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Abstract

Optimal design with thousands of variables is a great challenge in engineering calculations. In this
paper a solution technique is introduced for the topology optimization of elastic disks under single
parametric static loading and variable support conditions. Different boundary conditions (elastic
and fix supports) with their cost and thousands of design variables are applied. Due to a simple
mesh construction technique the checker-board pattern is avoided. The Michell-type problem is
investigated minimizing the modified weight of the structure subjected to a compliance condition.
The numerical procedure is based on iterative formula which is formed by the use of the first order
optimality condition of the Lagrangian function.
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1. Introduction

Recently the topology optimization is the most "popular" topic in the field of opti-
mal design and a great number of papers indicate the importance of the topic [1]-[7].
Due to the complex nature of the problems, it is necessary to apply difficult mathe-
matical and mechanical tools for the solution even in case of simple structures. The
limitation of the available mathematical programming tools (the programs work
with limited number of design variables) requires an iterative solution technique.

This paper discusses the problem of optimizing structural topologies when
some of the external forces are variable and they have a nonzero cost and the
‘fictitious weight’ of the structure what contains the cost modified weight of the
elements is the overallmeasure of the problem. Such forcesmay represent a reaction
at a support, a force generated by passive control or a ballast (weight) used for
increasing cantilever action or modifying natural frequencies.

Classical theories of variable force (mostly support) optimization, based on
optimality criteria and adjoint displacement fields, were developed in the mid-
seventies (e.g. ROZVANY and MROZ [8]). Topology optimization for variable
external forces will be first discussed in terms of the exact optimal truss topologies,
taking the cost of external forces (e.g. at supports) into consideration. In the present
study, it is assumed that the cost of external forces depends on their magnitude, and
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this theory is demonstrated in the context of a linear force (or support) cost function
[9]. BUHL [10] assumed that the support costs are independent of the reactions.
POMEZANSKI [11] introduced a new aspect of the support optimization in case of
truss structures.

In the following an iterative technique (which is named SIMP method) and
the connected numerical examples will be discussed in detail. The object of the
design (so-called ground structure) is a rectangular disk with given loading (one
parametric static) and support conditions (fix or/and elastic bars). The material is
linearly elastic. The design variables are the thickness or/and cross-sectional area
of the finite elements. To obtain the correct optimal topology some filtering method
has to be applied to avoid the so-called ‘checker-board pattern’.

2. Iterative Formulation

2.1. Problem Definition

In the classical MICHELL [12] truss theory, the total truss weight is minimized for
a single load condition, subject to constant tensile and compressive permissible
stresses, but without allowance for the cost of supports. The basic topology op-
timization problem is to minimize the penalized weight of the structure which is
subjected to a given compliance and side constraints. This work is a continuation of
the basic and extended topology optimization procedures given in [13, 14], respec-
tively. If there are extra stiffening bars as supports (elastic bars) then the original
problem has to be modified. The new objective function contains the weight of the
bars, as well:

W̃ =
G∑

g=1

γg Agt
1
p

g +
Gb∑
s=1

γs Asls . (1)

Here:
G is number of the ground elements of the discretized panel structure,
γg is the specific weight of the ground element,
Ag is the area of ground element,
tg is the thickness of ground element,
p is the penalty parameter,
Gb is the number of bars,
γs is the specific weight of the bar element,
As is the cross sectional area of the bar element,
ls is the length of the bar element.

The supports (bars) could be added to the plate’s internal elements or to the
external elements. If a bar is added internally then its both ends are connected to the
plate elements, but if it is added externally, only one end is connected to the plate’s
element. Since the support elements are classified according to their connection
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types, the formulation of weight of the supports can be modified as below:

Gb∑
s=1

γs Asls =
Gbi∑
si=1

γsi Asi lsi +
Gbe∑
se=1

γse Aselse, (2)

where:
Gbi is the number of the internal supports,
γsi is the specific weight of the internal bar element
Asi is the cross sectional area of the internal bar element,
lsi is the length of the internal bar element,
Gbe is the number of the external supports
γse is the specific weight of the external bar element
Ase is cross sectional area of the external bar element,
lse is the length of the external bar element,

and Gb = Gbi + Gbe gives the total number of supports (internal plus external).

