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Abstract
In this study we present an efficient new hybrid meta-heuristic

– named in other context ANGEL – for solving discrete size op-
timization of truss structures. ANGEL combines ant colony op-
timization (ACO), genetic algorithm (GA) and local search (LS)
strategy. The procedures of ANGEL attempt to solve an opti-
mization problem by repeating the following steps. First time,
ACO searches the solution space and generates structure de-
signs to provide the initial population for GA. After that, GA is
executed and the pheromone set in ACO is updated when GA
obtains a better solution. When GA terminates, ACO searches
again by using the new pheromone set. ACO and GA search al-
ternately and cooperatively in the solution space. In this study
we propose an efficient local search procedure. The procedure,
in an iterative process, tries to make a better (a lighter feasi-
ble or a less unfeasible) truss from the current truss obtained by
ACO or GA. The geometrically and materially nonlinear space
trusses are formulated as a large displacement structural model.
The treatment of elastic-plastic collapse analysis is based on a
path-following method [6]. The applied method is a combina-
tion of the perturbation technique of the stability theory and
the non-linear modification of the classical linear homotopy
method. With the help of the higher-order predictor-corrector
terms, the method is able to follow the load- deflection path even
in case of elastic-plastic material law.
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1 Introduction
A structural design problem, in the categories of sizing, shape,

or topology optimization can be classified as a continuum or dis-
crete problem. Historically, tree major methods have been de-
veloped: evolution strategies, evolutionary programming, and
genetic algorithms. In this paper, only the sizing problems are
considered, where at the beginning the traditional mathemati-
cal programming and optimality criteria method have been ef-
ficiently applied. Recently, the widely spread methods for dis-
crete structural design problems are the evolutionary algorithms
that simulate the evolution of individual structures by interre-
lated processes of selection, reproduction, and variation. There
are several applications and reviews on evolutionary techniques
summarized [20]. Recently, several types of heuristic, meta-
heuristic methods have also been applied for discrete sizing
problems in structural design.

The genetic algorithm (GA) is an efficient stochastic approach
based on the concepts of natural selection and genetics using
encoded set of variables instead of the variables. Genetic al-
gorithms (Gas) operate on a population of potential solutions
rather than improve a single solution. GAs use objective func-
tion information without any gradient information and a tran-
sition scheme that is probabilistic, whereas traditional methods
use gradient information. Most GA methods are a variation of
the simple GA proposed by Goldberg [15], which consists of
three basic genetic operators: reproduction, crossover, and mu-
tation. The crossover operation creates variations in the solu-
tion population by producing new solution strings that consist of
parts taken from selected parent solution strings. The mutation
operation introduces random changes in the solution population.
In GA, the mutation operation can be beneficial in reintroducing
diversity in a population. Goldberg and Samtani [16] applied
first time a genetic algorithm (GA) to optimize cross-sections of
a ten bar plane truss. Jenkins [17,18]; Rajeev and Krishnamoor-
thy [24, 25] proposed GAs for discrete minimal weight design
of trusses and frame structures. However, according to the large
number of successfully applied methods, we have to mention
that the list of quoted papers here is uncompleted. Currently, a
wide range of the applications - Adeli and Cheng [1, 2]; Rajan
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[23]; Camp et al. [4]; Jenkins [19]; Pezeshk et al. [21]; Camp
et al. [5]; Saka and Kameshki [26, 27], Voss and Foley [29];
Pezeshk et al. [22] - are focused on solving much more complex
structural design problems.

Ant colony optimization (ACO) was introduced by Dorigo
and colleagues [10–13] in the early 1990s as a novel nature-
inspired metaheuristic for the solution of hard combinatorial op-
timization problems. The inspiring source of ACO is the for-
aging behavior of real ants. Ants, while they are completely
blind, can successfully navigate between their nest and food
sources and, in the process, discover the shortest path between
these points An ant colony determines the shortest path to food
sources through a complex set of pheromone trails. As an ant
moves, it deposits pheromone along its path. A single ant will
move essentially at random, however another ant following be-
hind it will detect the pheromone trail left by the lead ant and
will be inclined to follow it. As an ant travels along this path,
it lays additional pheromone, reinforcing the pheromone level
of the trail and increasing the probability that subsequent ants
will follow this path. Some research efforts were focused by
Dorigo and Blum [14] gaining a deeper understanding of the
behavior of ant colony optimization algorithms. Camp and Bi-
chon [3] adapted ACO to the design of space truss. The design
variables are mapped into a set of paths that connect each node
in the network. The ant-based truss design procedure has sev-
eral unique search characteristics, which may lead to significant
improvements in the consistency and computational efficiency
of its performance as compared to evolutionary methods.

