Mo, Q)] dspg, e (Q)

&

fa [ (Mo) T3 (Mo, Q) — 1, (M) U (Mo, Q)] dspg, e6(Q)  (18)
R

since t), [up (MO)] ne(M,) = t,(M,) is the stress on the con-
tour and obviously

1775 [gp(Mo)] ng(Mo) = Ty (Mo, Q)ex (Q).

In the sequel we shall assume that there are no body forces.
This assumption has no effect on the result we will obtain.

It is clear that one can omit e, (Q). Regarding the equation
obtained by omitting e, (Q), our goal is to compute its limit as
R, — O0and ,R — 0. Asis well known, the left hand side van-
ishes under the conditions detailed above(see [1]] ), and hence

<o- 4 lim R
Lo R:—0 ),

ue(Q) + f (1 (M) T (Mo, Q) — 1 (Mo) U (Mo, Q)] sy,

0

Consequently

ue(Q) =

lim fﬁ 13 (M) U, (Mo, Q) — 13 (M) T (M, Q)] dsyg.+

¢eR— 0

fﬁ (M) U (Mo, Q) — 13 (M) T3 (Mo, Q)] dsyr, . (19)

In order to establish the first Somigliana formula for the exterior
region, we need to find the limit of the first integral on the right
hand side.

4 Somigliana formulas modified for exterior regions
In this section our main objective is to prove that

I, =

lim
eR—00 Jp

[ta(M)Upe (Mo, Q) — uy(Mo) Ty (Mo, Q)] dsy, =
Cx + E3pxSp@ + exp(00)p = Ui (Q) . (20)

Usin
g o [
xp(M) = .Rng(M)
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we substitute 1;,(co)n, (M,) for t;(M,) and c; + &3,3x,0 +
exp(00)xp for u; (M,). This implies

Hm o & &
L=5L+ I+ 1.+ 1

x =

— lim
¢R—>

3Ty (Ms, Q)dsy, —

Lg

[
lim 83p,1€Rw7{£ ny(M)T (M, Q) dsy, + Q1)
R

¢R—>

lim t,lp(oo)]{ np(Mo)Uj (Mo, Q) dsy, —
eR—00 Lr
o
lim em(oo)eR]{ nﬂ(M)TM(MO, Q)dsy, .
¢R—> Lr

Remark 1.: In accordance with Eq. (I6)), the stresses and strains
are taken as constant quantities which are therefore independent
of the arc coordinate s.

Since

j{ T/lK(Mo’ Q) dSMO = _5){2
Lg

and
SSpZ%L rpT/lK(Moa Q)dsy, =0
R

which is the moment about the origin of the stresses due to a
unit force applied at Q, one can write

@O @ .
Iy + Iy = ¢, — lim g3plw%(€rp +rp)le(Mo, Q)dsMO =
» R— 00 Lr

e

e — lim [g3pmg,] f Ty (M., Q) dsy, +
eR—> 0 Lr
83p2w-¢£ rpT/lK(Mo, 0) dSMOj| =+ 83/)wa,0 (22)
R

which clearly shows that (22) reproduces the rigid body motion.

(©) (C)
Determining the limits 7, and [ , requires long formal trans-

formations. For this reason we confine ourselves to basic argu-
ment and the results of the most important steps.

First, we have to expand U, and T}, into series in terms of
¢R to the power 1,0, —1, —2 etc. These transformations are
based on the relations:

[
ng (M) = ng (23a)
0 ) frz
rag =Xq(M) —¢a(Q) = x4 — &g =R ”a_*R 5 (23b)
e
pou =\ rar} +13 =
) 22 22
; 1 Agnié) +n2és 1 Jaci+&
~ R JAgnT 4021 - — 2 T s —5 1, (230
¢ M 2 eR Aan%—l—n% 2¢R? ian%-}—n%
1 2, .2
Inpg =~ Ine R + Eln (Aanl +n2) -
#2 2
1 Aani&y + & 1 Zaéi +& 23d)

eR lan% +n% 2.R? lan% +n% ’

where a is constant and ¢ is a very small quantity.
Consequently

W= vh)nn

arctan

(VA1 = VZ2) niny

arctan

N VATan} +n3
(V1 = V72) («/ilizn%nz —n%) S ( Ti7an3 _”1”%) & 230
eR n?lliz-‘rng-‘r(ll +22)n%n% .

