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Abstract

In this tutorial type paper a Mathematica function for Support Vector Regression has been developed.
Summarizing the main definitions and theorems of SVR, the detailed implementation steps of this
function are presented and its application is illustrated by solving three 2D function approximation
test problems, employing a stronger regularized universal Fourier and a wavelet kernel. In addition,
a real world regression problem, forecasting of the peak of flood-wave is also solved. The results
show how easily and effectively Mathematica can be used for solving SVR problems.
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Introduction

In geoinformatics frequently happens that data collections are irregular and far from
substantial for function approximation. This fact leads to overfitting, a poor data
generalization, which means a good accuracy for training samples but bad fitting
of the test data points [1]. To solve this problem one may use ridge regression
or other regularization techniques modifying the object function in some ways
[2, 3, 4]. However, in the case of finding non-linear mapping for input/output data
of high dimensions, these methods usually result in a computational problem of NP
complexity.

In the last few years, there have been very significant developments in the
theoretical understanding of a relatively new family of algorithms; they present a
series of useful features for classification as well as generalization of datasets [5].
Support Vector Machines (SVM) algorithms combine the simplicity and compu-
tational efficiency of linear algorithms, such as the perception algorithm or ridge
regression, with the flexibility of non-linear systems, like neural networks, and
rigour of statistical approaches, as regularization methods in multivariate statistics
[6]. As a result of the special way they represent functions, these algorithms typi-
cally reduce the learning step to a convex optimization problem that can always be
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solved in polynomial time, avoiding the problem of local minima typical of neural
networks, decision trees and other non-linear approaches [7].

Their foundation in the principles of statistical learning theory makes them
remarkably resistant to overfitting especially in regimes where other methods are
affected by the curse of dimensionality. It is for this reason that they have become
popular in bioinformatics and text analysis. Another important feature for applica-
tions is that they can naturally accept input data that are not in the form of vectors,
such as strings, trees and images [8, 9].

In this tutorial-type article, it will be shown how easy to use this efficient
technique for function approximation via Mathematica. The steps of implementa-
tion of support vector regression (SVR) are discussed and the application of this
Mathematica function is illustrated by solving 2D approximation test problems with
different types of kernels.

1. Kernels

1.1. Definition of kernel

Let X and H denote a linear vector space and a Hilbert space with scalar product〈, 〉.
A continuous symmetric function K : X × X → R is said to be a kernel on X if
there exists a map � : X → H with

K (x, z) = {�(x), �(z)}
for all x, z ∈ X . We call �a feature map and H a feature space of K . For example,
a possible mapping is the following,

{x1, x2} ∈ R2 → �(x1, x2) = {
x2

1 , x2
2 , x1x2

} ∈ H

Note that both H and � are far from being unique. However, for a given kernel
there exists a unique Hilbert space of functions, called the Reproducing Kernel
H ilbert Space (RKHS).

1.2. Mercer’s condition

Let X be a compact subset of Rn. Suppose K is a continuous symmetric function
for which ∫

X×X

K (x, z) f (x) f (z)dxdz

is positive, that is for all f in the space of the continuous functions on X, with
infinite norm ‖ ‖∞ , namely f ∈ C[X]. Then for K exists an RKHS.



SUPPORT VECTOR REGRESSION VIA... 61

1.3. Universal kernel

A function f : X → R is induced by the kernel K if there exists an element w ∈ H
such that f = 〈w,�(.)〉. For example,

f (x1, x2) = 〈{w1, w2, w3} ,�(x1, x2)〉 = 〈{w1, w2, w3} ,
{
x2

1 , x2
2 , x1x2

}〉
= w1x2

1 + w2x2
2 + w3x1x2

A continuous kernel is called universal if the set of all induced functions is
dense in the space of continuous function on X, C[X], which means that for all
g ∈ C[X] and ∈> 0 there exists a function f induced byK with‖ f − g‖∞ ≤∈.

If K can be represented by a Taylor series, a necessary and sufficient condition
for universality of K can be expressed with the help of the non-vanishing Taylor
coefficients. A kernel is universal if and only if its RKHS is dense in C[X] [10].

1.4. Some typical kernels

Here, we mention some typical kernels and display them in the case of X ⊂ R1.

