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Abstract

In the conventional shearing tests the normal force or the normal stiffness are kept constant during the
experiment. Sliding under constant normal load occurs in slopes if the environment is not changing
during the process. The goal of this paper is to investigate the influence of the continuously changing
(i.e. increasing) normal load for the continuously increasing shearing load. Cement mortar specimens
with triangular teeth that have the same inclination (regular triangular teeth) were used to carry out this
research. Both the geometry of the specimens and the mechanical constants were well-known. The
"Continuous Failure State" (CFS) shear tests were carried out according to CFS-triaxial tests, with
different starting normal stresses. According to the investigations, the behaviour of the material in
case of CFS-shearing tests was always different as in case of CFS-triaxial tests. Linear and nonlinear
theoretical models are proposed for the measured curves.
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1. Introduction

For triaxial tests to determine the peak and the residual strength of rock materials
the International Society for Rock Mechanics (ISRM) suggested the “Continuous
Failure State” triaxial test (CFS-triaxial test) [3]. According to this method con-
fining pressure and axial stress are applied so as to cause the test specimen to be
permanently in a state of failure. In this way it is possible to obtain at least parts
of the failure envelope for both the peak and the residual strength with the aid of
a single specimen. KOVÁRI et al. [2] explained this method and realized that to
keep the material in a pre-failure state the best is to chose the rate of the increasing
confining pressure so that the slope of the axial stress–axial displacement curve is
equal to the Young’s modulus of the sample. Because the slope of the stress-strain
curve of a damaged material decreases with the axial stress, one can avoid an early
failure and the measured strength will have some reserves.

TISA and KOVÁRI [7] showed that CFS-triaxial test might be directly adapted
to the direct shear test, because on comparing the results of conventional triaxial
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tests with those of direct shear tests on joints or planes of weakness a considerable
similarity may be observed. The curves representing the relationship between
axial stress and axial strain in the triaxial test exhibit basically the same form as
those for shear deformation and shear force in the direct shear test, including the
characteristics for peak and residual strength (Fig. 1). After several investigations
they realized that using the CFS direct shear test the determination of the residual
shear strength is exact. However, for determining the peak strength envelope of
rough surfaces (or with teeth) only with decreasing normal load is correct [7] This
material investigation for determining the shearing constants of jointed rocks is also
used in the practice, mostly in Switzerland.

According to the results of TISA and KOVÁRI [7] using continuously increas-
ing normal load as CFS direct shear test for rough surfaces or those with teeth on
cement mortar and brick specimens the slopes of shear stress–normal stress curves
were always under the curve of the exact failure envelope. An example of the exact
envelope of shear failure with single specimens under constant normal load can be
seen on Fig. 1.

Fig. 1. Characteristic results of direct tests with constant normal loading on rock joints
indicating similarity to triaxial test results [7]. The arrows indicate some related
residual and peak shear stress values of the two figures.

Shearing tests with specimens of regular triangular teeth were carried out
with increasing normal load from the maximal shearing stress point according to
the research of TISA and KOVÁRI [7] with nine different starting normal loads and
the relationship between the shear and the normal stress was described.

2. Relationships between the Critical Shear Stress and Normal Stress

PATTON [5] was the first who performed a series of constant load stress direct shear
tests on rock with regular teeth inclination (i), at varying normal stresses. From
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these tests he established a bilinear failure envelope – failure from an asperity sliding
and asperity shearing mode. The equation for the first part of the two portions of
the failure envelope is:

τ = σn tan(φµ + i), (1)

if the σ n normal stress is less than the σ T transition stress, the boundary between
the different modes of failure. Here τ is the shear stress and φµ denotes the sliding
friction angle. If the normal stress equal or exceeds the transition stress (σ n ≥σ T ),
the shear stress is:

τ = c + σn tan φr , (2)

where c is the cohesion and φr is the angle of the internal friction. Generally it
can be assumed that φµ ≈ φr . The theoretical background of the Patton failure
envelope supposes rigid asperities in the sliding region and failure according to the
Coulomb-Mohr criteria in the shearing region above the transition stress.