Using relations (23a)),..., (23) for a sufficiently large .R we
have

U (Mo, Q) =

1 . 1 Apniéy + nyé
D|:\/11A%(lneR+zln(ﬂln%+n%)—RW)_
¢ 17 2

1 1 Zon ¢y +mé
A2 (g R+ = In (Apn? +n?) — — 222151 T 7252 41 0y
2 1( e ) ( 21 2) R /lzn%—l—n%
Un(Ms, Q) ~

A2 1 1 Aniép +npé
1 2 2 11161 262

- D IneR+ -In(Ain7+n5)— —————— | —
[«/11( ¢ 2 (11 2) R Jn? 4 n2

A2 1 1 Jgniél + naé,

2 2 2 talllcl 262
—= | Ine R+ = In(Agny +n5) — ————=—= , (25
\/112( ¢ 2 (al 2) eR lan%-l—n%

(VA1 = V) niny (V71 — V72) N
«/llizn%-i—n% eR
(«/21/12"%"2 —n%) & - ( Tiiany — n1n2) 52} 6

U12(Ms, Q) ~ DA A, [axotan

n{dig +n3 + (g + Ag) n3n3

and
T11 (Mo, Q) =
D T A 2 dgm& +mé 1
4,;§i%,H”f1;%4%3_4%5m+éw)_
eR Aqny +ny eR /{2711+n2 eR
D 1Ay 2 Mniér +mb 1
TR 2l TR s — — &ni+an) |, 2D
eR Jiny +n3 eR  Jiny+n3 eR
D 4/21A2
(Mo, Q) = — ——5——> x
eR Ainy +n3

N 2 Aniép +nré 1
(A1 = Dngny | 14 = 21011 T 7252 lé %2 - — (4iéinp —&Hny) | —
eR ﬂlnl—i-nz eR

D JVhA

eR in% + n%

2 Joniép + naé 1
(A2 = Dnyny 1+*% —— &y —ony) |, (28)
eR iznl-i—nz eR

D A4
T12(Ms, Q) = ?ﬁx
el Ayn7 +n;3

1 2 nié +mé 1 ( 1 )
1——)nmll+ ————— ) — —= (&inp — —&n X
[( /11) 1 2( R Il +nl R \G1m2 = gram

2 _ 2
1 1 2 Agniéy +nréy 1 ey —¢
/Tz: R2 (2,02 + n2 ( e?ain2+n2 _eR22n12+n22 _p Vb,
roe (Aan1+n2) T R A‘zn%-i—n%
2 »
23 1 2 Anié +mé (. 1
1—7 niny V"}ﬁ -z §1"2—752”1 ,
and 2 e Any +n5 e 2
eda
arctan(x + ¢a) = arctanx + ———, 29
14 x
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T (Mo, Q) =
D VA 2 niéi4+né 1 .
Rl 21.2 1+7Rﬁ_?(51”]_€2’12) -
el Jyn{ +n3 e A1ni +n3 e
D 1A 2 oni &l + nod 1
s 22 2*2 1"‘*%—*@1"1—@”2) . (30)
eR lznl +n3 eR igl’ll +n3 eR

Knowledge of the series of U, and T}, allows us to calculate
(3) “
the integrals I, and I .. The following observations are used in

the calculations:

1 The outward unit normal on L is given by equation

ng = (sing, cos @) (3D
where ¢ is the polar angle.
2 The arc element on L admits the form
dsA(;I =.Rdp. (32)

3 As .R — oo the coefficient(s) of . R is (are) always an inte-
gral (integrals) of zero value. The integrals we have used are
all listed in the Appendix.

4 The structure of the coefficients of R to the power zero is
similar; but these terms involve &, and the trigonometric in-
tegrals that constitute these coefficients are not necessarily
equal to zero.

(©)
After performing the integrations for [, we have

3)
Iy = lim up(OO)f np(Mo)Uje (Mo, Q) dsy, =
eR— 0 LR

(31) (31) (32) (32)
=t1(0)| &1 le1 +E20k2 |+ 112(00) 111 + S 12 )+

~(33) (33) 34 34
+ 101 E11k1 + S L |+ ()| STkt +E20k2 ), (33)

where
31) A Iy 31)
1) =2zD | A? — A2 I = 34
n= [‘1+«/E 21+ﬁ] 12 =0 G
(32) T Non (2)
Iy =220 A2 Y2 _ A2 Lt L =0, (34b)
1+ /7 1+ VI
(33) ST — 7 (33)
I1p = —2rDA1Ay L 2 5 I =0, (340)
(VI +1) (V72 +1)
34 (33) (34
Iy =1, I 12=0, (34d)
31 (33) 31
In =13, I 21=0, (34e)
32) (34 (32)
Ly =1, I =0, (34D)
O a2 L a2 ! T =0, G4
2] =21 1 \/ﬂ-‘rl 2 \/E'i‘l 5 22 =Y, g
G _ep] A 1 A1 B =0, Gan
S IV TN/ T N/ e RV e