Introducing the following notations, lsi = losi t
1
p

si and lse = lose t
1
p

se , the Eq. (2)
can be modified as follows:

Gb∑
s=1

γs Asls =
Gbi∑
si=1

γsi Asi losi t
1
p

si +
Gbe∑
se=1

γse Aseloset
1
p

se . (3)

Let γsi and γse express the cost of the corresponding support’s cost and if we
introduce Agsi = Asi losi and Agse = Aselose then, the original weight function can
be formally simplified.

In this way the following compact weight function can be formed:

W̃ =
G∑

g=1

γg Agt
1
p

g +
Gbi∑
si=1

γsi Asi losi t
1
p

si +
Gbe∑
se=1

γse Aseloset
1
p

se =
GG∑
g=1

γg Agt
1
p

g , (4)

where GG=G+Gbi+Gbe. The unknowns are the ‘thickness’ of the elements. The
topology optimization problem with compliance and side constraints can be written
as follows:

min W̃ = min
GG∑
g=1

γg Agt
1
p

g

subjected to :
uTKu − C ≤ 0;
−tg + tmin ≤ 0; (for g = 1, ..., GG) ,
tg − tmax ≤ 0; (for g = 1, ..., GG) .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

where:
tmin is the minimum allowable thickness for ground element,
tmax is the maximum allowable thickness for ground element,
u is the nodal displacement vector associated with the load,
C is the compliance.
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In Eq. (5) the nodal displacement vector u associated with the load P is
calculated from Ku = P linear system.

In topology optimization the checker board pattern, a numerical artifact with
artificially high stiffness is a big problem. To avoid this problem, as an optimal
solution here a simple procedurewas usedwhichwas published by GÁSPÁR, LÓGÓ,
ROZVANY [2]. The key point is that all the ground elements (a primary meshing
provides the so-called ground elements) should be sub-divided into further finite
elements (secondary elements) with the same thickness. For the subdivision it is
enough to use 2 by 2 elements. Further number of sub-elements cannot improve
significantly the final result.

2.2. Lagrange Function

Using the Lagrange multipliers υ,αg ,βg and slack variables h1, h2g, h3g for the
constraints in problem (5), the following Lagrange function can be formed:

£
(
tg, υ, αg, βg, h1, h2g, h3g

) =
GG∑
g=1

γg Agt
1
p

g + υ
(
uTKu − C + h2

1

) +
GG∑
g=1

αg

(
−tg + tmin + h2

2g

)
+

GG∑
g=1

βg

(
tg − tmax + h2

3g

)
.

(6)

2.3. Design Formulation

By using the first order optimality conditions (Kunh-Tucker conditions) one can
obtain a closed form for the optimal design.

∂£

∂tg
= 1

p
γg Agt

1−p
p

g + ν

(
∂uT

∂tg
Ku + uT ∂K

∂tg
u + uT K

∂u
∂tg

)
− αg + βg = 0,

(g = 1, ..., GG). (7a)

Due to symmetry of the stiffness matrix K the Eq. (6) can be replaced by the
following relation:

∂£

∂tg
= 1

p
γg Agt

1−p
p

g −ν

Es∑
e=1

u
T

ge

∂Kge
∂tg

uge −αg +βg = 0, (g = 1, ..., GG) , (7b)

where the subscript ge refers to the e-th finite element of the g-th ground element,
Es is the number of the sub-elements belonging to the g-th ground element.

If the ‘normalized’ element stiffness matrix is K̃ge (e.g. calculated for a unit
thickness (tg = 1)), then the element stiffness matrix Kge for actual thickness tg is
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expressed by Kge = tgK̃ge due to the linear relation and ∂Kge

∂tg
= K̃ge. Introducing

the following notation Rg = t2g
Eg∑
e=1

uT
geK̃geuge the Eq. (7b) becomes very simple

1

p
γg Agt

1−p
p

g − υ
Rg

t2g
− αg + βg = 0. (7c)

Continuing the derivations:

∂£

∂ν
= uTKu − C + h2

1 = 0; ∂£

∂h1
= 2νh=

1 0; (8)

∂£

∂αg
= −tg + tmin + h2

2g = 0; ∂£

∂h2g
= 2αgh

=
2g0; (9)

∂£

∂βg
= tg − tmax + h2

3g = 0; ∂£

∂h3g
= 2αgh

=
3g0; (10)

Omitting the details from Eqs. (7c), (8), (9) and (10.a-b) the values of the Lagrange
multipliers, slack variables and the thickness values tg can be calculated iteratively.

As it is in COC type methods [13], before the calculation of the Lagrange
multiplier ν, one needs to define a range for the thickness: a set of active (A)and
passive (P) thicknesses.

