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Abstract

The paper presents the theoretical background to a numerical method for calculating the meridian of
axisymmetric stressed shapes of infinitesimal hexagonal grids. Two types of stressing are assumed,
one with a pure tension and another when tension is combined with twist. Also some results of an
illustrative example are given.
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1. Introduction

In a previous paper ([1]) , the author presented an analysis of axisymmetric shapes of
stressed infinitesimal Chebyshev nets. Chebyshev nets consist of two sets of contin-
uous, flexible, inextensional fibres which are connected to each other at equidistant
points. In original state, the net has a square network. It can be deformed like woven
tissues. Most analyses assume the distance of points of connections infinitesimally
small (infinitesimal net), and replace the net by a membrane with incomplete rigidi-
ties. Both finite and infinitesimal Chebyshev nets are typical underconstrained
structures [3] which can develop large displacements without any change in length
in fibre directions.

The shape of stressed membranes of incomplete rigidities is determined using
the consideration that inextensional deformations modify the initial shape until the
surface gets rigid, that is, the missing rigidities are not necessary to develop stresses
resisting further deformation. Equilibrium conditions for the possible membrane
forces can be used to determine the assumed shape.

For axisymmetric stressed shapes the equilibrium of membrane components
requires

na

nϑ

= −rα

rϑ

. (1)

nα, and nθ in Eq (1) are membrane forces, rα , and nθ are radii of curvatures
in meridian, and in annular directions, respectively.
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If initial (unstressed) configuration of the net is a cylinder of the radius a with
given directions of the fibres, then the stressed shape is a surface of revolution with
the meridian r(z). Ratio r/a determines the changes in directions of the intersecting
fibres, directions of the fibres determine the ratio of nα , and nθ . On the other hand,
ratio of rα , and nθ can be expressed using derivatives of r(z) as

−rα

rθ

= 1 + (
r ′)2

rr ′′ , (2)

in this way an equation can be constructed which only contains r(z), r(z)’, and
r(z)’ as unknown functions. Since r(z)” can be expressed from this equation,
the rearranged equation permits us a numeric integration of r(z) after taking ap-
propriate initial values for r(z0), and r(z0)’. Moreover, for specific initial values,
analytic function for the meridian of the stretched axisymmetric Chebysev net can
be obtained.

Hexagonal nets are fundamental patterns of assemblies in nature as well as
in the theory of nets. Unlike Chebyshev nets, they consist of non-continuous fibres
(Fig. 1). In initial state, fibres of hexagonal nets form a regular hexagonal network.
Finite and infinitesimal hexagonal nets are also underconstrained surfaces, their
deformability is more or less the same as that of knitted fabrics or crochets.

In the next chapter, homogeneous deformations of finite and infinitesimal
plane hexagonal nets are analysed. The results are used in Chapter 3 to determine
the meridian of axisymmetric stressed shapes of infinitesimal hexagonal nets.

2. Homogeneous deformations of plane hexagonal nets

Homogeneous deformation means in our case that all hexagons of the net deform
in the same way. That is only possible if parallel fibres of the net stay parallel
after the deformation. Two types of homogeneous deformation will be assumed:
symmetric, and asymmetric deformation. Symmetric means that the deformation
does not upset the symmetry of the net.

First-order theory of deformations assumes that powers of small changes in
length can be neglected. In first-order theory, regular hexagonal nets are discrete
models for surfaces that can only perform deformations which preserve the area of
the surface meanwhile they develop a hydrostatic state of stress against stretching.
These properties can be checked by analysing the deformations of the elementary
cell of the net shown in Fig. 1 and by checking the equilibrium of nodal forces.

Actually, if fibres of the cell are assumed absolutely rigid and powers of small
changes in length are neglected, then small deformations of the cell preserve the
area

A = 3
√

3l2. (3)

The analysis of the neglected terms shows that A = 3
√

3l2 is the maximum
area of the elementary cell.
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Fig. 1. Elementary cell of the hexagonal net in initial state

Analogous joints of the net displace as if they were points of a continuous
surface subjected to a homogeneous state of strain with principal strains

ε1 = −ε2. (4)

This surface will be referred to as the replacement membrane of the net.
Forces acting at a common point of application at lines of action in the di-

rections α, α + π / 3, and α + 2π / 3 must be the same. That means, in initial state
of the net, forces acting at the fibres are either zero or equal. This force distrib-
ution is analogous to hydrostatic states of stress of continuous membranes. If the
value of the fibre forces is N , then principal membrane stresses of the replacement
membrane are

n1 = n2 =
√

3N

3l
. (5)

Strains developed in stressing the net, cannot be assumed small. Conse-
quently, first-order theory has to be replaced by a geometrically exact theory of
deformation.

