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Abstract

The paper presents an application of the method of the generator function. The method is used in
the analytic investigation of the free vibrations of a parabolic antenna dish, which is considered as
a thin shell. For solving the differential equation system of the vibration problem, the method of
the generator function is applied. This method is based on the generalization of determinants and
cofactors of quadratic matrices.

In an illustrative example the natural frequencies of the paraboloid are compared with those of
a circular plate having the same radius and material properties as the paraboloid, and also with those
of the circular plate resting on a fictitious elastic foundation.

Keywords: vibration, surface structure, analytic solution, modal analysis, generator function.

1. Introduction

The paper presents the analytic vibration analysis of a levitating parabolic antenna
dish. The solution was obtained by using the method of the generator function. The
antenna is assumed as a thin, flat shell with the shape-function

z = f r2

a2
(1)

in an r, ϑ, z cylindrical co-ordinate system (Fig 1.). In Eq(1) a is the boundary
radius and f is the height of the dish. This paraboloid can also be assumed as a
replacement of a flat calotte cut out of a sphere of the radius

R = a2

2 f

Uniform mass distribution and constant thickness are assumed, the material
is homogeneous and isotropic with the elastic constants E and ν. Zero damping
and no co-vibrating masses are considered.
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Fig. 1. Geometric data of the shell

The governing equations of the analysis are those of Marguerre’s differential
equation system of bent shallow shells [1, 2]

B1 (w) − P (z, F) = p,

B2 (F) + P (z, w) = 0

in which w is the normal displacement of the middle surface, F is the stress function
of membrane forces, and p is the function of external loads. Operators B1, and B2
are fourth order linear partial differential operators; for homogeneous isotropic
shallow shells of constant thickness, B1 = K��, and B2 = 1

Et ��, where � is the

two-dimensional Laplace operator and K = Et3

12(1−ν2)
.

P is called Kármán’s shell operator. It is a bilinear partial differential operator
of second order for both operands. For a given surface function z, Kármán’s shell
operator assumes the form of a linear partial differential operator of varying coeffi-
cients. For paraboloid surfaces, its coefficients are constant in Cartesian co-ordinate
system.

Similarly to Kirchoff’s plate theory, Marguerre’s equations neglect the out of
plane shear deformations.

2. The Differential Equation System and Boundary Conditions of the
Problem

In vibration problems, loads are inertia forces expressed using the second time
derivative of w. When appropriate derivatives of z and time derivative of w are
substituted into Marguerre’s differential equation system, the following equations
emerge:

K��w − 1

R
�F = −ρt

∂2w

∂τ 2
, (2)

1

Et
��F + 1

R
�w = 0, (3)
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in which ρ is the density of the material of the shell, τ is the time variable. Since in-
ertia forces are not associated in Eq(2) with F, vibration modes with zero transversal
displacement are excluded from the investigation.

The boundary conditions of the problem have to be stated at the free boundary
circle r = a. Conditions for vanishing the boundary values of internal forces and
moments are:

Nr = 0, Nrϑ = 0, Mr = 0, Mrϑ = 0, Qr = 0 . (4)

3. Analysis of Vibration as Eigenvalue Problem of the Differential Equation
System

3.1. Introduction of the Generator Function

For solving the vibration problem, the method of the generator function is applied.
The method of the generator function has been worked out for solving systems
of ordinary differential equations with constant coefficients. It is based on the
generalization of determinants and co-factors of quadratic matrices.

The basic principle of the method is as follows:
Differential operations, involved in linear differential equation systems with

constant coefficients are permutable, like scalar multiplications. That means, mul-
tiple differential operations can be performed in arbitrary sequences.