@
In the same way we obtain for I, that

where

1) T T 1)
111 =2z D Al 2 —A2 )1 . 112 =0, (36a)
Vig+1 Vi +1
“2) T —1 -1 42)
Iy =2xD A X2 4, Y , I =0, (36b)
Iy —1 =1
@3) T, R M) py @3)
112—27TD A2 (}.1—1) _Al (12_1) ], 111—0, (36¢)
@4) — i (44)
Iy = —2zp a2 =D (WA =D G ey
(41 =1 (22 —=1)
41) I — JA A — JA 41)
by =2xD A ZL- YL 4, 22 2l I =0, (36e)
A1 =1 Ao (dy—=1)
“2) T —1 5 —1 42)
by =—2aD{a YT 4, Y2 , Ly =0, (36f)
=1 Iy —1
3) e /7y 43)
Ly =2xD{A 4, 21, I =0, (36g)
Vir+1 Vi +1
“4) Vi -1 Vi -1 (44)
by =2rD A X" 4, Y2 , I =0. (36h)
-1 Jy—1
Substituting the integrals with zero value from Egs.

(34d).....,(34h) and (B6a).....,(36h) into Egs.

then utilizing the Hooke law (I7), (3) we obtain

(33) and (33)

B @ syep(00) — sipexn(oo) | GD
I+ 1 = 5 G1In+
S11822 — 815

2 (32) (33)
—en(o) &b I n+in)+
566

@41

_ (34) 1)
$11€22(00) = $2111(c0) &1l — eqn (00) (fl I +é‘2112) -

11522 — 57,
(42) (43) “2) 43)
e12 (00) |:é‘1 ( I+ 111) +& ( I+ 112)] -
(44)

(44)
23 (00) (fl I+ 52112) (37a)

and
G @ sxe(00) —sppexn(co) | GD
L+ = ) 5 )52122—!—
S11822 — S12
2 (32) (33)
—ep() &\ I+ )+
566
s11€22(00) — s21€11(00) , B4 @1 @1
5 &l —epy (00) (&1121 + 2 ) —
S11822 — 815

42) (43) 42) 43)
e12 (00) |:f1 ( I+ 121) +& ( I »n+ 122)] -
(44) (44)

e (00) (51 L1 + 52122) . (37b)

Using Egs. (7) to (I2Z), one can prove that the following equa-
tions hold (the formal calculations are presented in Appendix
B.):

s (€20) s71(00 (34) 41
(14): lim e;3(c0)eR$ n (1‘1)4)7 (Mo, Q) dsy, = 2 = I + 2109 In—In=1,
T Rooo PR Jp e Me S12 T S11522 S12 T S11822
1) @1) 42) (42) 2 ((32) (33 42)  43)
= e11(0) (51 L1 +521x2)+€12(00)(§1 L1 +§21x2)+ o (112 +Ip)—Tlin—1=1, (38a)
6
@) @3 I s;p 6D s;p 0 GH @
+eri (o) Ei et +E 1 |+ en(co) Eiler +E12 ), (35) 5 I — = I =11 =0
1o — S11822 ST — S11822
BEM formulation for plane orthotropic bodies 2007 512 27




and

s GD 51 GH @)
- In+ Iy — I =0,
Sip — S11522 STy — S11522
2 /() (33) “42)  43)
— i+ Dbt )—Dbi1—Dbi=1, (38b)
566
S12 (31) S11 (34 @
I — Ipp —In=1.