Both ACO and GAs use a population of agents or individuals
to represent solutions, and the information collected by the pop-
ulation influences the next generation of the search. An impor-
tant difference of ACO over GAs is that the information main-
tained in the artificial pheromone trails represents the memory of
the entire colony from all generations, whereas the information
on the performance of the search is contained only in the current
generation of a GA. The main advantage of ACO over GAs is
that in every new cycle of the search, solutions are developed
from the collective information maintained in the pheromone
trails.

In this paper, we present an efficient new hybrid meta-
heuristic – named in other context ANGEL – for solving dis-
crete size optimization of truss structures with stability con-
straints. Tseng and Chen [28] proposed first time a new hy-
brid meta-heuristic ANGEL for the resource-constrained project
scheduling problem. ANGEL combines ant colony optimiza-
tion (ACO), genetic algorithm (GA) and local search (LS) strat-
egy. First ACO searches the solution space and generates ac-
tivity lists to provide the initial population for GA. Next GA is
executed and the pheromone set in ACO is updated when GA
obtains a better solution. When GA terminates, ACO searches
again by using a new pheromone set. ACO and GA search alter-
nately and cooperatively in the solution space. The experimental
results for two classical truss problems are presented in compar-

ison with single GA and ACO methods.

2 The truss optimization problem
2.1 Notations

F Number of freedoms
N Number of nodes
M Number of members
lm Length of member m, m ∈ { 1, 2, . . . , M }

G Number of member groups
m (g) Set of members in group g, g ∈ {1, 2, . . . , G}

g(m) Group index of member m, m ∈ {1, 2, . . . , M}, 1 ≤

g (m) ≤ G
C Number of discrete cross-sectional areas in catalogue
ac cth cross-sectional area in catalogue c ∈ {1, 2, . . . , C}

i(g) Cross-sectional area index of group g g ∈

{1, 2, . . . , G}, 1 ≤ i(g) ≤ C
sm Stress in member m, m ∈ {1, 2, . . . , M} sm ≤ sm ≤ s̄
η f f th eigenvalue of Hessian matrix f ∈ {1, 2, . . . , F},

η f > 0
A truss is characterized by a triplet { W, λ, I } where

W = ρ
G∑

g=1
ai(g)

∑
m∈m(g)

lm is the weight

λ is the maximal feasible load
intensity factor 0 ≤ λ ≤ 1

I = { i(g) | g ∈ { 1, 2, . . . , G } } is the set of cross-sectional
indices

2.2 The structural constraints
According to the requirements of the structural design, we

have to satisfy the equilibrium equation system on the deformed
map of trusses. In order to capture the changes in the geom-
etry, a large deflection structural model is applied using Total-
Lagragian description. In this study only linear material is sup-
posed. The structural constraints are based on the stationary
theory of the total potential energy function of the geometrically
nonlinear structural model:

V (u j , λ) = U (u j ) − λp j u j (1)

j = 1, 2, . . . , F.

The total potential energy function is formulated in terms of
load intensity parameter λ, applied load vector p j , nodal dis-
placement vector u j , and U (u j ) nonlinear strain energy func-
tion, where F is the number of freedom.

∂V (u j , λ)

∂u j
=

∂U (u j )

∂u j
− λp j = 0 (2)

j = 1, 2, . . . , F.

A feasible design has to satisfy the criterion of the member stress
constraints for tension and compression, or the member buck-
ling constraints and the structural stability criteria.

In this paper, a non-linear path-following method [6] is ap-
plied for the stability investigation. The proposed method is
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based on the perturbation technique of the stability theory and
on the non-linear modification of the classical linear homotopy
method. With the help of the higher-order predictor-corrector
algorithm, we are able to compute an arbitrary load deflection
path and detect the different type of stability points. Within
the predictor step, we compute the solution of an implicit ODE
problem and the corrector phase is the solution of a nonlinear
equation system. The first-order derivatives are obtained from
the equation system by of null-space computation of the aug-
mented Hessian matrix:

∂2V (u j , λ)

∂u j∂uk
=

∂2V (yq)

∂u j∂uk
(3)

j = 1, 2, . . . , F, k = 1, 2, . . . , F, q = 1, 2, . . . , F, F+1,

where F is the number of freedom and yq signify the (F + 1)

dimensional solution vector.
The higher order derivatives are obtained from the inhomoge-

neous equations using the Moor-Penrose pseudo-inverse. Start-
ing from the zero point of the equilibrium path assuming that
the Hessian is positive definite, the solution is obtained in terms
of arch-length parameter of the equilibrium path. The stabil-
ity criteria are given by the eigenvalue computation of the Hes-
sian matrix. In every step of the path–following process we get
information about the displacement, stresses, local, and global
stability of the structure. This higher order predictor-corrector
method provides an accurate computation of the singular points.
It is capable to compute not only points but also segments of the
equilibrium path. The curve segment approximation is the base
of investigation of the singular points.