1.4.1. The Gaussian RBF universal kernel

The Gaussian Radial Basis Function universal kernel with β > 0 and all compact
X ⊂ Rn.

K (x, z) = exp(−β(‖x − z‖)2)

with β = 0.1

β� ���� ����	
���� 
����β���
����
���
����������	
�	 ��	���	���	 �
	���	���	

���������→���� !	 "�!�!	  �#!$�	 ���������%→���	�����
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Fig. 1. Gaussian RBF universal kernel with β = 0.1, in the case of x, z ∈ R1

1.4.2. Polynomial kernel

Polynomial kernel of degree d > 0,

K (x, z) = (c + 〈x, z〉)d

with

&��� '�#� ����	
���� �&(�
�d�

������ ����	
�	 ��	�	���	 �
	���	���	 ����)*�+�→,��	

���������→��-�"$ 	 ����!�	  �"���	 ���������%→���	�����
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Fig. 2. Polynomial kernel, with c = 1, and d = 2, in the case of x, z ∈ R 1
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1.4.3. Vovk’s Real Infinity Polynomial Universal Kernel

Vovk’s real infinity polynomial universal kernel, for d > 0 and all compact
X ⊂ { x ∈ Rn : ‖x‖ < 1},

K (x, z) = (1 − 〈x, z〉)−d

with

'��� ����	
���� ����
�−d�

����������	
�	 ��	���!$	��!$�	 �
	���!$	��!$�	 ����)*�+�→,��	

���������→�$�!�"	  �"��	  �!���	 ���������%→���	�����
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Fig. 3. Vovk ’s real infinity polynomial universal kernel,with d = 1, in the case of x, z ∈ R 1

1.4.4. Stronger Regularized Universal Fourier Kernel

The stronger regularized universal Fourier kernel with 0 < q < 1 and all compact
X ⊂ [0, 2π ]n

K (x, z) =
n∏

i=1

1 − q2

2(1 − 2q cos[xi − zi ] + q2)

with

.���$� ����	
���� ���.2�/#���#. 0�%���
�(.�2�

����������	
�	 ��	�	#π�	 �
	�	#π�	
���������→���� !	 "�!�!	  �#!$�	 ���������%→���	�����
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Fig. 4. The stronger regularized universal Fourier kernel with q = 0.5, in the case of
x, z ∈ R1

1.4.5. Wavelet kernel

Wavelet kernel with a ∈ R1 and all compact X ⊂ Rn,

K (x, z) =
n∏

i=1

(
cos

[
1.75

xi − zi

a

]
exp

[
−(xi − zi)

2

2a2

])

with

*� � ����	
���� 0�%���-$���
�/*� ��������
�2 /#*2��

����������	
�	 ��	���	���	 �
	���	���	

���������→� ��-#	 $�� "	 $�!�-�	 ���������%→���	�����
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Fig. 5. Wavelet kernel with a = 4, in the case of x, z ∈ R
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1.5. Making Kernels from Kernels

The following proposition can be viewed as shown that kernels satisfy a number
of closure properties, allowing us to create more complicated kernels from simple
building blocks.

Let K1 and K2 be kernels over X × X, x, z ∈ X ⊆ Rn, a ∈ R+ and f a
real-valued function on X , in addition exist another function � : X → Rm , with
K3 over Rm × Rm , then the following functions are kernels.

K (x, z) = K1(x, z) + K2(x, z)
K (x, z) = a K1(x, z)
K (x, z) = K1(x, z)K2(x, z)
K (x, z) = f (x) f (z)
K (x, z) = K3 (�(x),�(z))

In addition, if p(x) is a polynomial with positive coefficients, then

K (x, z) = p K1(x, z)
K (x, z) = exp (K (x, z))

2. Support Vector Machine for Regression

2.1. ε-insensitive loss function

The problem of regression is that of finding a function which approximates mapping
from an input domain to the real numbers based on a training sample. We refer to the
difference between the hypothesis output and its training value as the residual of the
output, an indication of the accuracy of the fit at this point. We must decide how to
measure the importance of this accuracy, as small residuals may be inevitable while
we wish to avoid large ones. The loss function determines this measure. Each
choice of loss function will result in a different overall strategy for performing
regression. For example, the least square regression uses the sum of the squares of
the residuals.