2 2
S1o — S11822 ST — S11822

If we substitute Eqs. (38alb) into equtions (37alb) we find that

3 @

L + I = ekﬁ(OO)fﬁ . (39)

o @
Neglecting the rigid body motion, i.e., setting I, + I,.to zero and

utilizing (39) we obtain

Hn @ 6 &
L =5 =1L+ L + I + I ZeK,B(OO)C:B

Then the first and modified Somigliana formula immediately
follow from Egs. (T9) and (20):

1 (Q) = exp (00)E5(Q) + j{: [t (M) U (Mo, Q)—

u;(Mo)Tye(Ms, Q)] dsy,  Q € A. (40)

If O = Q, is on L, nothing changes concerning the limit of the
integral taken on Lg. Consequently

Cxp“p(QO) = ekﬂ(oo)érﬂ(QO)‘i‘
]{: (M) Use (Mo, Qo) — 0 (M) T (Mo, Q)] dsi,

0=0. EE() (41)

where Cy, = 0y, /2 if the contour is smooth at Q.. This integral
equation is that of the direct method (or the second Somigliana
formula for exterior regions).

If Q is inside the contour £, — this region is referred to as A;
— then it is easy to show that

0 = s (00)E5(Q)+
]fﬁ (13 (Mo) U (Mo, Q) — 1 (M) T (M, Q)] dsi,

0=0.e4A @2

which is the third Somigliana formula for exterior regions.
Using the formulae set up for the strains in Appendix C and
the Hooke law (T7)) we can calculate the stresses:

1 (0) = tu(00) + fi 6 (Mo)D s (M., Q) dsyr,—

0

fc ws(M)Sup (Mo, Q) sy, O € Ae (43)

where

Dyt =ctiDar +c12Djo2, S = ci1Sann +¢c128:22,

Dyt = c12Dai1 +¢2Djn,  Sinn = c12811 + enSin,

Sii2 = 2c668:12 = S -
(44)

D12 = 2c66Ds12 = Do,

5 Behaviour at infinity

Our goal in this section is to compute the limit of representa-
tion {@0) as Q — oo. This will lead to a characterization of the
asymptotic behaviour of u,(Q). If this behaviour is the same
what we have assumed, i.e., if the limit coincides with @[) pro-
vided that in the latter the rigid body motion is neglected, then
we confirm that the results of the previous section are correct. It
is clear from representation (40) that it is sufficient to show that
the following relations hold

lim f 1, (M)U,e(Mo, Q)dsy, =0,
0@E.E)—00 ) i( ) AK( Q) M.

0

lim
0(1,8)—>

fﬁ s (Mo) T (Mo, Q)dsyy, = 0. (45)

In order to find the limit of the above integrals we have to set up
asymptotic relations for the fundamental solutions Uy, (M., Q)
and T, (M,, Q) if 0 — oo.

Using the notations introduced in Fig. [2]as well as Eqs. (6) and

(TO) we have

o [
rqa(M, Q)Zxa(M)_éra(Q):xa_fa = (46a)
& (ﬁa _ %) ~—Rig gl =1,  (46b)
pa = \Jhar? + 73~ R\J 12+ 73, (46¢)
.
Inp, ~In R+ In (zaﬁ% +ﬁ§) . (46d)

Substituting equations (@6b]b,c) into (I3)and then performing

% (0,Q) =R

Fig. 2.

some manipulations, we obtain the following asymptotic rela-
tions for the fundamental solution of order one:

Un(M, Q) ~ D[ VA3 = Viaai|mR, @7
Uin(Mo, Q) = Ui (Mo, Q) =
VAL — AA2) nn
DA/ A; arctan (VA Azz) nizz , (47b)
VA1 «//12111 +n3
AT A3 .
Un(M,, )~ —D | =L - 22 |InR. (47¢)
2 ) o n

It is obvious that asymptotically U, (M., Q) ~ U, (Q), i.e.,
the kernel in integral (#3)); is independent of M..
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Consequently

lim ]{ b (Mo)Use (Mo, Q)dsy, =

0@E.&)— ),

= lim U ty(My)dsy. =0. (48
oeim ;.K(Q)jiv 21(M.) dspy, (48)

[ —
resultant

By repeating the line of thought leading to the asymptotic rela-
tions @7alb,c), for the fundamental solutions of order two we

the stresses in finite. Existing codes can be modified easily to
perform computations.
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tends to zero, it follows that

lim
0(1,$2)—>

7( 1, (M) T (Mo, Q)dsyy, =
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A Trigonometric integrals
- . G @ o -
When determining the integrals I, + I , we have used the following trigonometric integrals:

2r 2r
1 1
— nllneRds:lneR/cosy/dz//zo, — nzlneRds:lneR/sinl//dt//zo, (629
ER LR ER ﬁR
0 0
2
1 2, .2 _ 2 -2 _
— niln|Agny +n;[ds = [ (cosw)In| g cos™ y +sin”“ y |dy =0, (52)
eR Lr 0
T
L 2 2 _ . 2 ) .
R naln|Agny +n5| ds = (sm w)In |, cos” w +sin“ w [dy =0, (53)
e Lr
1 e cos” v 2r
- dy = ———— (54)
eR Jz, ian +n2 /() Jg €082y + sin” v o + Va4
L _mny /2” cos Y sin dy 0. (55)
eR Jip /lan +n2 0 Agqcos?y +sin® y
1 n% d / sin? 7 d 2n (56)
—_— —_—as = =
eR Jrp Agn? +n3 0 Agcos?y +sin® y v VA +1
! 3 2
niny / cos” y sin y
— ds = - - dy =0, 57
R %CR (A1n? 4+ n3) (A1n? + n3) ) (1 cos? y + sin? y) (A2 cos? y + sin® y)
| 3 2
n1n, / COS i sIn”
— ds = . - dy =0, (58)
eR ?iR (A1n? 4+ n3) (A1n? + n3) ) (1 cos? y + sin” y) (A2 cos? y + sin® y) 4
1 4
—]{ il ds =
eR (iln —+n )(lzn +n2)
27
/ cos? 7 d ) NAL+ A+ 1 (59)
—_ =47 s
(A1 cos? y + sin? y) (12 cos? y + sin® y) v Vi (V4 + Vi) (VA +1) (VA2 +1)
1 2,2
_7{ nyn; ds —
(iln +n )(lzn +n2)
2
3 cos? y sin® y 1
— —— dy =2m , (60)
(/11 cos? y + sin 1//) (/12 cos? y + sin 1//) («/11 + «//12) («//11 + 1) («/12 + 1)
1 ns
_f{ 3 3 2 72 ds =
eR Jrg nii12a +n3 4+ (A1 + A2) ninj
2r
/ sin* W dy = N+ VA2 + AV 1)
(1 cos? y + sin? y) (A2 cos? y + sin® y) («/ + V22) (VA +1) (VA2 + 1)

The integrals detailed above can be checked either by using Maple 9.5 or the Table of Integrals [5,/6] by Gradstein and Ryzhik.

B Proof of equation (382)
Gl (34 1)

B.1. First consider equation (38a);. Substituting the integrals /11, I 1; and I;; — see equations (34a), (34d) and (36a) — we
have

2 AZ) AZ) VA = V7
——n[szzD|: 172 _ 271 :|+S21DA1A2 ! 2 ]—

5%2—S11S22 14+ /A2 14+ VA (\//114-1)(«//124—1)
J7 J7
—2aDA -2 LoapaA,— YL _1—0. 62
i+ 1 i1+ 1
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After multiplying throughout by the common denominator (s 122 —511522)(41 —1)(A2 — 1) and some further manipulations we obtain

{Szz[A%iz(\/ﬂ-l-l)—A%i](\/E-I-l)]—i-szlAlAz(\/» f) (512—Y11522)|:A1\/E(\/Z+1)—
Azx/z(\/gﬁq)]}(\/H—l)(\/g—l)-l-(il—12)822(S122—S11S22)(/11—1)(/12—1)=0- (63)

If we divide throughout by (/2] — 1) (/42 — 1) and substitute (9 then we find

— (s12 — A1522) V72 (\/E-I- 1) [(512 — J1s2)s22 V22 + (S122 - Sllszz)] +
(s12 — Z2522) V1 (JZ + 1) [(512 — Jasn)san VA1 + (s122 - S11S22)] -
(A1 — 22) 522 (S122 -1 822) (\/ﬂ+ 1) (\/72+ 1) — 521(812 — A1522) (512 — A2522) (\//Tl - \/Z) =0. (64)

Here we can again divide throughout by /41 — +/42. Hence

3 3 3
1;1%22 + 4181185 + 2281155 — A1A383, — ATdas3, — A1A3 83, — A7 dasiy +

V151153, + VA25115% — s11512522 + V21 V7251155, 4 212051255, — A1dasa1s5, =0 (65)

where 251 +
2 2 2 2 s12 + S66

A1S1185, + 4281185, = $5511 (A1 + 42) = 522S11T = (2512 + 566) 22511
and 251 +

2.3 2, 3 3 S11 3 2512 566

—A1A585) — AjA2syy = —Aadisyy (A1 + A2) = —— 53 ————— = — (2512 + S66) 522511 -
5§22 8§22
Consequently
3,33 3,3 2 2 2 2
— /1] /12S22 — /11}. s22 — j‘l A28y + VA1S1185, + VA2S1185 — su1s12522 + VAV A2s1185, + A1dasiesy; = 0.