Since we are concerned with finding feasible designs we must
define a certain appropriate measure of performance. In the pro-
posed path-following approach the applied measure of design
unfeasibility is defined as the solution of the following system:

λ → max (4)

0 ≤ λ ≤ 1 (5)

η f > 0, f = 1, 2, . . . , F (6)

sm ≤ sm ≤ s̄, m = 1, 2, . . . , M, (7)

where η f is the vector of eigenvalues of Hessian matrix, and
sm , s̄ are the lower and upper bounds of the stress constraints.
The path-following process is terminated at the first constraint
violation.

3 T
he applied discrete optimization methods
We present in this study a new hybrid meta-heuristic method

(ANGEL) for solving discrete size optimization of space trusses

with stability constraints. ANGEL combines ant colony opti-
mization (ACO), genetic algorithm (GA) and local search (LS)
strategy. In this section the applied basic strategies as elements
of the proposed method ANGEL are discussed. Both ACO and
GAs have been applied successfully for optimal truss design.
Other versions of meta-heuristics, simulated annealing (SA),
tabu search (TS), and evolutionary computation (EC) would be
also potential solution methods. Referring to our former experi-
ences on the field of discrete minimal weight design [7,8], in this
paper only genetic algorithm and ant colony optimization are
compared with the proposed new meta-heuristic method AN-
GEL.

3.1 The genetic algorithm
The performance of a generated truss { W, λ, I } is measured

by the following simple fitness function:

φ =

(
W̄ − W
W̄ − W

)2

∗λ2 (8)

where W̄
(
W

)
is the maximum (minimum) truss weight, respec-

tively.

Tab. 1. The steps of the Genetic Algorithm

LocalSearchIterations = 10 ( 0 ≤ LocalSearchIterations ≤ 100 )

Generations = 10
PopulationSize = 100
SwapProbability = 0.1
MutationProbability = 0.1
CrossoverProbability = 0.5
Call ProblemDefinition

For Agent = 1 to PopulationSize

Call RandomAgentGeneration (Agent)

Call PathFollowingMethod

Call BestFeasibleSolutionUpdate

Next Agent

For Generation = 1 to Generations

Call PopulationOrderingByFitness (PopulationSize)

Call FittestParentPairSelection (CrossoverProbability)

Call Crossover (SwapProbability)

For Each Child: Call Mutation (MutationProbability)

Call PathFollowingMethod

Call BestFeasibleSolutionUpdate

Next Generation

3.2 The ant colony optimization
ACO is a procedure that tries to mimic the real social be-

havior of ant colonies. During a trip connecting its nest to the
food source, an ant deposits on the ground some quantity of
pheromone. Subsequent ants tend to follow (in probabilistic
sense) the paths where the pheromone concentration is higher,
depositing themselves some quantity of pheromone. During this
process, ants tend to find paths that are shorter and shorter, ap-
proaching more and more to optimal (shortest) path. To avoid
suboptimal paths, pheromone traces are not permanent because
pheromone is subjected to evaporation.
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As a first step towards the building of an ACO algorithm, let
us consider an artificial ant, which is a random procedure that
builds a truss using the

{
a1, a2, . . . , aC

}
cross-sectional areas.

Let τ g c, g ∈ {1, 2, . . . , G} , c ∈ {1, 2, . . . , C} be a ma-
trix with τ initial value, which simulate the pheromone concen-
tration in the design space. The generic term τ g crepresents
the pheromone concentration associated to the group gwith the
cross-sectional area index c.

Let β g c, g ∈ {1, 2, . . . , G} , c ∈ {1, 2, . . . , C} be a matrix
with β initial value, which contains so called heuristic informa-
tion about the design space. In our approach, the generic term
β gc represents information about the feasibility associated to
the member g with the cross-sectional area index c.