Homogeneous linear differential equation systems for unknowns y1, ..., yn
can be written in a vectorial form as

�y = 0. (5)

In this equation � is an n-th order quadratic matrix

� = [
θi j

]
, i, j = 1, ...n,

the elements of which are permutable operators. The formal permutativity allows
us to produce the operator determinant det (�), as if � were a common quadratic
matrix. As the determinant of a matrix consists of products of its elements, det(�)
consists of products of permutable differential operators; that is, det(�) is a higher
order differential operator. The order of det(�) is the order of the differential
equation system. Co-factors (the signed minors of �)

(−1)i+ j det (�)i j i, j = 1, ...n

and the cofactor matrix of �

Cof(�) = [
(−1)i+ j det (�)i j

]
i, j = 1, ...n.

can also be produced.
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According to the Lagrangian expansion theorem of determinants, for any
values of i

n∑
j=1

(−1)i+ j θi j det (�)i j = det (�) , (6)

and for each couples of values i �= k, equations

n∑
j=1

(−1)k+ j θi j det (�)kj = 0 (7)

identically hold. These equations also apply to operator matrices with permutable
operators. If function H meets the homogeneous differential equation

det (�) H = 0, (8)

then equations
n∑

j=1

θi j

[
(−1)

k+ j
kj det (�) H

]
= 0 (9)

hold for each couples of values, inclusively i = k, hence, equation

[
θi j

]



(−1)k+1 det (�)k1 H
(−1)k+2

k2 det (�)k2 H
...

(−1)k+n
kn det (�)kn H


 = 0 (10)

also holds.
Eq. (10) shows that

y(k) =




(−1)k+1 det (�)k1 H
(−1)k+2 det (�)k2 H

...

(−1)k+n det (�)kn H




can be assumed a solution vector for Eq(5). In this way solutions H of Eq(8) can be
used for generating solution vectors of the differential equation system. Introducing
H into a row k of Cof(�) yields the transpose of a function vector which is a solution
vector of the differential equation system Eq(5). Eq(8) is called the characteristic
differential equation of the differential equation system Eq(5) and function H is a
generator function of the solution vectors.

If H is the general solution of the characteristic differential equation Eq(8)
and y(k) contains all the free parameters of H , then this vector is the general solution
of the differential equation system. If y(k) does not contain all the free parameters
of H , the general solution of Eq(5) can be obtained as a combination of solution
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vectors y(k1), ..., y(km ), provided each free parameter of H appears at least in one
solution.

In some cases, one or more common operator terms can be factored out from
all elements of the co-factor matrix, hence, the same terms can also be factored out
from det (�). In such so called reducible cases the order of the differential equation
system can be reduced by cancelling off the common terms both in the determinant
and in the elements of the co-factor matrix.

The main advantage of using generator functions is, that after solving the char-
acteristic differential equation, all elements of the solution vector can be obtained
by derivation, in this way the solution is free of redundant constants of integration.
The boundary conditions cannot be directly stated for the generator function, how-
ever, conditions stated for the elements of y can be transferred to the derivatives
of H .

The method can be generalized for the solution of inhomogeneous differential
equation systems as well.

3.2. Application of the Generator Function in the Vibration Problem

The Laplace operator � in cylindrical co-ordinate system, takes the form

� = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϑ2
= 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂ϑ2
. (11)

This operator has varying coefficients that might confront with using a method which
assumes ordinary differential equations and constant coefficients. Nevertheless,
the method can also be used for solving partial differential equation systems if the
problem can be reduced to the solution of a series of ordinary differential equation
systems and differential operators with varying coefficients will only be used in the
final step of the analysis.

Boundary conditions of our problem do not depend on variables τ, and ϑ .
That allows us a successive separation of variables. Functions w, and ϑ can be as-
sumed as w = w(r, ϑ)m sin ωmτ, and F = F(r, ϑ)m sin ωmτ , respectively. Having
introduced these functions into Eqs (2) and (3) the common multiplier sin ωmτ can
be dropped out. In this way differential equations

K��wm − (
ρtω2

m

)
wm − 1

R
�Fm = 0, (12)

1

R
�wm + 1

Et
��Fm = 0. (13)

and the boundary conditions define an eigenvalue problem in which eigenvalues
ωm, m = 0, 1, 2, ...∞ are the natural frequencies of the dish.
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In a vectorial form, homogeneous linear differential equations (12), and (13)
emerge as

�m

[
wm
Fm

]
= 0, (14)

with the operator matrix

�m =
[

K�� − ρtω2
m − 1

R �
1
R � 1

Et ��

]
. (15)

The operator determinant and the cofactor matrix of �m are

det (�m) = K

Et
���� +

(
1

R2
− ρω2

m

E

)
��, (16)

Cof (�m) =
[

1
Et �� − 1

R �
1
R � K��w − (

ρtω2
m

) ]
. (17)