2.1. Geometrically exact symmetric homogeneous deformation of the net

Let us first analyse finite symmetric deformations shown in Fig. 2. The changes in
the geometry and in the equilibrium conditions of nodal forces will be expressed
using α as geometric parameter.
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Fig. 2. Elementary cell of the symmetrically deformed hexagonal net

Finite strains in directions x and y can be expressed matching side lengths of
the elementary cell in initial and deformed states of the net. Ratios of the lengths
are

(1 + εx) = 2
√

3 cos α

3
, (6)

(
1 + εy

) = 2 (1 + sin α)

3
. (7)

Assuming N the fibre force at the bars in direction y, equilibrium of joint
forces can be ensured by forces N/(2sin α) at the inclined bars. Principal directions
of stresses of the replacement membrane are directions x and y, the replacement
membrane forces are

nx = N cos α

2l sin α (1 + sin α)
, (8)

ny = N

2l cos α
, (9)

nxy = 0. (10)

Limiting values of α are 0, and π /2 . If α = 0, that is, the inclined fibres get
parallel to the parallel circles,

1 + εx = 2
√

3

3
, 1 + εy = 1

2
,

ny

nx
= 0,

if α = π /2, that is, if inclined fibres get parallel to the axis of rotation,

1 + εx = 0, 1 + εy = 2,
ny

nx
= ∞.
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2.2. Asymmetric homogeneous deformations of the net

Asymmetric homogeneous deformations are analysed using two angles as geometric
parameters. One is α, the same as used in the previous section, another is γ which
is the angle of inclination of fibres 1 in Fig. 3.

General description of homogeneous deformation needs a third geometric
parameter, e.g. the angle of the rigid body-like rotation of the whole net, but our
analysis does not need that generalization.

Fig. 3. Elementary cell, and vector diagram of equilibrium forces in the state of skew finite
deformation

Finite deformations in directions x and y are

(1 + εx) = 2
√

3 cos α

3
, (11)

(
1 + εy

) = 2 (cos γ + sin α)

3
, (12)

tangent of the finite angle of distortion γ0 is

tan γ0 = sin γ

sin α + cos γ
. (13)

Ratios N2/N1, andN3/N1 of bar forces acting at fibres 1, 2, and 3 can be
expressed from the vector diagram of equilibrium forces (Fig.3.) as

N2/N1 = cos (α − γ )

sin 2α
, N3/N1 = cos (α + γ )

sin 2α
. (14)

Replacement membrane forces can be obtained in two steps. First, oblique
components membrane forces can be calculated, which are parallel with the sides of
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the deformed elementary cell, then components can be expressed in usual orthogonal
resolution. Neglecting details, the lengthy procedure results in

nx = N1
(
2 cos2 α cos γ + sin α cos2 γ

)

2l sin 2α (cos γ + sin α)
, (15)

ny = N1 cos γ

2l cos α
, (16)

nxy = N1 sin γ

2l cos α
. (17)

Limiting values of γ are ± π / 2.

3. Stressing cylinders of hexagonal net

A rotationally symmetric stressed hexagonal net is produced in steps as follows.
First, a regular plane net is bent and welded into a cylinder of the radius and
height a, H , respectively. Then, cylindrical edges are fixed to rigid boundary rings.
Finally, the distance of the boundaries is increased until the net gets stressed.

Bending will be assumed in two ways. One when generators of the cylinder
are parallel with x (Case 1), and another when they are parallel with y (Case 2).

Also stretching will be assumed in two ways. One when the distance of the
boundaries is increased with parallel moving in direction of the axis of rotation,
and another when the parallel moving is combined with a rotation of the boundary
circles. Both types of stressing preserve the axisymmetric nature of the cylinder.

3.1. Analysis using first-order infinitesimal theory

In first-order theory of infinitesimal deformations, invariance of area of the ele-
mentary cell can be assumed. On the basis of that invariance, the problem of
determining stressed shape of the cylinder can be directly converted into a minimal
surface problem: what is the meridian of the axisymmetric minimal surface of sur-
face area 2πHa and of boundary radii a. Cases 1 and 2 are the same, and rotating
of the boundary circles has no effect on the solution.

In [2], a detailed analysis of this problem is presented in a different context.
It is proven, that the problem can only be solved for limited values of H/a, and also
a dual solution exists. Meridians are catenary lines

r = C cosh
z

C
. (18)
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Parameter C and the changed height h of the net emerge as solutions of
Eqs(19a-b):

C cosh
h

2C
= a, (19.a)

2πCh + πC2 sinh
h

C
= 2π Ha. (19.b)

3.2. Analysis using geometrically exact infinitesimal theory

Since first order theory yields reliable results only in a drastically limited range
of parameters, a geometrically exact infinitesimal theory is applied. ‘Infinitesi-
mal’ means that a replacement membrane is used, ‘geometrically exact’ means that
geometric relations at infinitesimal neighbourhood of points of the membrane are
analysed as if they were homogeneous plane deformations in the tangent plane, that
is, in the cases of symmetric deformations Eqs. (4)-(10), in the case of asymmetric
deformation Eqs. (11)-(17) can be used.