There exist three possibilities:
If tmin < tg < tmax (the ground element is ‘active’, g ∈ A) then αg = βg = 0

and by (7c) the following formula can be obtained:

tg =
(

υpRg

Agγg

) p
p+1

. (11)

In case of tg = tmin the corresponding Lagrange multipliers are αg ≥ 0, h2g = 0
and (7c) implies

tg ≥
(

υpRg

Agγg

) p
p+1

. (12)

This means that if (11) gives a tg - value which is smaller than tmin then (7c) is
satisfied by tg = tmin. Similarly, in case of tg = tmax the corresponding Lagrange
multipliers are βg ≥ 0, h3g = 0 and then (7c) implies

tg ≤
(

υpRg

Agγg

) p
p+1

, (13)

which allows tg = tmaxwhen (11) gives a tg - value which is greater than tmax. If
tg = tmin or tg = tmax we call the ground element ‘passive’ (g ∈ P).
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2.4. Calculation of the Final Iterative Formulas

In order to keep the number and layout of ground elements constant and avoid the
ill-conditioned stiffness matrix, one can replace the zero element thickness (tmin)
with a small, but finite value (e.g. tmin = 10−6). If the compliance constraint is
active in problem (5) (e.g. satisfies the equality sign) the following form holds

C −
GG∑
g=1

Rg

tg
= 0. (14)

Since the thickness value for passive elements (g ∈ P) is given and for active
elements (g ∈ A), it can be calculated from (11), then

C −
∑
g∈P

Rg

tg
=

∑
g∈A

Rg

tg
=

∑
g∈A

Rg(
υpRg

Agγg

) p
p+1

(15)

implying

υ
p

p+1 =

∑
g∈A

(Agγg

p

) p
p+1

R
1

p+1
g

C −
Rg
tg∑

g∈P

(for A �= 0). (16)

The optimal solution can be obtained by calculating iteratively the thickness values
tg and the Lagrange-multiplier from (11) and (16).

2.4.1. The Applied SIMP Algorithm can be defined as follows:

1. Specify the Max and Min value of tg , ( tmax = 1 , tmin = 10−6).
2. Specify a maximum of C (compliance), of say 150% of the C value corre-

sponding to tg = tmax for all elements.
3. Set the penalty value p=1, later this value will be incremented to p = 1.5, 2,

etc. and specify the maximum value of the penalty parameter.
4. Specify design domain, including supports and loading.
5. Specify the cost of the internal and external supports.
6. Carry out FEM.
7. Extract displacement field u for entire structure .
8. Calculate elemental compliance C̄e and Rg with displacement vector based on

current element solution set tg , but using the stiffness matrix for the elements
as if it had tg=1.

C̄e = {ue}T
[
K̃e

]
{ue} . (17)
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9. Calculate Lagrange multiplier ν:

υ =

∑
g∈A

(Agγg

p

)
R

1
p
g

⎛
⎝C −

Rg
tg∑

g∈P

⎞
⎠

p+1
p

(for A �= 0). (18)

10. Calculate new element solution set: tg,new =
(

υpRg

Agγg

) p
p+1

;

where v
p

p+1 is the Lagrange multiplier calculated in step 8 with the correct
power.

11. Determine the set of active and passive elements by the following element
limit set:
tg,new = tmin if tg,new ≤ tmin = 10−6; e ∈ P,
tg,new = tmax if tg,new ≥ tmax = 1; e ∈ P,
tg,new = tg,new if tmin ≤ tg ≤ tmax = 1; e ∈ A.

12. If active set has changed in the previous iteration, go to step 5, else if active
set has not changed from pervious iteration go to step 12.

13. Increase p until all the elements become passive or reach the limit for p, using
the following formula: p = p + increment (step size is controlled).

3. Numerical Examples

A simple rectangular homogenous plate structure which is supported at the left side
of the design domain is examined with different boundary conditions (Fig. 3) in
order to find the optimum topology for the ground structure. To demonstrate the
method and the algorithm, several cases were examined. The design domain (or
the ground structure) is 10×40 units. The applied concentrated load is 100 units
and it acts at the middle of the right edge of the ground structure. The Poisson
ratio is set to 0. The penalty parameter ‘p’ is varied from 1.0 to 3.0 (from p=1.0 to
p=1.5 with smooth increasing (increment is set to 0.1) and later penalty parameter
is increased up to p=3.0 with a larger increment (0.5)). For the continuum design
domain 4-nodes quadrilateral FE’s are used. Total number of finite elements are
6400 by the use of 20x80 ground elements and 2x2 sub-elements.