Although several different approaches are possible, we will provide an analy-
sis for generalization of regression by introducing a threshold test accuracy θ , be-
yond which we consider a mistake to have been made. We therefore aim to provide
a bound on the probability that a randomly drawn test point will have an accuracy
less than θ . If we access the training set performance using the same θ , we are
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effectively using the real-valued regressors as classifiers, and the worst case lower
bounds apply. What we must do in order to make use of dimension-free bounds
is to allow a margin in the regression accuracy that corresponds to the margin of
a classifier. We will use the symbol γ to denote the margin, which measures the
amount by which the training and test set accuracy can differ. It should be empha-
sized that we are therefore using a different loss function during training and testing
where γ measures the discrepancy between the two losses, implying that training
point counts as mistake if its accuracy less than θ − γ . One way of visualizing this
method of assessing performance is to consider a band of size ±(θ − γ ) around
the hypothesis function, any training points lying outside this band are considered
to be training mistakes. Test points count as mistakes only if they lie outside the
wider band ±θ .

The linear ε-insensitive loss function Lε(x, y, f ) is defined by

Lε(x, y, f ) = |y − f (x)|ε = max (0, |y − f (x)| − ε)

where f is a real-valued function on a domain X, x ∈ X and y ∈ R. Similarly the
quadratic ε-insensitive loss is given by

Lε
2(x, y, f ) = (|y − f (x)|ε

)2

2.2. Support Vector Regression

SVR uses an admissible kernel which satisfies the Mercer ’s condition to map the
data in input space to a high dimensional feature space in which we can process a
regression problem in linear form. Let x ∈ Rn and y ∈ R where Rn represents
input space. By some non-linear mapping �, the vector x is mapped into a feature
space in which a linear regressor function is defined,

y = f (x, w) = 〈w, �(x) + b〉
We seek to estimate this f function based on independent uniformly distrib-

uted data {{x1, y1} , · · · , {xm, ym}}, by finding w which minimizes the quadratic
ε-insensitive losses, with ε = θ − γ , namely the following function should be
minimized [11].

c
m∑

i=1

Lε
2 (xi , yi , f ) + 1

2
‖w‖2 → min

where w is weight vector and c is a constant parameter.
Considering dual representation of a linear regressor, f (x) can be expressed

as [12]

f (x) =
m∑

i=1

βi yi 〈�(xi),�(x)〉 + b
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which means that the regressor can be expressed as a linear combination of the
training points. Consequently, using an admissible kernel, a kernel satisfying the
Mercer’ s condition, we get

f (x) =
m∑

i=1

βi yi K (xi , x) + b =
m∑

i=1

αi K (xi , x) + b.

By using Lagrange multiplier techniques, the minimization problem leads to the
following dual optimization problem [12],

maximize W (α) =
m∑

i=1

yiαi − ε

m∑
i=1

|αi | − 1

2

m∑
i, j=1

αiα j

(
K (xi , x j ) + 1

c
δi j

)

subject to
m∑

i=1

αi = 0

Let

f (x) =
m∑

i=1

α∗
i K (xi , x) + b∗

where α∗ is the solution of the quadratic optimization problem and b∗ is chosen so
that f (xi ) = yi − ε − α∗

i
c for any α∗

i > 0.
For samples are inside the ε-tube, { xi : | f (xi ) − yi | } < ε, the corresponding

α∗
i is zero. It means that we do not need these samples to describe the weight vector

w. Consequently

f (x) =
∑
iεSV

α∗
i K (xi , x) + b∗

where
SV = {

i : | f (xi ) − yi | ≥ ε O R α∗
i > 0

}
These xi sample vectors { xi : iεSV } that come with non-vanishing coefficients α∗

i
are called support vectors.

2.3. The main features of SVR

– Application of non-linear mapping of data from input space into a feature
space, in which linear regressor (machine or learning machine) is used. The
dual representation of linear regressor leads to the employment of kernel
function.