Here

3 3
— 11353 —A2 D283y = —s3 (x 22 Hmz) ——szzzliz(f+f)_—s22 (f+f) —s2,511 (\/ZJr \/Z)
and
\/ﬂmsgg + \/Esllsgz =S222511 (\/Z+ \/Z) .
Therefore

3

303 303 3
3,53 S Tl o2 2 2723 2 2,3 2
— /112/1225‘22 — 511512522 + V41 izsnszz + /1]/125‘12522 = —/112122522 + 55, (S]zi]lz — szzllz/lzz) + /11/12S12S22 =

303
522511 (Szz VAtV iz — Slz) - lflfsgz + 17281253, = s20511 (Szzx/ll Vi — Slz) — 522811 (Szzx//h VA2 — Slz) =0.

(32) (33 42) @)
B.2. Consider equation (38a). If we substitute the integrals /12, I12, I12 and 112 — see equations (34b), (34c) (36b) and (B6c) —

and perform some manipulations we obtain

(66)

— — A + —
Y+ 2y I ) (VR )Vl T+

After substituting D and multiplying throughout by the common denominator

522566 (21 = 22) (V21 + D(V A2 + 1)

47 D A A A1 — /A Ay —1 =1
n[AzszzﬂA NI L Aﬂ}_lzo.

we have
2[4V (Vi +1) = a3V (Vi +1) - a4y (Vi = Vi) | -
sos [ A1V + D) (1= Vi2) = AV + D1 = Vi) | -
522866 (11 — 22) (V21 + (V22 + 1) =0. (67)
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If we make use of equation (9) and perform some transformations we find

(s12 — 41522) (\/ﬂ+ 1) [2(S12 — 1s2) VA2 — 66 (1 - \/E)] -
(512 — A2522) (\/E+ 1) [2(512 — 72522) /71 + 66 (\/Z - l)] + 2(s12 — A1522) (12 — A2522) (\/Z - \/E) -
522566 (1 = 22) (V21 + 1)(V22 +1) = 0.

If we factor the above expression we have

(\/Z— \/E) [S12+S22\/Z\/Z(1+ Vi + \/E)][Szz(/h + 42) —2s12 — s66] = 0.

The first factor is obviously different from zero. Hence we should investigate the other two. We shall start with the last one:

(2512 + 566)

§22(A1 + 42) — 2512 — S66 = —2512 — S66 + 522 o= = —2s12 — 566 + 2512 + 566 = 0.

Since the above expression is zero equation (38a); is truly satisfied.

Gl (34) @1
B.3. The third equation to consider is (38a)3. If we substitute the integrals /1, /11 and I - see equations 1' li and 1'

— we obtain
2 D A A VA — A
27r— ) (A% 2 A3 1 ) + 5114142 ] 2
STy — 5118522 Az +1 VAir+1 (VA +1) (V72 + 1)

AAs Ay
2z D — =0. (63)
((vil—i-l) (VA2 +1)
Let us multiply throughout by the common denominator (s122 —s511522) (V42 + 1)(4/A1 4+ 1) and substitute D. We have

s12 [A%/lz(\/ﬂ-l- 1) — A3 (VA + 1)] +snA1A (VA — Vo) +
(s3, — s11522) [Azil (\/Z+ 1) — A1 (\//Tl+ 1)] =0. (69)

If we make use of equations (9) we find

s12(s12 = 21522)* 22 (VA1 + 1) = s12(s12 — 22522)2 21 (V22 + 1)+
s11(512 = 21522) (512 = 2250) (VA1 — /22) + (535 — 511522) (512 — A2522) A1 (\/E—F 1) —
(st = susn)(s12 = husm)da (VR +1) =0, (70)

After factoring the above expression we obtain the product:

(\/Z— \/Z) [—S12+S22 (/11 + 4+ VA + Vi + JTM/E)] (A1A2822 —s11) = 0.

The first factor is apparently not equal to zero. Therefore we have to consider the other two. The last one clearly vanishes:

511
(=s11 + A1d2s) = (—Sn + 5522) = —s11+511 =0.

Consequently equation (38a); is also satisfied.