It can be seen that the cofactor matrix is irreducible. The generator function
Hm has to be obtained using the characteristic equation

K

Et
����Hm +

(
1

R2
− ρω2

k

E

)
��Hm = 0. (18)

A substantial simplification can be achieved by factorizing the eighth order
differential operator of Eq. (18) as follows:

det(�m) = K

Et
[��]

[
�� −

(
ρtω2

m

K
− Et

K R2

)]
. (19)

The first operator factor in Eq(19) is that of the differential equation defining planar
biharmonic functions, the second is formally equivalent with the operator of the
differential equation for the deflections of an isotropic plate resting on a fictitious
Winkler-type elastic foundation. The contribution of the geometric and dynamic
properties in that fictitious elastic support can be visualized by introducing charac-
teristic lengths Lstat and Lωm . Characteristic length Lstat is a constant, the analogue
of that used in the analysis of elastically supported plates, assuming a Winkler
coefficient

C = Et

R2
, (20)

that is,

L stat = 4

√
K

C
. = 4

√
K R2

Et
, (21)
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while Lωm is the dynamic characteristic length which is the analogue of that used
in the vibration analysis of unsupported plates:

Lωm = 4

√
K

ρtω2
m

. (22)

In this way, after a further factorization, Eq (19) takes the form

det(�m) = L4
stat

R2
[��]

[
� +

√
1

L4
ω

− 1

L4
stat

][
� −

√
1

L4
ω

− 1

L4
stat

]
. (23)

Eq(23) shows that the solution of the eighth order characteristic differential equation
can be reduced to those of a forth order and two second order differential equations
as follows:

��H (1)
m = 0, (24)

[
� +

√
1

L4
ω

− 1

L4
stat

]
H (2)

m = 0, (25)

[
� −

√
1

L4
ω

− 1

L4
stat

]
H (3)

m = 0. (26)

Solutions of Eq(24) are biharmonic functions, Eqs(25), and (26) can be solved in
polar co-ordinate system using Bessel’s method of separating variables r , and θ .

3.3. The Solution of the Characteristic Differential Equation

In the following steps a double index k, l will be generated instead of the previously
used single index m. Separation of variables r , and θ can be achieved by assuming

Hk = Ak (r) cos kϑ. (27)

To build up Ak (r) , Eq(27) is introduced into Eqs(24), (25), and (26) and the
their solutions A(1)

k (r), A(2)
k (r) , and A(3)

k (r) are summed as:

Ak (r) = A(1)
k (r) + A(2)

k (r) + A(3)
k (r) . (28)

In non-degenerate cases, four solutions for A(1)
k (r) and two solutions for

A(2)
k (r) , and A(3)

k (r) respectively, are linearly independent and the sum Ak (r) is
really the general solution of the unfactorized eighth-order differential equation.
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The characteristic length of the vibration modes of the shell is

Lk =
(

1

L4
ω

− 1

L4
stat

)− 1
4

. (29)

Both Lstat, and Lωm in Eq(29) are of real values, however, the difference under
the square root in Eqs(25), and (26) may also take negative value. In this case,
characteristic length Lk gets complex. That induces no difficulties if the software
of the numerical analysis permits the use of functions with complex argument,
because the natural frequency remains real and both the real, and imaginary parts of
the conjugate complex solutions can be used as real solutions of the characteristic
differential equation [3].

Using a dimensionless radial co-ordinate

ξk = r

Lk
, (30)

the solution of Eq (18) can be constructed as

Hk =
[

A(1)
k (r) + C5 Jk (ξk) + C6 Ik (ξk) + C7Nk (ξk) + C8Kk (ξk)

]
cos kϑ, (31)

in which

= C1 + C2r
2 + C3 ln r + C4r

2 ln r if k = 0,

A(1)
k (r) = C1r + C2r

3 + C3r
−1 + C4r ln r, if k = 1,

= C1r
k + C2r

k+2 + C3r
−k + C4r

−k+2 if k > 1,

and Jk, Nk, and Ik, Kk are k-th order Bessel functions and k-th order modified
Bessel functions of the first and second kind, respectively. Properties of the Bessel
functions are discussed e.g. in [3].