The goodness of a truss { W, λ, I } is measured by the follow-
ing two parameters:

1τ =

(
W̄ − W
W̄ − W

)2

(9)

1β = λ2 (10)

where W̄
(
W

)
is the maximum (minimum) truss weight, respec-

tively.
ACO update the pheromone concentration matrix (τ ) and the

heuristic feasibility matrix (β) according to the truss building
ability of the individual ants:

τg i(g) = τg i(g) + 1τ (11)

βg i(g) = βg i(g) + 1β (12)

Let α g c, g ∈ {1, 2, . . . , G} , c ∈ {1, 2, . . . , C} be the collective
memory of ant colony:

αgc =
τgcβgc

C∑
c=1

τgcβgc

(13)

Matrix α is used to create the probability matrix p:

pgc =
αgc

C∑
c=1

αgc

(14)

The generic element p g c, g ∈ {1, 2, . . . , G} , c ∈

{1, 2, . . . , C} of matrix prepresents the probability to choose the
cross-sectional area index cfor group g.

In our approach, the pheromone evaporation is mimicked by
using the following simple formula:

τg c = τg c (1 − ε) (15)

whereεis the control parameter of the evaporation
process(0 ≤ ε < 1). The case ε = 0means no pheromone
evaporation.

Tab. 2. The steps of the Ant Colony Optimization

LocalSearchIterations = 10 ( 0 ≤ LocalSearchIterations ≤ 100 )

Generations = 10
PopulationSize = 100
EvaporationParameter = 0.01 (ACO)

Call ProblemDefinition

For Generation = 1 To Generations

For Ant = 1 to PopulationSize

If Generation = 1 Then

Call RandomDesignGeneration (Ant)

Else

Call AntGeneration (Ant)

End If

Call PathFollowingMethod

Call BestFeasibleSolutionUpdate

Call PheromoneSetUpdate

Next Ant

If Generation > 1 Then

Call PheromoneEvaporation (EvaporationParameter)

End If

Next Generation

3.3 The Local Search Procedure
The local search procedure plays a very important part in the

proposed ANGEL method. During the optimization process,
both ACO and GAs use a population of agents or individuals
to represent solutions, and the information collected by the pop-
ulation influences the next generation of the search. In the lo-
cal search procedure, before the maintenance, we refine the first
evaluated solution.

In the main procedure of ANGEL we use the repetition of
following steps:

i ACO with local search, and

ii GA with local search.

iii Finally, a fine-tuning search is conducted.

The essence of local search is very simple:
The procedure, in an iterative process, tries to make a better (a

lighter feasible or a less unfeasible) truss from the current truss.
The procedure terminates when no further improvement is pos-
sible. If the current truss is feasible (λ = 1) then the procedure
tries to make a lighter but still feasible truss by decreasing the
cross-sectional area of the minimally stressed member’s group.
If the current truss is unfeasible (λ < 1) then the procedure tries
to make a heavier but feasible (less unfeasible) truss by increas-
ing the cross-sectional area of the maximally stressed member’s
group.

3.4 The ANGEL procedure
In this section we present a hybrid meta-heuristic ANGEL

for optimal truss design. The name “ANGEL”, in a different
context, was proposed by Tseng and Chen [27]. ANGEL, as
a hybrid approach, combines ant colony optimization (ACO),
genetic algorithm (GA) and local search (LS) strategy.
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Tab. 3. The steps of the Local Search procedure

For LocalSearchIteration= 1 to LocalSearchIterations

If λ = 1 then

m =MinimallyStressedMember: g = m(m)

If i(g) < C then

i(g) = i(g) + 1 : Call PathFollowingMethod

If FeasibleTruss then Call UpdateDesign Else Exit For

Else

Exit For

End If

Else

m =MaximallyStressedMember: g = m(m)

If i(g) > 1 then

i(g) = i(g) − 1 : Call PathFollowingMethod

If FeasibleTruss then Call UpdateDesign Else Exit For

Else

Exit For

End If

End If

Next LocalSearchIteration

The procedures of ANGEL are as follows:
First, ACO generates an initial population (an ant colony) us-

ing the dynamically changing pheromone set (in our approach,
the starting population is a totally random design set). ACO
maintains a lower bound, the lightest feasible solution found so
far. After finishing the population generation, evaporation can
be activated. Next, GA is executed and the pheromone set in
ACO is updated when GA obtains a better (a lighter feasible) so-
lution. When GA terminates, ACO searches again by using the
new pheromone set. An efficient local search procedure may be
applied to improve the goodness of solutions obtained by ACO
and GA. ACO and GA search alternately and cooperatively in
the design space.