– Quadratic ε-insensitive loss function is used as objective function with regu-
larization term, c for estimation of the weight vector in the kernel represen-
tation of the regressor function f, ensuring ε accuracy, and leading the part
of samples, called support vector, only which influences the weight vector.
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3. Implementation of SVR in Mathematica

3.1. Steps of Implementation

The dual optimization problem can be solved conveniently using Mathematica. In
this section, the steps of the implementation of SVR algorithm are shown by solving
a function approximation problem [13]. The function to be approximated is,


����	1����� ��2�12�2�����$��

Let us display it

��� �������
���	1��	 ��	���	���	 �1	���	���	 ���������%→���	�����
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Fig. 6. Function to be approximated

A training set can be created in form {{xi , yi}, z{xi, yi }}
'*�*� 3*4������	1�	 
���	1���	 ��	���	��	#�$�	 �1	���	��	#�$���

Let us separate the dependent and independent variables,

��15	 
5�� 36*�%��%��7�*�����'*�*	����

Wavelet kernel with parameter a = 4, in the case of dimension n = 2

�� #� *�  �

��8�	9����
n∏

i=1
�0�%���-$�8������9������/*�


�����8������9������2/#*2��
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The number of the data pairs in the training set, m is

5� :��+�;��15�

81

Create the objective function W (α) to be maximized with parameters

ε�����#$� &�#����

First, we prepare a matrix M

<� �3*4���=����15�����	 �15��>����	 ��	�	5�	 �>	�	5�� (

��/&�?'�����1<*�6���5���

then the objective function can be expressed as

@�
m∑

i=1
α i
5����� � ε

m∑

i=1
,4%�αi� ���/#�

m∑

i=1

m∑

j=1
α iα j<���	 >����

The constrains for the unknown variables are

.� ,���1�,�'	A����3*4����& B α i ≤ &	 ��	 �	 5��	 ��
m∑

i=1
α i�������

However, the maximization problem is a convex quadratic problem, for prac-
tical reasons to maximize the objective function the built-in function ��������� is
applied. ��������� implements several algorithms for finding constrained global
optima. The methods are flexible enough to cope with functions that are not differ-
entiable or continuous, and are not easily trapped by local optima.

Possible settings for the ���	
� option include �����
����, �����
������
��
����
�, ������������������ and ����
����
�	.

Here we use �����
��������
����
�, which is a genetic algorithm that
maintains a population of specimens, x1, ..., xn , represented as vectors of real num-
bers (‘genes’). Every iteration, each xi chooses random integers a, b and c and con-
structs the mate yi = xi +γ (xa+(xb−xc)), where γ is the value of�����������

.
Then xi is mated with yi according to the value of �

���

��������, giving us
the child zi . At this point xi competes against zi for the position of xi in the popula-
tion. The default value of ���
�	�
���� is ���
�����, which is ���� !"�#$!%,
where d is the number of variables.

We need the list of unknown variables α,

9*6%� 3*4���αi	��	�	5���

Then the solution of the maximization problem is,
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%��� =<*��5�
���@	+�	 9*6%	 <��;�'→��CC�6����*�
9��8�����

{60026.6, {α1 → 56.8943, α2 → 52.1366, . . . . . . , α81 → −56.8928}}

The consistency of this solution can be checked by computing values of b for
every data point. Theoretically, these values should be the same for all data points,
however, this is only approximately true.

4'*�*� 3*4����
5��>���
m∑

i=1
α i���15��>��	�15������ �ε − α j/&�/�

%�� ��#��	 �>	�	5��

{0.000108394, 0.0000740285, . . . . . . ,−0.00474002}
The value of b can be chosen as the average of these values

4� ,���1���8%	4'*�*�/5

−0.00248556

Then the regressor function is,

C����	 1����� �
m∑

i=1
α i����	1�	 �15������ ( 4�/�%�� ��#���

The result in analytic form is,

2;�6�� C ���	 1��	 $�

−0.00248556 − 56.8928e−0.03125(−10.+x)2−0.03125(<<1>><<1>>)2

Cos[0.4375(−10. + x)]Cos[0.4375(−10. + y)] +
<< 116 >> + << 19 >> + << 3 >> −55.9222 << 3 >> +
56.8943e−0.03125(10.+x)2−0.03125(10.+y)2

Cos[0.4375(10. + x)]Cos[0.4375(10. + y)]

This function can be compared with the original one,

��� �������C���	1��	 ��	���	���	 �1	���	���	 ���������%→���	����	

��%��*78�&����→?'�����1��

2;���D6*�;�&%,66*1����	 �#��	 ��%��*178�&����→ E��%��*178�&������
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Fig. 7. Original surface (to the left) and the approximated surface using SVR with wavelet
kernel

These figures indicate a very good approximation.