Functions in Eq (31) which are singular at point r = 0 have to be disregarded
in case of complete paraboloid or spherical cup. Consequently, coefficients C3, C4,
C7, and C8 must vanish and Hk consists of only four components:

Hk = [
C1kξ

k
k + C2kξ

k+2
k + C5k Jk(ξk) + C6 Ik (ξk)

]
cos kϑ (32)

Generating the solution vector using the second row of the cofactor matrix (17)
results in

wk = 1

R
� {Hk} = 1

RL2
k

[
4C2(k + 1)ξ k

k − C5 Jk (ξk) + C6 Ik (ξk)
]

cos kϑ, (33)

Fk = K

[
�� − 1

L4
ω

]
{Hk} = (34)

= −K

[
1

L4
ω

(
C1ξ

k
k + C2ξ

k+2
k

) + 1

L4
stat

(C5 Jk (ξk) − C6 Ik (ξk))

]
cos kϑ.
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On the basis of Eqs (4), five independent boundary conditions can be stated
at r = a for functions wk and Fk , respectively. These are as follows

for the radial membrane and shear forces:

1

r

∂Fk

∂r
+ 1

r2

∂2Fk

∂θ2
= 0, (35)

− ∂

∂r

(
1

r

∂Fk

∂θ

)
= 0, (36)

for the radial bending and the torsional moments:

−K

[
∂2wk

∂r2
+ ν

(
1

r

∂wk

∂r
+ 1

r2

∂2wk

∂θ2

)]
= 0, (37)

−K (1 − ν)

[
∂

∂r

(
1

r

∂wk

∂θ

)]
= 0, (38)

and for the radial shear force:

−K
∂

∂r
(�wk) = 0. (39)

The four parameters in Ak (r) are not adequate to meet the boundary condi-
tions Eqs(35)-(39). To overcome this difficulty, (see Eqs 5.35a-b in [1]), replace-
ment boundary conditions have to be used by omitting Eq(38) and building in the
effects of torsional moments into conditions Eq(36) and Eq(39):

Nrϑ − Mrϑ

R
= 0, (40)

and

Qr + 1

r

∂Mrϑ

∂ϑ
= 0. (41)

This replacement is the analogue of using replacement shear forces at the free edges
in Kirchhoff’s plate theory. By expressing Nrϑ , Mrϑ ,and Qr in terms of F, and w,
the following two boundary conditions can be stated at r = a:

∂

∂r

(
1

r

∂Fk

∂θ

)
+ K (1 − ν)

R

∂

∂r

(
1

r

∂wk

∂θ

)
= 0, (42)

−K
∂

∂r
(�wk) − K (1 − ν)

r

∂2

∂r∂θ

(
1

r

∂wk

∂θ

)
= 0. (43)

The next task is converting the boundary conditions for w, and F to conditions
for their generator function H . For that purpose function H has to be substituted
into Eqs(33), and (34), then, expressions obtained in this way have to be substituted
into the Eqs(35), (37), (42), and (43).
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After this procedure, for each k a linear system of algebraic equations


D11 D12 D13 D14
D21 D22 D23 D24
D31 D32 D33 D34
D41 D42 D43 D44







C1
C2
C5
C6


 = 0 (44)

is obtained for coefficients C1, C2, C5, and C6 . Entries in the coefficient matrix of
Eq(44) are as follows:

D11 = K

L4
ω

(
k2 − k

)
αk−2

k , (45)

D12 = K

L4
ω

(
k2 − k − 2

)
αk

k , (46)

D13 = K

L4
stat

[
−

(
k − k2

)
α2

k

Jk(αk) + 1

αk
Jk+1(αk)

]
, (47)

D14 = − K

L4
stat

[(
k2 − k

)
α2

k

Ik(αk) + 1

αk
Ik+1(αk)

]
, (48)

D21 = K

L4
ω

(
k2 − k

)
αk−2

k , (49)

D22 = K

[
1

L4
ω

(
k2 + k

) − 4 (1 − ν)

R2a2

(
k3 − k

)]
αk

k , (50)

D23 = K

(
1

L4
stat

+ (1 − ν)

R2L2
k

)[
k2 − k

α2
k

Jk(αk) − k

αk
Jk+1(αk)