Tab. 4. The steps of the ANGEL procedure

LocalSearchIterations = 10 ( 0 ≤ LocalSearchIterations ≤ 100 )

Generations = 10
PopulationSize = 100
EvaporationParameter = 0.01 (ACO)

SwapProbability = 0.1 (GA)

MutationProbability = 0.1 (GA)

CrossoverProbability = 0.5 (GA)

Call ProblemDefinition

For Generation = 1 To Generations

Call AntColonyAlgorithm(Generation, PopulationSize, LocalSearchItera-

tions)

Call GeneticAlgorithm(Generation, PopulationSize, LocalSearchItera-

tions)

Next Generation

Call LocalSearch (BestFeasibleSolution, LocalSearchIterations)

4 Numerical examples
The proposed ANGEL method has been tested and compared

with simple genetic algorithm (GA) and simple ant colony op-

timization (ACO). ANGEL combines ant colony optimization
(ACO), genetic algorithm (GA) and local search (LS) strat-
egy. The discrete minimal weight design problem is formulated
in terms of member cross-sections, member stresses, and con-
strained by the local and global stability. In order to avoid a
local buckling in the truss members the following constraints
are imposed:

smb ≤ sm (16)

where the Euler-stress is computed from formula:

smb =
π2

l2
m

Ei2
m (17)

According to the published example [?1-8], in this study a cir-
cular cross-section is applied. Therefore, in this case the formula
of the Euler-stress is simplified:

smb =
amπ

4l2
m

E (18)

The structural model is a large deflection, geometrically non-
linear truss. In order to avoid any type of stability loss even a
structural collapse, a path-following approach is proposed for
eigenvalue computation. The applied measure of design unfea-
sibility is defined as the maximal load intensity factor subject to
all of the structural constraints.

4.1 Design of the ten-bar cantilever truss
The ten-bar cantilever truss has been considered previously

by several researchers. The geometry and nodal coordinates are
presented in Figure 1 and in Table 5. In this example truss mem-
bers are individual variables. The truss is subjected to the given
105lb applied external load. The modulus of elasticity is107lb,
and the material density ρ = 0, 1lb/ in3 is. The stress constraint
for tension members smax = 2500psi is. The cross-sectional ar-
eas, as design variables are selected from the following available
set of catalog values:{36; 27; 19; 12; 7; 4; 2; 1}. The results ob-
tained using ACO, GA, and ANGEL without local search pro-
cedure, are presented in Table 6, Table 7, and Table 8. Results
obtained by using ACO, GA, and ANGEL extended by LS, are
presented in Figure 1 demonstrate the efficiency of the proposed
method. The details of the results are listed in Table 9, Table 10,
and Table 11.

Fig. 1. The layout of the ten-bar truss
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Tab. 5. Relationship between truss members and nodal points

members 1 2 3 4 5 6 7 8 9 10

end nodes 4-6 2-4 3-5 1-3 3-4 1-2 3-6 4-5 1-4 2-3

Tab. 6. Results of the 10-bar truss using ACO without LS

Weight Cross section indices of the design Cross-sectional areas of the design

3861,174 {6,6,5,3,4,1,6,3,4,2} {19.0,19.0,12.0, 4.0, 7.0, 1.0,19.0, 4.0, 7.0, 2.0}

3897,174 {7,3,5,3,5,3,4,5,1,5} {27.0, 4.0,12.0, 4.0,12.0, 4.0, 7.0,12.0, 1.0,12.0}

3926,997 {4,5,5,3,6,4,6,2,5,1} { 7.0,12.0,12.0, 4.0,19.0, 7.0,19.0, 2.0,12.0, 1.0}

3887,379 {7,1,5,4,2,1,1,8,2,2} {27.0, 1.0,12.0, 7.0, 2.0, 1.0, 1.0,36.0, 2.0, 2.0}

2973,527 {6,2,5,3,3,2,4,4,4,4} {19.0, 2.0,12.0, 4.0, 4.0, 2.0, 7.0, 7.0, 7.0, 7.0}

Tab. 7. Results of the 10-bar truss using GA without LS

Weight Cross section indices of the design Cross-sectional areas of the design

3129,881 {5,3,5,3,6,2,3,4,5,1} {12.0, 4.0,12.0, 4.0,19.0, 2.0, 4.0, 7.0,12.0, 1.0}

3486,262 {6,5,4,3,4,3,1,6,3,4} {19.0,12.0, 7.0, 4.0, 7.0, 4.0, 1.0,19.0, 4.0, 7.0}