Later LADANYI and ARCHAMBAULT [4] extended the Patton Eq. (1), con-
sidering natural rock joints with irregular (but rigid) asperities. They proposed the
following equation for the sliding part of the failure envelope if the shear area is
one:

τ = σn tan(φµ + ν), (3)

where tan ν = v̇ is the rate of dilation at failure. If the asperities are supposed to
be rigid and regular then ν = i therefore Eq. (3) reduces to Eq. (1). For the shear
part they proposed a fitting to the Coulomb-Mohr failure criteria as well as to the
Fairhurst criteria, extending Eq. (3) with additional terms.

SEIDEL and HABERFIELD [6] argued in favor of the original Patton equation
(1) for the sliding part. They claimed to consider elastic teeth and their theoretical
model was supported by constant normal stiffness (CNS) experiments.

VÁSÁRHELYI [8] investigated the dependence of the constant normal load
on the rate of dilation at failure with Constant Normal Load (CNL) experiments,
too. According to his results the Ladanyi and Archambault’s equation (3) can be
extended the whole curve (including the shearing part) and it is better then Patton’s
(1), then correct until the teeth (or irregularities) are not shorn off. Therefore Eq.
(3) is valid far beyond the transition stress and gives a unified approach to the two
seemingly independent failure modes. The practical disadvantage of the approach
that in this case the rate of dilation (v̇) is a variable to be measured.

The real measurements are better approximated by a smooth curve instead of
the bilinear one of Patton. One of the simplest generalizations was suggested by
JAEGER [1] on purely phenomenological reasoning:

τ = c
[

1 − e−bσn
]

+ σn tan φµ (4)

where:
b: empirical constant;
c: cohesion,
σn normal stress
φµ : basic friction angle
qu: uniaxial compressive strength
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This equation is asymptotically equal with the bilinear one of Patton when the
normal load σn goes to infinity. Jaeger’s basic equation is shown with Patton’s
equation on Fig. 2.

Fig. 2. Comparing the rock joint strength envelopes (Patton’s bilinear model and Jaeger’s
strength envelope)

3. Material Description and Experiment

Cement mortar was selected as test material because has rock-like properties. Ta-
ble 1 presents the physical properties of the cement mortal. Basic shearing con-
stants were determined in the previous researches of TISA and KOVÁRI [7] and
VÁSÁRHELYI [8].

All specimens were 150 mm wide and 140 mm long with four regular teeth
where the distance between the teeth was kept constant at 20 mm. The teeth were 5
mm high, 15 mm thick in the bottom and the inclination angle (i) of the teeth was
26.6˚.

The CNL equipment was designed and built in the Rock Mechanics Labora-
tory of the Swiss Federal Institute of Technology, Zurich [7]. The force transmission
to the specimen was ensured by casting it in epoxy resin in the usual manner. The
shear box fits exactly between two massive L-shaped steel pieces (Fig. 3). The
normal force (N) and shear force (S) were applied through one of these L-shaped
steel pieces. The other L-shaped steel piece provided the reactions, which were the
lower loading plates of the servo-controlled press. This was achieved by resting the
L-shaped steel piece against the front side of the frame as well as on a cylindrical
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Table 1. Physico-mechanical properties of the applyied cement-mortal

Physico-mechanical properties Index Unit Value

Modulus of elasticity E GPa 17.5
Poissons ratio ν – 0.1
Maximal stress σ MPa 60
Tensile stress σt MPa 6.5
Basic friction angle 8u degree 33.64
Asperity sliding angle α degree 59.00
Cohesion cj N/mm2 2.13
Transition stress σT N/mm2 2.10
Density γ g/cm3 2.2

bearing box with rests on the lower loading plate. Using this machine the normal
load could be changed manually during the research.