]
, (51)

D24 = K

(
1

L4
stat

− (1 − ν)

R2L2
k

) [
k2 − k

α2
k

Ik(αk) + k

αk
Ik+1(αk)

]
, (52)

D31 = 0, (53)

D32 = 4 (1 − ν)

Ra2

(
k3 − k

)
αk

k , (54)

D33 = − 1

Ra2

{[
(1 − ν)

(
k2 − k

) − α2
k

]
Jk (αk) + (1 − ν) αk Jk+1 (αk)

}
, (55)

D34 = 1

Ra2

{[
(1 − ν)

(
k2 − k

) + α2
k

]
Ik (αk) − (1 − ν) αk Ik+1 (αk)

}
,
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D41 = 0, (56)

D42 = −4K (1 − ν)

Ra2

(
k4 − k2

)
αk−1

k , (57)

D43 = 1

Ra2

{[
(1 − ν)(k3 − k2)

αk
+ kαk

]
Jk(αk) − [

(1 − ν)k2 + α2
k

]
Jk+1(αk)

}
,

D44 = 1

Ra2

{
−

[
(1 − ν)(k3 − k2)

αk
− kαk

]
Ik(αk) − [

(1 − ν)k2 − α2
k

]
Ik+1(αk)

}
,

where
αk = a

Lk
. (58)

Solution of the homogeneous algebraic equation system (44) requires

det [Dk (αk)] = 0. (59)

det [Dk (α)] is a function having infinite zeroes for α > 0. Eq(59) assigns for each
k an infinite series of parameter αkl , l = 1, 2, ... To these values an infinite series
of natural frequencies ωkl can be calculated using

ωkl =
√

E

ρR2

√
α4

kl

t2 R2

12(1 − ν2)a4
+ 1. (60)

To each values of αkl a set of C1, C2, C5, and C6 can also be calculated which
makes the generator function and the vibration mode definite.

4. Illustrative Example

Practical use of the presented analytical method needs an efficient code for finding
zero values of Eq (59). For that purpose MATLAB has been used due to the
applicability of complex arguments of elementary and special functions and due
to efficient built-in functions for calculating determinants and finding zeroes of
transcendent functions.

Input data of the illustrative example are: R = 25 m, a = 2.5 m, t = 0.001 m,
Es = 100 kN/mm2, ν = 1/3, ρs = 2500 kg/m3.

Some solutions αkl of Eq (59) are indicated in Table 1 natural frequencies ωkl
calculated using these solutions are seen in Table2.
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Table 1. Solutions αkl of Eq(59)

k=0 k=1 k=2 k=3 k=4 k=5 k=10 k=15

l=0 – –
20.2062+
20.2062i

20.2050+
20.2050i

20.2018+
20.2018i

20.1953+
20.1953i

20.0436+
20.0436i

19.4527+
19.4527i

l=1 3.0125 4.5296 5.9338 7.2622 8.5379 9.7757 15.6514 21.2907
l=2 6.2059 7.7372 9.1855 10.5767 11.9252 13.2403 19.4938 25.4516
l=3 9.3712 10.9093 12.3826 13.8081 15.1961 16.5539 23.0333 29.1997
l=4 12.5254 14.0688 15.5586 17.0068 18.4215 19.8083 26.4464 32.7676

Table 2. Natural frequencies ωkl [1/s] of the paraboloid

k=0 k=1 k=2 k=3 k=4 k=5 k=10 k=15

l=0 – – 1.7376 4.2123 7.6057 11.8838 45.1419 95.0181
l=1 252.9978 253.0620 253.2173 253.5093 253.9882 254.7087 264.1200 289.3452
l=2 253.2634 253.6611 254.3290 255.3450 256.7898 258.7461 279.0334 322.9145
l=3 254.4409 255.6549 257.4032 259.7864 262.9028 266.8466 301.6849 365.7476
l=4 257.6088 260.3075 263.8635 268.3819 273.9570 280.6702 333.0903 417.9087

In the first row of Table 1, complex values of αkl can be seen. As mentioned
before, cropping up complex roots of Eq(59) does not mean at all that the method
fails in these cases. The solutions of the frequency equation stay real; the only
difference is that Bessel and modified Bessel functional components of Hk0 (and
also of wk0 and Fk0) switch to Thomson functions [3]. However, the big jumps in
the values of ωkl from l = 0 to l = 1 shows a qualitatively varying contribution
of the rigidities in determining the natural frequencies. This difference may get a
plausible explanation by surveying the modes of vibration.