2895,351 {5,1,5,3,4,2,3,5,4,4} {12.0, 1.0,12.0, 4.0, 7.0, 2.0, 4.0,12.0, 7.0, 7.0}

3424,057 {5,6,4,4,5,4,2,5,3,3} {12.0,19.0, 7.0, 7.0,12.0, 7.0, 2.0,12.0, 4.0, 4.0}

3440,468 {4,3,4,2,5,4,2,6,4,5} { 7.0, 4.0, 7.0, 2.0,12.0, 7.0, 2.0,19.0, 7.0,12.0}

Tab. 8. Results of the 10-bar truss using ACO+GA without LS

Weight Cross section indices of the design Cross-sectional areas of the design

3461,556 {4,2,5,5,3,3,4,6,5,1} { 7.0, 2.0,12.0,12.0, 4.0, 4.0, 7.0,19.0,12.0, 1.0}

4268,468 {4,5,5,2,2,7,4,6,2,5} { 7.0,12.0,12.0, 2.0, 2.0,27.0, 7.0,19.0, 2.0,12.0}

3866,291 {5,5,5,3,4,1,3,6,5,4} {12.0,12.0,12.0, 4.0, 7.0, 1.0, 4.0,19.0,12.0, 7.0}

3729,527 {8,5,4,3,3,1,2,5,5,2} {36.0,12.0, 7.0, 4.0, 4.0, 1.0, 2.0,12.0,12.0, 2.0}

3496,057 {5,5,4,3,6,5,1,5,4,2} {12.0,12.0, 7.0, 4.0,19.0,12.0, 1.0,12.0, 7.0, 2.0}

Tab. 9. Results of the 10-bar truss using ACO+LS

Weight Cross section indices of the design Cross-sectional areas of the design

2164,057 {5,1,4,3,3,1,1,5,4,2} {12.0, 1.0, 7.0, 4.0, 4.0, 1.0, 1.0,12.0, 7.0, 2.0}

2265,881 {5,1,4,3,3,1,1,5,4,3} {12.0, 1.0, 7.0, 4.0, 4.0, 1.0, 1.0,12.0, 7.0, 4.0}

2329,146 {5,3,5,2,1,3,5,3,1,3} {12.0, 4.0,12.0, 2.0, 1.0, 4.0,12.0, 4.0, 1.0, 4.0}

2424,792 {4,3,5,3,1,3,5,4,2,3} { 7.0, 4.0,12.0, 4.0, 1.0, 4.0,12.0, 7.0, 2.0, 4.0}

2337,881 {5,2,4,3,3,2,3,5,3,3} {12.0, 2.0, 7.0, 4.0, 4.0, 2.0, 4.0,12.0, 4.0, 4.0}

Tab. 10. Results of the 10-bar truss using GA+LS

Weight Cross section indices of the design Cross-sectional areas of the design

2077,146 {4,2,5,2,1,3,5,3,1,3} { 7.0, 2.0,12.0, 2.0, 1.0, 4.0,12.0, 4.0, 1.0, 4.0}

2236,057 {5,1,5,3,1,1,4,4,4,1} {12.0, 1.0,12.0, 4.0, 1.0, 1.0, 7.0, 7.0, 7.0, 1.0}

2206,234 {5,2,5,3,1,2,4,4,2,3} {12.0, 2.0,12.0, 4.0, 1.0, 2.0, 7.0, 7.0, 2.0, 4.0}

2185,146 {5,2,4,2,3,3,3,5,1,3} {12.0, 2.0, 7.0, 2.0, 4.0, 4.0, 4.0,12.0, 1.0, 4.0}

2193,881 {5,1,4,3,2,1,3,5,4,1} {12.0, 1.0, 7.0, 4.0, 2.0, 1.0, 4.0,12.0, 7.0, 1.0}

Tab. 11. Results of the 10-bar truss using ACO+GA+LS

Weight Cross section indices of the design Cross-sectional areas of the design

2236,057 {5,1,5,3,1,1,4,4,4,1} {12.0, 1.0,12.0, 4.0, 1.0, 1.0, 7.0, 7.0, 7.0, 1.0}

2272,057 {5,2,5,3,1,1,4,4,4,1} {12.0, 2.0,12.0, 4.0, 1.0, 1.0, 7.0, 7.0, 7.0, 1.0}

2308,057 {5,2,5,3,1,2,4,4,3,3} {12.0, 2.0,12.0, 4.0, 1.0, 2.0, 7.0, 7.0, 4.0, 4.0}