Two groups of examples are investigated. In the first group of examples
Fig. 3 where the basic topology problem definition is applied, a homogenous plate
is supported by fix supports on one side (Fig. 3). Here the effect of variation of
the supports rigidities are investigated for the optimal topology. At the beginning,
all the side supports are set to be rigid with same rigidity (equal costs), but later
on, two supports -at the top and bottom- are kept rigid and the middle support’s
rigidity decreased gradually from infinite to zero (equivalent with increasing the
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support costs). Using this trick, made a possibility to find the optimal topology
shape of the ground structure in function of the support rigidities. The results show
that most expensive case is when all the side supports are taken as rigid (Fig. 2d),
and cheapest case is when the middle supports are taken as rigid (Fig. 2a). As one
can see on the results, the first result gives the cheapest possibility and the last one
shows the most expensive solution (if the disk, as structure is considered only).

 

 

 

 

10 

40 

100 

Dimensions: 10 x 40 units
Finite Elements Mesh
Ground Elements: 20 x 80
Sub-elements: 2 x 2
Total FEMs: 6400

One Ground Element is 

divided into 2x2 Sub-divisions

Fig. 1. Design domain and boundary conditions

The optimal topologies due to the intermediate costs can be seen in Figs. 2b-
c. In Figs. 2b-c the optimal topology of the disk is presented where the costs
of the supports gradually decrease from the middle to the bottom and to the top,
respectively.

In the second group of examples (Fig. 3.) the extended topology problem
definition is applied (Eq.5), the middle supports are substituted with bars which are
connected externally to the disk within each 5 degrees in order to have bars almost
in all directions. The costs of the supports are varied from 1 (zero rigidity) to 10000
(infinite rigid). Usingmodified cost function, made apossibility tomonitor topology
optimization change over the plate and find the working bar against external force.
The cost function includes cost of the supports as well as cost of the ground structure
(volume). Almost identical results are obtained as the preceding examples. As it is
shown below, the first result would show the cheapest solution, where the external
bars is rigid. Later the rigidity of the bars is symmetrically and gradually decreased
from the middle of side support outward till one gets the most expensive solution
where all the bars are set to have small rigidity. This is shown in Fig. 4d. The results
of the second example are very similar to the optimal topologies coming from the



TOPOLOGY OPTIMIZATION IN CASE OF VARIABLE SUPPORT COST 107

a) The cheapest solution, where all
the supports have same rigidity.

b) Mid supports are set to be softer and outer
supports are rigid.

c) Slowly mid supports are set to
softer.

d) All mid supports are set to be significantly
softer than the top and bottom supports. This
is most expensive!

Fig. 2. a–d



108 M. GHAEMI

previous example. All the results are in good agreement with the expected ones.

Dimensions: 10 x 40 units
Finite Elements Mesh
Ground Elements: 20 x 80
Sub-elements: 2 x 2
Total FEMs: 6400

One Ground Element is 

divided into 2x2 Sub-divisions

Fig. 3. Design domain and bar supports

The most interesting point in the second example is the following: in all
calculations, as the rigidity of the barswere diminished symmetrically and gradually
from themiddle of side support outward, only the barswhichwere in direction of the
resultant force were working. The rest of the bars were not taking role on resisting
the external force.

4. Conclusions

A very efficient iterative algorithm was presented for topology design of continuum
type structures with variable support cost and having a compliance constraint. The
applied meshing provides a good technique to avoid the checkerboard pattern. By
the use of the smooth penalization increment the obtained numerical solutions are
in good agreement with the expectations. Conceptually this topology design is sim-
ple, since the algorithm does not require intensive computer storage. The number
of the design variables (thousands) significantly exceeds the maximum number of
variables what can be used in any kind of mathematical programming algorithm.
The main disadvantage is that the buckling and other constraints are not taken into
consideration during the optimization procedure but the obtained numerical topolo-
gies are good starting points for further optimal design. The support optimization
technique is suitable to demonstrate the effects of strengthening of structures.
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a) The cheapest solution, where the
bar elements are set the same cost.

b)The bars from the middle outward have,
gradually set to have small rigidity.

c)More andmorebar set to have small
rigidity.

d) All bars are expensive, only outer fix
supports are cheap.

Fig. 4. a–d
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