Fig. 2. Relief of w for l = 0, and k = 6
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Fig. 3. Relief of w for l = 3, and k = 0

As Figs. 2 and 3 show, parameter l has a geometric sense: it gives the number
of antinodes of surface lines in radial direction. For l = 0 antinodes are not formed
and the deformations resemble to inextensional deformations of the paraboloid.

For the sake of a deeper insight, two comparisons have been made. One
with the natural frequencies of a circular plate having the same boundary radius,
thickness and material properties as the paraboloid, and another with the natural
frequencies of the same plate resting on a fictitious elastic foundation with the
Winkler coefficient C defined by Eq (20) natural frequencies of the unsupported
circular plate are listed in Table 3, those of the elastically supported plate can be
seen in Table 4.

Table 3. Natural frequencies ωkl [1/s] of the circular plate

k=0 k=1 k=2 k=3 k=4 k=5 k=10 k=15

l=0 – – 1.6271 3.7870 6.6593 10.2287 38.2033 82.6320
l=1 2.8116 6.3561 10.9176 16.3922 22.7275 29.8903 77.4695 143.7297
l=2 11.9314 18.5458 26.1400 34.6665 44.0903 54.3847 118.3017 201.9630
l=3 27.2063 36.8704 47.5020 59.0704 71.5505 84.9212 164.5988 264.6976
l=4 48.6034 61.3188 74.9932 89.6050 105.1350 121.5665 216.7849 332.8933

Table 4. Natural frequencies ωkl [1/s] of the plate on elastic foundation

k=0 k=1 k=2 k=3 k=4 k=5 k=10 k=15

l=0 252.9822 252.9822 252.9874 253.0106 253.0698 253.1889 255.8505 266.1354
l=1 252.9978 253.0620 253.2177 253.5127 254.0011 254.7419 264.5780 290.9608
l=2 253.2634 253.6611 254.3291 255.3464 256.7955 258.7619 279.2764 323.7114
l=3 254.4409 255.6549 257.4033 259.7871 262.9058 266.8550 301.8158 366.1486
l=4 257.6088 260.3075 263.8636 268.3823 273.9587 280.6749 333.1602 418.1124

Table 4 shows equal natural frequencies in the first two entries of the row
l = 0. These values belong to rigid body motions of the elastically supported plate
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and equal to

ωspring =
√

C

ρt
. (61)

which is the lower bound of natural frequencies of the elastically supported plate.
The comparison of corresponding values in the first rows of Tables2 and 3

proves that natural frequencies ωk,0 of the paraboloid, and the circular plate are fairly
close to each other, but for small values of k, and l �= 0, the natural frequencies
strongly differ. That means, for l = 0, natural frequencies of the paraboloid can
be estimated as those of the unsupported plate, but for l �= 0 another estimation is
needed.

The comparison of corresponding values of Tables2 and 4 yields a comple-
mentary conclusion: in cases l > 0, natural frequencies of the paraboloid can be
excellently estimated using those of the elastically supported circular plate.

5. Conclusions

The adequate results of the dynamic analysis of the shallow paraboloid of revolution
proves that the method of generator functions can be successfully used for solving
partial differential equation systems too.

Natural frequencies of the paraboloid shell belonging to modes with and
without antinodes in radial direction differ by magnitudes and can be estimated
using basically different models.

According to Rayleigh’s classification [4], vibrations with inextensional, and
extensional deformations fall under different classes. Though vibrations of a para-
boloid shell are not perfectly inextensional, modes without antinodes are similar to
inextensional deformations and the corresponding natural frequencies are close to
those of a replacing unsupported plate. natural frequencies corresponding to modes
with antinodes in radial direction can be estimated as those of a circular plate resting
on a fictitious elastic foundation. Winkler coefficient of the fictitious foundation is
the same for each mode of this kind and can be calculated from the elastic constants
of the material and the geometric data of the shell.

On the basis of finite element calculations, similar conclusions have been
drawn in [5].
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