3.2. Mathematica Modul for SVR

These steps can be collected in a module where the vector xm contains the input
vectors and the vector ym contains the corresponding scalar output values,

28���6���&��6)�+6�%%������5�	 15�	�	 ��	ε�	&���� <�'8���

�5	 �	 <	 �	 >	 @	 +	 9*6%	 %��	 4�	

5� :��+�;��5�� � � :��+�;��5�������

<� 3*4������5�����	 �5��>���	 ��	�	5�	�>	�	5��

(��/&�?'�����1<*�6���5��

@�
m∑

i=1
α i15����� �ε

m∑

i=1
,4%�αi����/#�

m∑

i=1

m∑

j=1
�α i α j <���	>����

+� ,���1�,�'	 A����3*4����&Bαi≤&	 ��	�	5��	 ��
m∑

i=1
α i ==������

9*6%� 3*4���αi	��	�	5���

%��� =<*��5�
���@	+�	 9*6%	 <��;�'→��CC�6����*�
9��8�������#���

4� ��/5� ,���1���8%	 3*4����15��>�� �
m∑

i=1
α i ���5�����	

�5��>��� �ε ��α i/&��/�%��	 �>	�	5����

��
m∑

i=1
α i ���5�����	 3*4���� j	 �>	�	���� (4�/�%��	 9*6% /�%�����

The module outputs are the regression function in symbolic form and the
values of α ’s. To test our module, let us solve another problem, [14]. The following
function should be approximated in [−5, 5] × [−5, 5],
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����	1����� 2���
√
�� + 1�� /

√
�� + 1�

using a stronger regularized universal Fourier kernel with parameter, q = 0.25

.� ��#$�

��8�	9����
n∏

i=1
���.2� / �#�� �#. 0�%�8����� �9������ (.2��

Because this kernel is valid for x, y ∈ X ⊂ (0, 2π)n , the variables of x, y
should be scaled,


����	1����� 2���
√

($�/π − $)� + ($1/π − $)��/
√

($�/π − $)� + ($1/π − $)�

Let us display this function,
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Fig. 8. Function to be approximated

Generating data,

'*�*� 3*4������	1�	 
���	1���	 ��	�	#π	#π/!�	 �1	�	#π	#π/!��//=�

then calling the SVR module,

7� 28���6���&��6)�+6�%%����'*�*	 �	 ε	 &��

Analytic form of the result,
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2;�6��7	���

0.0253161−0.112811/((1.0625−0.5Cos[0.−x1])(1.0625−0.5Cos[0.−x2]))+
0.153849/((1.0625 − 0.5Cos[0.698132 − x1])(1.0625 − 0.5Cos[0. − x2])) +
0.0768015/((1.0625 − 0.5Cos[1.39626 − x1])(1.0625 − 0.5Cos[0. − x2])) +
<< 139 >> +
0.0121515/((1.0625−0.5Cos[4.18879−x1])(1.0625−0.5Cos[6.28319−x2]))+
0.0749787/((1.0625−0.5Cos[4.88692−x1])(1.0625−0.5Cos[6.28319−x2 ]))+
0.145839/((1.0625 − 0.5Cos[5.58505 − x1])(1.0625 − 0.5Cos[6.28319 − x2]))+
0.101006/((1.0625 − 0.5Cos[6.28319 − x1])(1.0625 − 0.5Cos[6.28319 − x2]))

The surface approximation can be qualified by comparing it with the original
one,

�#� ������� 7	 ��1	�	#π�	 ��2	�	#π�	 ���������%→ ���	����	

��%��*78�&����→?'�����1��

2;���D6*�;�&%,66*1����	�#��	 ��%��*178�&����→ E��%��*178�&������
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Fig. 9. Original surface (to the left) and the approximated surface using SVR with stronger
regularized universal Fourier kernel

The third test problem is a well-known benchmark, the approximation of the
following function from noisy training samples [15],


����	1����� ��!����$ (�x 2������� ���"�2� �−y 2���-1���

Let us display it

��� �������
���	1��	��	�	��	�1	�	��	���������%→ ���	���	

2;*'��+→7*�%�	 ���������→�����!-	 ���"��	 ��!"����
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Fig. 10. Function to be approximated

Noise of normal distribution N(µ, σ ), with µ = 0 and σ = 0.15 was added to
the function.