2265,881 {5,1,4,3,3,1,1,5,4,3} {12.0, 1.0, 7.0, 4.0, 4.0, 1.0, 1.0,12.0, 7.0, 4.0}

2164,057 {5,1,4,3,3,1,1,5,4,2} {12.0, 1.0, 7.0, 4.0, 4.0, 1.0, 1.0,12.0, 7.0, 2.0}
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Fig. 2. Results of ten-bar truss - compared applied methods

4.2 Design of the twenty-five-bar truss
The geometry of the twenty-five-bar space truss is described

in Figure 3. Material density, Young modulus, and yield
stress constraints are same as for the ten-bar truss. The ap-
plied loads for two load conditions are given in Table 12.
The cross-sectional areas, as design variables are selected from
the following given set of catalog values with 35 elements:{

0, 1; 0, 2; 0, 3; 0, 4; ........; 3, 5
}

. The relationship
in between the indices and the cross sections are given in Table
13. The results obtained using ACO, GA, and ANGEL without
local search procedure, are presented in Table 15, Table 16, and
Table 17. Results obtained by using ACO, GA, and ANGEL
extended by LS, are presented in Figure 5, and Figure 6 demon-
strate the efficiency of the proposed method. The details of the
results are listed in Table 18, Table 19, and Table 20.

Tab. 12. Applied loads of 25-bar truss

Nodal points X [kips] Y [kips] Z [kips]

1 - 20 -5

2 - -20 5

Tab. 13. Relationship between the indices and cross-sections of catalog val-
ues

Indices 1 2 3 . . . .. 34 35

Cross-sections

of catalog

values

0,1 0,2 0,3 . . . .. 3,4 3,5

5 Conclusions
• In this work a new hybrid meta-heuristic method - named AN-

GEL - was introduced for discrete minimal weight design of
space trusses with stability constraints. ANGEL combines ant
colony optimization (ACO), genetic algorithm (GA) and local
search (LS) strategy.

• The discrete minimal weight design problem is formulated in
terms of member cross-sections, member stresses, and con-

Fig. 3. The layout of the twenty-five-bar truss

Tab. 14. Relationship between the grouped members (variables) and nodal
points

variables Truss members identify by end-nodes

1 1-2

2 1-4 1-5 2-3 2-6

3 1-3 1-6 2-4 2-5

4 3-6 4-5

5 3-4 5-6

6 3-10 4-9 5-7 6-8

7 3-7 4-8 5-10 6-9

8 3-8 4-7 5-9 6-10

Fig. 4. Results of twenty-five-bar truss - compared applied methods
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Tab. 15. Results of the 25-bar truss using ACO without LS