C Proof of equation (38b)
G G4 @)

C.1. Third, consider equation (38b);. Upon substitution of the integrals I22, I>» and I, — see equations (34¢), (34h) and
— we have

2n D S22A1A2(«//1_1— \//1_2) 4 A% 1 B A% 1 _
(V21 +1) (VA2 + 1) NVl Va1

2
STy — S11522

Ay A, B
2”D(M(m+1)‘m(m“))‘°‘ (71)
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After multiplying throughout by the common denominator

(s7, — S11S22)\/Z\/E(\/ﬂ+ 1) (\/EJr 1)
and making use of equations (E[) we obtain
(\/ﬂ— \/Z) [sz (\/ﬂ+ \/E) — sihsa1 + sy + /11%/12%62 ~ Vst -
— Vaashsa — —siisias — VA1V Aasi155, + \/le%msgz - \/Zésmﬁz +
/11% V252153 — /11% V7251255 212252155 — /21511512522 — v/ 22811512500+

3 3
+/11/122s21s§2 + ilzizszlsgz + 2 \//125122522 -2V A \/izslzzszz:l =0.

Let us divide throughout by /41 — /47 and cancel the terms braced. If, in addition, we take into account that
—s1y521 + 515 = =51, +53; =0

we shall have
303
(\//Ilsfz + \/i2sf'2 + /112/1225"32 - \//11S122S21 -
3
— Vst — susiasn — VAV Aasiiss, + 241V iastysn — \//11/1228123524-

3 3 3
3.2 3 2 3 2 2
+ VA4 52185, — Af N/ A2s1285, + A N/ A2s2185, + A1A2821855 — V/ A1S11S12522—

3 3
— /2811812822 + /11/122S21S§2 + ] 2252155 — 2/ 21 v /12S12S21S22) =0

in which

w

3 3 3
33 2 2 3.2 3 2
25855 — S11812522 — A1V 2251185 + A14280185 — A1s11812520 — /A2s11812522 + 414582185, + A{ A2saisy, = 0

— ol

where

3 3
M3 82183, + 27 2252153, — Aasusiasae — Vasiisiasa =
S1
= 159212V 1 + V2) = susiesn (VA + Vi2) = szlsizé(vh + VA2) = siisisn (Vi + V) =
= s11512822(VA1 4+ V22) = stisizsn (VA 4+ V) = 0.

Therefore

3 3

ﬂljlzjsgz + /11/12s21s222 — S11812522 — /A1 \/12S11s§2 =
s11
= 53,0172(520 V21 V72 + 521) — s12522(511 + 522V 21/ 72) = S%gg(szzx/il VA2 521 — s12822(s11 + 522/ A1V A2) =
= 51155 VA1 VA2 + 511512522 — 511512522 — 511595 v/ A1 v/ A2 = 0.

(32) (33) (42) (43)
C.2. Consider equation (38B)». If we substitute the integrals I»1, 21, I21 and I»; — see equations (34b), (36b) and -

and perform some manipulations we obtain

2 1 1 NN
22D | A? — A — A1A; M= Vi -
Vii+1 Viz+1 (VA +1) (V22 +1)

S66

Ar Ay Vo Ny
2r b ((%+ ) (VT + 1)) 2x b (A‘W
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Let us multiply throughout by the common denominator ses(+/41 + 1)(4/A2 + 1) and make some manipulations. In this way we
have

2[4} (Vi + 1) = A3+ D] = 2404V~ V)~
— 566 [Az(\/z+ 1) — Ai(V2 + 1)] — 566 [Al\/Z(\/E‘F 1) — Ay Voo (VA + 1)] -
— (11 = 22)522566(V/ 21 + D) (V A2+ 1) =0. (73)

If simplify (68) then we have

2s12 — 21522)* (V22 4+ 1) = 2(s12 — 22522)* (/21 + 1)—
—2(s12 — 21522) (512 — 22522) (V21 — v/ 22) + s66(s12 — A1522) (/72 + 1) (1 - \/Z) +
+sa(s12 = Aas2)(Vin+ 1) (V2 = 1) = (1 = 22)smses(VaT + D2+ D) =0, (74)

If we factoring this expression we shall get

(\/ﬂ - \/E) (512 + Viisa + Vaasn + \/E\/an) (—2512 — S66 + 21522 4+ A28522) = 0.