3.2.1. Stressing with pure tension

Case 1
In Case 1 meridian of the replacement membrane coincides with direction x

(see Fig. 2). Consequently, nα = nx , nθ = ny, εα = εx , εθ =εy ,

na

nθ

= cos2 α

sin α (1 + sin α)
, (20)

and α varies within the limits π / 6, and zero.
According to the procedure outlined in Section 1, r(z)” can be expressed on

the basis of Eqs. (1)-(2), and Eqs. (6)-(7) as

r ′′ = 1 + (
r ′)2

r

sin α (1 + sin α)

cos2 α
. (21)

Connection between r , and α can be obtained using

r

a
= (1 + εθ ) = 2 (1 + sin α)

3
. (22)

Let the length of an infinitesimal section of the generator of the lattice cylinder
be ds0. The change in length of ds0 due to stressing is

dsα = (1 + εα) ds0 = 2
√

3 cos α

3
ds0. (23)
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Differentials dz, and dr belonging to ds0 are

dz = dsα√
1 + (r ′)2

, dr = dsαr ′
√

1 + (r ′)2
. (24)

Eqs. (21)-(26) enable us to construct a step-by-step method for computing
coordinates z, and r of meridians belonging to initial values of z, r>2a/3, and r′.

Case 2
In Case 2 directions x and y change, consequently,

r ′′ = 1 + (
r ′)2

r

cos2 α

sin α (1 + sin α)
(25)

and the connection between r and α can be calculated from

r

a
= (1 + εθ ) = 2

√
3 cos α

3
, (26)

where α varies within the limits π / 6, and π / 2. The equation shows that r can take
arbitrary small values.

dsα = (1 + εα) ds0 = 2 (1 + sin α)

3
ds0 (27)

On the basis of Eqs (22)-(27) a similar step-by-step method for computing
coordinates z, and r of meridians can be constructed as used in Case 1.

3.2.2. Stressing with a normal force and a torque

Equilibrium conditions for axisymmetric membrane forces of a shell of rotation can
also be met by assuming membrane force nαθ provided the equation

2r2πnαθ = T (28)

applies to each parallel circle of the shell. T has a direct mechanical meaning in
Eq. (28). It is a torque. A similarly constant value is

2rπ
nα√

1 + (r ′)2
= F, (29)

which is a tensile force acting at the axis of rotation. The ratio of T and Fa is also
constant.

In Case 1, the only effect of torque T is that forces at fibres inclined to the
right and left get different. This change does not modify the stressed equilibrium
shape, provided the tensile force is sufficiently large to keep inclined fibres of both
directions in tension.



THE STRESSED SHAPE OF AXISYMMETRIC HEXAGONAL NETS 11

In Case 2, fibres of meridian direction cannot transfer shear. Fibres 1 also have
to get inclined and the deformation becomes asymmetric. The angle of inclination
is determined by the equation

T

F
= r

√
1 + (r ′)2 tan γ. (30)

Eq. (30) shows that γ varies along the meridian.
Inclination of fibres 1 changes the equilibrium shape of the stressed net. Eqs.

(1)-(2), and Eqs. (12)-(13) yield for the second derivative of r

r ′′ = 1 + (
r ′)2

r

2 cos2 α + sin α cos γ

2 sin α (cos γ + sin α)
. (31)

Connection of α and r is the same as in Case 2 in Section 3.2.2.

r

a
= (1 + εθ) = 2

√
3 cos α

3
, (32)

but the changed length of ds0 is different:

dsα = (1 + εα) ds0 = 2 (cos γ + sin α)

3
ds0. (33)

The step-by-step method of the solution can be the same as used before.

4. Illustrative example

In Fig. 4, the results of an illustrative example are presented. The half of the
meridian of a stressed infinitesimal net is plotted for Case 1, Case 2, and for Case 2
assuming also a torque T = 0.4aF. Ratio H/a is 4, the meridian of the unstressed
net is drawn with dotted line.

Only geometrically exact theory has been used because H/a = 4 does not
permit any mathematical solution of the minimal surface problem.

Meridian belonging to Case 1 obeys the limitation r ≥ 2a/3 and its first
section is close to a straight line indicating the limit value of r . Increasing ratio
H/a results in small changes in the last section, only the length of the almost straight
section increases.

In Case 2, the meridian looks different, because the limiting value of r is zero
and the meridian gets the closer to zero the higher the ratioH/a is.

The third meridian shows that torque reduces both the stressed height and the
minimum radius. For increasing values of the torque the difference of twisted and
not twisted nets rises, beyond a limiting value of T/aF the problem has no solution.
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Fig. 4. Meridians of a stressed hexagonal net

5. Conclusions

The results have shown that the analysis of axisymmetric shapes of stressed infini-
tesimal hexagonal nets requires the use of a geometrically exact infinitesimal theory
of deformation. Meridians of the stressed net essentially depend on the direction
of the non-continuous fibres. Also the effect of twist is different if the orientation
of the fibres is different.
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