Weight Cross section indices of the design Cross-sectional areas of the design

456,608 { 5,20,32, 1,10, 5,19, 4} {0.5,2.0,3.2,0.1,1.0,0.5,1.9,0.4}

450,100 { 9,23,32, 3, 8, 1,21, 2} {0.9,2.3,3.2,0.3,0.8,0.1,2.1,0.2}

465,780 { 7,25,35,23, 2, 1,18, 1} {0.7,2.5,3.5,2.3,0.2,0.1,1.8,0.1}

497,290 { 2,17,23,11, 8, 1,34, 5} {0.2,1.7,2.3,1.1,0.8,0.1,3.4,0.5}

450,358 {12, 5,19,11, 3,18,23, 3} {1.2,0.5,1.9,1.1,0.3,1.8,2.3,0.3}

Tab. 16. Results of the 25-bar truss using GA without LS

Weight Cross section indices of the design Cross-sectional areas of the design

394,948 { 5,17, 7, 2, 2, 1,10,35} {0.5,1.7,0.7,0.2,0.2,0.1,1.0,3.5}

327,008 {30,15,15,29,14, 3, 9, 2} {3.0,1.5,1.5,2.9,1.4,0.3,0.9,0.2}

392,286 {13,23, 8, 7,28, 5, 6,18} {1.3,2.3,0.8,0.7,2.8,0.5,0.6,1.8}

400,693 { 7,16,34, 7, 7, 4, 8,11} {0.7,1.6,3.4,0.7,0.7,0.4,0.8,1.1}

318,005 {17, 6,26, 6,23, 5,10, 2} {1.7,0.6,2.6,0.6,2.3,0.5,1.0,0.2}

Tab. 17. Results of the 25-bar truss using ACO+GA without LS

Weight Cross section indices of the design Cross-sectional areas of the design

438,593 { 7,21,33, 7, 5, 1,21, 1} {0.7,2.1,3.3,0.7,0.5,0.1,2.1,0.1}

403,014 {16, 8,17,29,10,13, 9,11} {1.6,0.8,1.7,2.9,1.0,1.3,0.9,1.1}

459,142 {26,18,27,11, 4, 1,24, 5} {2.6,1.8,2.7,1.1,0.4,0.1,2.4,0.5}

444,397 { 3,28, 6,17,14,13,12, 8} {0.3,2.8,0.6,1.7,1.4,1.3,1.2,0.8}

350,268 {15,13,22, 5,16, 4, 8,11} {1.5,1.3,2.2,0.5,1.6,0.4,0.8,1.1}

Tab. 18. Results of the 25-bar truss using ACO+LS

Weight Cross section indices of the design Cross-sectional areas of the design

440,696 {25,12,29,12,13, 9, 8,14} {2.5,1.2,2.9,1.2,1.3,0.9,0.8,1.4}

366,726 { 5,13,27,25,14, 7, 9, 1} {0.5,1.3,2.7,2.5,1.4,0.7,0.9,0.1}

299,903 { 7,11, 9, 3, 8, 3,17, 7} {0.7,1.1,0.9,0.3,0.8,0.3,1.7,0.7}

370,227 {32,14,24,16,23, 5, 9, 2} {3.2,1.4,2.4,1.6,2.3,0.5,0.9,0.2}

264,128 { 9,10,13,11,13, 2,10, 5} {0.9,1.0,1.3,1.1,1.3,0.2,1.0,0.5}

Tab. 19. Results of the 25-bar truss using GA+LS

Weight Cross section indices of the design Cross-sectional areas of the design

306,552 {16,13,20, 3, 6, 3, 8, 9} {1.6,1.3,2.0,0.3,0.6,0.3,0.8,0.9}

419,676 { 7,28,24,28, 8, 3, 8, 6} {0.7,2.8,2.4,2.8,0.8,0.3,0.8,0.6}

346,008 { 5, 5,21,17,16, 5,15, 6} {0.5,0.5,2.1,1.7,1.6,0.5,1.5,0.6}

399,968 {14,27,18, 3,11, 2, 7,16} {1.4,2.7,1.8,0.3,1.1,0.2,0.7,1.6}

426,601 { 3,14,25,30,14,10, 8, 9} {0.3,1.4,2.5,3.0,1.4,1.0,0.8,0.9}

Tab. 20. Results of the 25-bar truss using ACO+GA without LS

Weight Cross section indices of the design Cross-sectional areas of the design

390,612 {10, 5,18, 1, 6,13,22, 3} {1.0,0.5,1.8,0.1,0.6,1.3,2.2,0.3}

374,947 {15,21,23, 4,17, 4, 8, 7} {1.5,2.1,2.3,0.4,1.7,0.4,0.8,0.7}

351,271 {16, 8,12, 1,18, 2,17,15} {1.6,0.8,1.2,0.1,1.8,0.2,1.7,1.5}

392,771 { 1,30,27, 1, 1, 3, 8, 7} {0.1,3.0,2.7,0.1,0.1,0.3,0.8,0.7}

371,598 { 1,26,11,28,12, 6, 8, 5} {0.1,2.6,1.1,2.8,1.2,0.6,0.8,0.5}
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Fig. 5. Results of twenty-five-bar truss - compared applied methods

Fig. 6. Results of twenty-five-bar truss - compared applied methods

strained by the local and global stability. The structural model
is a large deflection, geometrically nonlinear truss. In order
to avoid any type of stability loss even a structural collapse,
a path-following approach is proposed for eigenvalue compu-
tation. The applied measure of design unfeasibility is defined
as the maximal load intensity factor subject to all of the struc-
tural constraints.

• The proposed ANGEL method has been tested and compared
with simple genetic algorithm (GA) and simple ant colony op-
timization (ACO). The computational results of the proposed
ANGEL method for two typical “school” example reveal the
fact that the proposed method produces high quality solutions.
The performance comparison between different methods is
conducted by evaluating the same number of designs.

• From this study, it is noted that the local search we proposed
is very effective. The final search is useful in improving the
quality of solutions. The motivation of combining ACO and
GA was that ACO may find good solutions as initial popula-
tion for GA and the feedback of GA by updating pheromone
may help ACO to find even better solutions. However, we
have to emphasize that without the help of an effective local
search procedure we obtained less capable combined solution
method.
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