The first factor is evidently different from zero. Hence we have to investigate the other two. We shall start with the last one

2512 + S66
(=2s12 — s66 + A1522 + A2522) = —2512 = 566 +522(A1 +42) = —2s12 —566+SzzT = —2s512— 566 +2512+566 = 0.
(31 34 41)
C.3. Third consider equation (38B)3.Upon substitution of the integrals I, I2> and I, — see equations (34€), (34h) and -

we have

2D s12A1A2 (VI — VA2) N A3 _ A3 B
st —susn | (VAr+1) (V2 +1) VAV +1) V(I +1)

2 D( Al A2 ) 1. (75)
y/a - = .
i+l V41

Then multiplying throughout by the common denominator

(s7 _511522)\/E\/Z(\/E+ 1) (\/Z+ 1)

and making some manipulations we obtain

— 51241 A2 /A1 2 (V 71 = 32) = s11 [A% V(o +1) = A3V (Vo + 1)] -
— (5%, = s11522) VA1 2 [Al (\/E+ 1) — A (\/Z+ 1)] -
— (21 = 22) 52257, — s11522) V2102 (\/Z+ 1) (\/Z+ 1) =0. (76)

If we substitute equation (9) we have
1181241 — S1151242 + 512504173 — $1252243 20 + s11512 v/ 41 — s11512 v/ A2+
3 3 3 3
+ 5115241V A2 — s1152 VA1 A + S]zszz/ll/lzz — S12S22/112/12 — S%z/l%lzz + S%zllzlg =0. (77
After factoring this equations we shall find
(\//11 - \//12) (512 + VAisio + Vs + VA \//12822) (s11 — A142522) =0.

One can check easily that the third factor is zero:

11
(511 — A1dasn) = (Sll - —822) =s11 —s11 =0.
5§22

Consequently (38D)s is fulfilled.
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D Formulae for strains
Making use of equations (I3), (I4) and (@0) from the kinematic equations (I)) we obtain

eap = fﬁ B Dip (M Q) i, = § w(M)Sp(Mo. Q) s, Q€ A, (78)
where
D1 =Uy o1, St =Thuor,
1 1
Dj12 = 3 (U201 + U1 62) = Djor, Sinz = 3 (Tr201+ Ty 02) =Djo1, (79)
Din=Upo, Sin=Tpn0.
If we introduce the notations
N A2
b=-%, h=-%, c=Vuviri+r, d=Gh-Vior,
P )
IZA /I%A A A (80)
1 2 1 2
klzl_za k2= 22 ) flzé—s f2=3—
G AT Gl Gl
for the derivatives in equation (79) we have
01U = D (bz,le%r] _ bli]Agrl) :
DA A,
oUpp = — > (2\//11 \/ﬂzdrlz — Cd) =01Up,
1 +d=ri
01Uz = D (blA%rl _ b2A§r1) ,
&Ui =D (bzA%rz _ blA%rz) , (81)
DA Ay
OUn=——F3 [2dr1r2 —c(Vi - \//12)1”1] =&l
14+d ri
A2r2 A2r2
o0oUyy = —D 2 — 1
(p% Via  piNAT
and
[ 2byinAiry 26121 Asry |
01T =D 5 — 5 (rini 4+ ran2) — D[b2Ay — b1Az]ny,
) P
[ 2b1 41 A1 2b2)nAor |
0iTio =D 5 — 5 ring — D[b1Ay —byAz2lny — D2 fidiry — 2 fadori]rany
P1 )
- 5 5 z (82a)
21)1}, A2r1 Zblﬂ A1r1 2b121A2}’1 2b2/12A1r1
0111 =D - 2 rinyg — D [biA1Ay — bydaAi]lny — D 5 — 5 rani,
| P ) P1 )
_2b1/11A1r1 2b212A2r1 i
01T =D 5 - 5 (riny +ranz) — D [b1Ay — byAs]ny,
Pi )
i brA12r) b1A22r)
T =D > — 5 (riny +ranp) — D[ by Ay — b1Az]na,
) P1
_b1A12r2 by Ar2r)
T, =D YRR }rlnz—D[zflrz—zfzrz]rzm + D[fi — f2lni,
. 2 (82b)
b1A1A2r byAyA2r) b1A2r) byA12r)
01 =D 5— — 5 ring — D — — 5— |r2n1 + D [b1Az — byAr]ng,
P P P P
_b1A12r2 brAr2r)
02T =D >— — ———>— | (nn1 +ran2) = D[b1A1 — byAz]ns.
P1 )
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