Fig. 3. Schematically view of the shear apparatus used in combination with a loading
machine [7]

The test monitoring arrangement is shown schematically in Fig. 4. It is nec-
essary that the shear stress, normal stress and shear displacements were monitored
continuously. The two x – y recorders allow the separate recording of the shear
stress – shear displacement development and that of the corresponding stress path.
Every research was carried out at constant 0.003 mm/sec shear displacement rate.

Till the maximal shearing stress (which was determined by single tests and
using the previous results, as well) the normal load was constant. Measurements
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Fig. 4. Schematic diagram of the test monitoring arrangement (Tisa and Kovári, 1984).
S: Shear force, ST: Shear load transducer, N: Normal force, NT: Normal load trans-
ducer, DT: Shear displacement transducer, XY Recorders

have been carried out starting with the following constant normal load: 0.3; 0.6;
1.0; 1.5; 2.0; 2.5; 3.0; 3.5 and 4.0 N/mm2. At the maximal shearing stress the
normal load was increased manually keeping the slope of the shear stress – shear
displacement curve constant which were equal to the slope of this curve at constant
normal load, according to the shearing model of TISA and KOVÁRI [7]. In this case
the specimen was maintained in a state of permanent sliding.

4. Evaluation of the Experimental Results

The measured shear stress – normal stress curves are shown in Fig. 5. We can
observe more or less linear shear stress – normal stress curves beyond the maximal
shear stress and expect a tendency to the residual line. With low normal stress the
changing of the direction of the curve is longer (i.e. big curvature of the curve
before the second linear part) but beyond 1.5 N/mm2 normal stress the curves have
very small curvature. Remarkable that the slope of measured curves is similar to
the Ostwald curves for shear stress and shear rate [9]. The linear part of the graphs
is quasi parallel with each other both before and after the transition stress, thus they
are not influenced by the starting normal stress. Both linear and non-linear model
was written for the curves.
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4.1. Linear Model

The slopes of the shear stress – normal stress lines (Fig. 6) are independent on
the starting normal stress and it was approximately 25˚. This slope can depend on
the mechanical behavior, shear displacement rate and the roughness of the rock.
Therefore a linear equation of this curve is:

τ = τs + (σnx − σs) tan γ. (5)

where τs is the maximal shearing stress at the starting normal load (σs) and σnx

is the continuously increasing normal stress and tanγ is the average slope of the
normal stress – shear stress line. Fig. 6 compares the measured result with the
linear equation in case of 2 N/mm2 starting normal stress.

Accepting the validity of Eq. (3) for both modes of failure (supported by the
experiments of VÁSÁRHELYI (1998)) [8] we can get that τs linearly depends on the
σs starting normal stress

τs = σs tan(φµ + ν) (6)

In case of planar surface ν = 0 and the shear stress – normal stress curve is
equal to the failure envelope (tan γ = tan φµ) thus τs = σs tan γ .

Eq. (5) can be reduced with Eqs. (1) and (2). If the starting normal stress
is below the transition stress (σs < σT ) the rate of the dilation is equal (or nearly
equal) to the teeth angle (ν = i):

τ = σs(tan(φµ + i) − tan γ ) + σnx tan γ. (7)

If the starting normal stress is equal or above the transition stress

τ = c + σs(tan φµ − tan γ ) + σnx tan γ, (8)

where the material constants are the same as in case of Eq. (2).

4.2. Non-linear Model

The previous linear model is not entirely satisfactory because according to Eq. (5)
in case of large normal stresses the shear stress can go below the residual strength
(see Fig. 6). Therefore a nonlinear modification of the linear equation above should
satisfy the following requirements

• the curve starts from the same point as the linear one, that is τ (σ s)=τ s ;
• the slope of the curve at σ nx = σ s equals to tanγ ;
• the asymptote at σ nx → ∞ is the residual strength envelope (σ nx tanφµ);
• the tangent of the curve is positive.
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In the spirit of Jaeger equation (4) we can suggest an exponential interpolation
and the following non-linear equation to get a correct asymptotic behaviour