BB2�*��%��&%F0�����8�8%��%�6�48����%G


�����	1����� 
���	1�� ()*�'�5�=�65*���%�6�48�������	���$��

A training set can be created in form {{xi , yi , z(xi , yi)}
'*�*� 7�*�����3*4���=���	>	
����	>����	��	�	�	 �/!�	�>	�	�	 �/!��	���

BBD6*�;�&%FD6*�;�&%��G

�#�2&*���6�������'*�*	H��)*���%→��	�	��	����2�1��→�����2�
������!�	

���������→������ 	 ���$��	 ��#�-�	 ��%��*178�&����→?'�����1��

2;������	�#�	 ��%��*178�&����→E��%��*178�&������

Let us separate the dependent and independent variables,

��15	
5�� 36*�%��%��<*����I�����	 I��#���	 I������J	 '*�*���

Wavelet kernel with parameter a = 0.23, in the case of dimension n = 2

�� #� *� ��#��

��8�	9����
n∏

i=1
�0�%���-$�8������9������/*� 
�����8������9������2/#*2��
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Fig. 11. Function to be approximated and the noisy training samples

The number of the data pairs in the training set, m is

5� :��+�;��15�

100

Create the objective function W (α)to be maximized, with parameters

ε � ����#$� &� #����

7� 28���6���&��6)�+6�%%������15	
5�	�	ε	&��

Analytic form of the result,

2;�6��7�����	���

2.65449+6.64787e−9.4518(0.−x1)2−9.4518(0.−x2)2
Cos[7.6087(0.−x1)]Cos[7.6087(0.−

x2)] −
7.97406e−9.4518(0.111111−x1)2−9.4518(0.−x2)2

Cos[7.6087(0.111111 − x1)]
Cos[7.6087(0. − x2)]+ << 144 >> +
7.14558e−9.4518(0.888889−x1)2−9.4518(1.−x2) 2

Cos[7.6087(0.888889 − x1)]
Cos[7.6087(1. − x2)] −
1.32496e−9.4518(1.−x1)2−9.4518(1.−x2)2

Cos[7.6087(1. − x1)]Cos[7.6087(1. − x2)]
��� �������7�����	 ��1	 �	��	 � �2 	�	��	 ���������%→���	���	

���������→������ 	 ���$��	 ��#�-�	 ��%��*178�&����→?'�����1��

2;���D6*�;�&%,66*1����	����	 ��%��*178�&����→E��%��*178�&������
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Fig. 12. Original surface (to left) and the approximated surface using SVR with wavelet
kernel

These figures indicate a good approximation.

4. Engineering Application

4.1. Problem Definition

We should develop a statistical model for forecasting the peak of the flood-wave of
the Danube at Budapest. The following 24 data triplets registered from the year of
1896 up to 1955 are available in [16],

Table 1. Model variables

x y z

rainfall
in mm

water-level at the beginning of raining
in cm

peak of water-level
in cm

The measured data are,

'*�* � ��$�	  �$	 $!��	 �$#	  $�	 ""��	 ����	 �$�	 -���	

��-!	 #�$	 --��	 �!�	 ���	 -���	 �-#	  ��	 " ��	 �-#	 $$�	 "-��	

� �	  ��	 $#��	 �"#	  $�	 ""��	 �"-	 "��	 "!��	 �" 	 ���	 $���	

���	  "�	  "��	 �$-	  #$	 "���	 �"#	 $"�	 -���	 �$ 	  #�	 "#��	

� �	 "#�	 ""��	 ��"	 �!�	 "#��	 �- 	 �$�	 $!��	 �!$	 $-�	 - ��	

�  	 -��	 -���	 �--	 $��	 -#��	 � "	 -��	 " ��	 ��#�	 $"�	 ��$�	

�"#	  ��	 "-����

The model z = f (x , y) should generalize these data and ensures forecasting
z from measured xand y values. Now we have a real regression problem, because
the data are not on a smooth surface,
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BBD6*�;�&%FD6*�;�&%��G

��� 2&*���6�������'*�*	H��)*���%→��	�	��	����2�1��→�����2�
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Fig. 13. Triplets of measurement

A general model means that the set of input/output relationships, derivate from
the training set, applies equally well to new sets of data from the same problem not
included in the training set. The main goal is, thus, the generalization to new data
of the relationships learned on the training set.

In order to test the generality of our model to be developed, we divide the
data into a training set and a test set. The number of data is

�'*�*� :��+�;�'*�*�

24

Let us consider every fourth data as test data

'*�*�� 3*4���'*�*�����	 ��	�	�'*�*	 ��

{{58, 405, 590}, {98, 330, 710}, {62, 450, 660},
{57, 425, 610}, {86, 390, 620}, {77, 580, 720}}

The remaining elements are for training

'*�*3� 0�5���5����'*�*	'*�*��

{{33, 460, 460}, {43, 480, 520}, {44, 710, 730}, {46, 700, 640},
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{48, 620, 660}, {52, 450, 660}, {54, 420, 620}, {62, 430, 673},
{62, 560, 710}, {64, 380, 500}, {67, 610, 690}, {72, 400, 640},
{72, 550, 670}, {74, 350, 590}, {95, 570, 740}, {123, 560, 805},
{133, 350, 780}, {179, 285, 770}}

Let us display the training and test set

��� 2&*���6�������'*�*3	 H��)*���%→��	�	��	

����2�1��→�)DH0���6��	�	��	 �����2�
��������	

,��%:*4��→�K)*��C*�� K	K2�*6���+ :�9��K	K��*L :�9��K�	

��%��*178�&�����M?'�����1��

�#� 2&*���6�������'*�*�	H��)*���%→��	�	��	

����2�1��→�)DH0���6��	�	��	 �����2�
��������	

,��%:*4��→�K)*��C*�� K	K2�*6���+ :�9��K	K��*L :�9��K�	

��%��*178�&����→?'�����1��

2;���D6*�;�&%,66*1����	�#��	 ��%��*178�&����→E��%��*178�&������
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Fig. 14. Traning data (to left) and test data

Preparation of these sets for learning and testing

�15� <*���6���I	���J	 '*�*��


5� <*��3*L��I	��	���J	 '*�*�//7�*�����

�153� <*���6���I	���J	 '*�*3��


53� <*��3*L��I	��	���J	 '*�*3�//7�*�����
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4.2. Solution with SVR

Employing wavelet kernel with parameter a = 0.3

�� #� *� ����

��8�	9����
n∏

i=1
�0�%���-$�8������9������/*�


�����8������9������2/#*2��

and with the following parameters for SVR

ε � ���#$� &� #����

7� 28���6���&��6)�+6�%%������153	
53�	�	ε	&��

The regressor function is,

2;�6��7�����	�$�

658.753 + 110.65e−5.55556(179.−x1)2−5.55556(285.−x2)2
Cos[5.83333(179 − x1)]

Cos[5.83333(285 − x2)] −
68.4051e−5.55556(74.−x1)2−5.55556(350.−x2)2

Cos[5.83333(74 − x1)]
Cos[5.83333(350 − x2)] +
<< 18 >> +
1.19631e−5.55556(48.−x1)2−5.55556(620.−x2)2

Cos[5.83333(48 − x1)]
Cos[5.83333(620 − x2)] −
18.6538e−5.55556(46.−x1)2−5.55556(700.−x2)2

Cos[5.83333(46−x1)]Cos[5.83333(700−
x2)] +
70.8486e−5.55556(44.−x1)2−5.55556(710.−x2)2

Cos[5.83333(44 − x1)]Cos[5.83333(710 − x2)]
C����	1���� 7�����/���1 →�	 �2→1��

Let us display the relative error of the approximation on the whole data set

BB D6*�;�&%FD6*�;�&%G

H*60;*6����,4%�
5�<*��C�I�J	�15���/
5����	

3�&L%→���	$	!	��	�-	#�	#$�	 ���	��	#���	 ����)*�+�→��	#��	

,%��&�)*���→��$��

The figure shows that on most of the test data not included in the training,
the error is considerably high, while on the elements of the training set the error is
negligible. The maximum error is
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Fig. 15. Relative approximation error in percent on the whole data set for ε = 0.025