τ = (τs − σs tan φµeb(σnx−σs) + σnx tan φµ, (9)

where b =
tan γ − tan φµ

τs − σs tan φµ

and τs is given in Eq. (6). The linear approximation

of Eq. (5) gives back Eq. (5) for small normal stresses and goes to the residual
strength envelope (σ nx tanφµ) if σ nx tends to infinity, for large normal stresses. Let
us remark that Eq. (9) does not contain any parameters to adjust. Fig. 6 compares
the measured curve in case of 2.0 N/mm2 starting normal stress, the linear and the
non-linear equations. Let us remark that the non-linear Eq. (9) does not consider
the concave part of the normal stress - shear stress curve, which is typical if the
starting normal stress is under the critical value, therefore the initial slope of the
non-linear curve on Fig. 5 is under the initial slope of measured line.

Fig. 5. Measured shear-stresses as functions of the continuously increasing normal stress
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Fig. 6. Comparing the linear equation, the non-linear equation and the measured normal
stress-shear stress curve in case of 2.0 N/mm2 starting normal stress.

5. Conclusion

Shearing tests of specimen with triangular teeth were carried out similarly to the
Continuous Failure State (CFS) triaxial test with different starting constant normal
stress. The measured shear stress–normal stress curves were analyzed where the
normal stress was increased continuously from the maximal shear stress. In this
case, according to the measured results, the specimen is in “Continuous Sliding
State” (CSS). The CSS is not equal to the “Continuous Failure State”, as it was
supposed before TISA and KOVÁRI, [8] thus the traditional CFS-triaxial testing-
method can be not used for shearing tests.

The slopes of the measured shear stress – normal stress curves are independent
on the starting constant normal stress. Both linear and non-linear equations were
suggested to explain the experimental results. The slope of this line depends on the
roughness, on the mechanical behavior of the rock and on the ratio of the shear and
normal stress rate.



180 B. VÁSÁRHELYI and P. VÁN

6. Acknowledgement

The authors acknowledge the support of the Bolyai Scholarship, and also thank for the
financial support of the Hungarian Research Foundation (OTKA No. D04865, T048489
and K60768).

References

[1] JAEGER, J. C., Friction of Rocks and Stability of Rock Slopes. Gèotechnique, (1971), 21
pp. 97–134.

[2] KOVÁRI, K. – TISA, A.– ATTINGER, R. O., The Concept of “Continuous Failure State”
Triaxial Tests. Rock Mech. & Rock Engng. (1983),16 pp. 117–131.

[3] KOVÁRI, K. – TISA, A.– EINSTEIN, H. H. – FRANKLIN, J. A.,: Suggested methods for
determining the Strength of Rock Materials in Triaxial Compression: Revised Version. Int. J.
Rock Mech. Min. Sci. & Geomech. Abstr, (1983) 20, pp. 283–290.

[4] LADANYI, B. – ARCHAMBAULT, G., Simulation of Shear Behavior of Jointed Rock Mass.
Proc. 11th Symp. Rock Mech.: Theory and Practice, (1970) AIME, New York, pp. 105–125.

[5] PATTON, F.D., Multiple Modes of Shear Failure in Rock. Proc. 1st Congress of ISRM, Lisbon,
I: (1966), pp. 509–513.

[6] SEIDEL, J. P. – HABERFIELD, C. M. The Application of Energy Principles to the Determi-
nation of the Sliding Resistance of Rock Joints, Rock Mech. & Rock Engng, (1995), 28 pp.
211–226.

[7] TISA, A. – KOVÁRI, K. Continuos Failure State Direct Shear Tests. Rock Mech. Rock Engng,
(1984) 17 pp. 83–95.

[8] VÁSÁRHELYI, B., Influence of Normal Load on Joint Dilatation Rate, Rock Mech. & Rock
Engng. (1998) 31 pp. 117–123.

[9] VERHÁS, J. 1997. Thermodynamics and Rheology, Kluwer-Academic Press, Budapest.