<*����,4%�
5�<*��C�I�J	�15���/
5�����

11.653

and its standard deviation is

2�*�'*6'��9�*�������,4%�
5�<*��C�I�J	�15���/
5�����

3.52979

Let us see the values of α ’s,

7��#��

{ − 197.758,−138.057, 70.8485, −18.654, 1.19758, 1.19684,
− 38.5545, 14.1321, 50.948, −157.957, 31.0475,−18.654, 11.1469,−68.4052,
80.7987, 145.475, 120.6, 110.649}

As we know, the input vector xymTi is a support vector if the corresponding αi �= 0.
We shall consider αi �= 0 if its absolute value is greater than 10−3. Then the support
vectors can be selected in the following way

%8���6�9�&��6%� 
��6*&���153	��%������7��#��	��,4%�I�M��−3 J���

{{33, 460}, {43, 480}, {44, 710}, {46, 700}, {48, 620}, {52, 450},
{54, 420}, {62, 430}, {62, 560}, {64, 380}, {67, 610}, {72, 400}, {72, 550},
{74, 350}, {95, 570}, {123, 560}, {133, 350}, {179, 285}}

Now, all of the training vectors are support vectors. It is easy to visualize them
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BBD6*�;�&%F����7���'G

:�%�������&��67���'�<*�����	��	I�J	%8���6�9�&��6%�	

,%��&�)*���→��$��

Fig. 16. All training vectors are support vectors in the case of ε = 0.25

In order to eliminate the approximation error on the test set, to improve the
generalization of our model, the parameter ε should be increased. Now let us carry
out the computation with ε = 10.

ε� ����

7� 28���6���&��6)�+6�%%������153	
53�	�	ε	&��

The regressor function is

2;�6��7�����	�$�

648.778 +
102.114e−5.55556(179−x1)2−5.55556(285−x2)2

Cos[5.83333(179 − x1)]
Cos[5.83333(285 − x2)] − 57.0896e−5.55556(74−x1)2−5.55556(350−x2)2

Cos[5.83333(74 − x1)]
Cos[5.83333(350 − x2)] +
<< 23 >> +
62.3134e−5.55556(44−x1)2−5.55556(710−x2)2

Cos[5.83333(44 − x1)]
Cos[5.83333(710 − x2)]
C����	1���� 7�����/���1 → �	 �2 → 1��

Let us display again the relative error of the approximation on the whole data set
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Fig. 17. Relative approximation error in percent on the whole data set for ε = 10

This figure shows that although the maximum of the approximation error
decreased just a little, the error distribution is tending to a more uniform one, which
indicates higher statistical confidence of the model.

<*����,4%�
5�<*��C�I�J	�15���/
5�����

9.96234

and its standard deviation is

2�*�'*6'��9�*�������,4%�
5�<*��C�I�J	�15���/
5� ����

2.93459

Let us see the values of α ’s,

7��#��

{ − 186.444,−126.743, 62.3098, −7.33528, 0.000144156,−3.39837 × 10−6,
− 27.2438, 5.59695, 42.4118, −146.645, 22.516, −7.34333, 2.61709,
− 57.0875, 72.2595, 136.947, 112.072, 102.11}

Now, we have two small α ’s indicating less support vector as before

%8���6�9�&��6%�


��6*&���153	��%������7��#��	�N�,4%�I�M��−3J����
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Fig. 18. Support vectors in the case of ε = 10

5. Conclusions

The support vector regression method has been implemented in Mathematica code
as a simple function and tested on four different problems. The solutions of them,
especially the last one, a real world civil engineering problem, forecasting of the
peak of a floodwave, clearly demonstrated the generalization ability of SVR as well
as its robustness.

Additional computations were also carried out with polynomial regression
with different orders (2, 3 and 4) and RBF neural network with different number
of neurons (3, 5 and 10). In the case of these methods the maximum of the relative
error was always considerably higher than that of SVR, and the phenomena of
overfitting always took place with increasing number of model parameters.

The Mathematica notebook version of this paper is available in [17].
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