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Abstract

The Analytic Element Method (AEM) for groundwater flow modelling and also its application possi-
bilities were presented in an earlier volume, [2, 3] . The present paper focuses on one certain element
of it, the so-called inhomogeneity. The inhomogeneity describes the local variation of aquifer para-
meters, like its thickness, base elevation or permeability. After a short introduction of the method, the
mathematical description and application conditions for the different approaches of inhomogeneities
are given in details. Finally, some recommendations are given to help in the decision which approach
to use.
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1. Introduction

Analytic element method for groundwater flow modelling was developed about
30 years ago. It is based on the well known potential theory, but instead of the
usual velocity potential, it uses its integral over the saturated aquifer, the so-called
discharge potential. With the help of it the simplified basic equation of groundwater
flow turns to be the Laplace-equation whose solutions are well known.

The aquifer itself is subdivided into hydraulic units called the ’elements’.
Each element represents one certain individual feature of the aquifer, like a given
surface water course, the variation of an aquifer parameter, infiltration, etc. The
effects of each element can be described by certain functions and based on the
linearity of the governing equation, these functions can be superimposed to each
other. This is how the full description of the aquifer is given.

This paper aims to introduce a family of elements that describe the sudden
variation of aquifer parameters along a closed border. This family is called the
inhomogeneity. To introduce them, first a short description of the method is given.
Then detailed derivations are presented to show the different possibilities to build
different functions describing inhomogeneities of different shape, character and
importance. Detailed evaluation and recommendations are also given to summarize
the application possibilities.
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2. Theoretical Backgrounds

2.1. The Basic Equation

The basic equation of the model is the steady, shallow groundwater flow equation
integrated along the full saturated aquifer:
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Before solving the equation, the discharge potential (�) has to be introduced.
It is actually the integral of the well-known velocity potential integrated along the
full thickness of the aquifer. Taking into consideration that the transmissibility (T )
is different for shallow confined and unconfined aquifers, the discharge potential is
as follows:

confined :�c = kϕH − 1
2kH 2; unconfined :�u = 1

2kϕ2 (2)

Due to the application of this potential the differences vanish and the equation
turns to be either thePoisson-equation, orwithout infiltration, theLaplace-equation:

∂2 �
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+ ∂2 �

∂ y2
= 0 (3)

Eq. (3) is a simplified equation, that assumes horizontal layers with constant
thickness, homogeneous and isotropic soil and a reference level along the aquifer
base. The solutions of such a case are the harmonic functions, while the Poisson-
equation may be solved as the sum of a harmonic function and a particular solution.
That is how the infiltration can also be taken into consideration. Other characteristics
of the aquifer may be taken into consideration with the help of appropriate elements.

An element is a hydraulic unit describing a certain natural feature or artificial
intervention of the aquifer. On the other hand, as each element is such a hydraulic
unit that can be described by a potential function. After the individual description of
each element, the functions must be superimposed to gain the overall description of
the full aquifer. For the description of the individual elements conformal mapping
offers a handy tool. In this case the real part of the � complex potential is the
potential function described earlier, � = �(�) , while the imaginary part is the
stream function, � = �(�) .

A given problem is always connected to a well defined region, though there
are also several effects coming from outside. Most of the numerical models include
these effects as boundary conditions. But the application of the potential approach
considers an infinite plane without any boundaries. To limit this infinite plain and
to take the outer effects also into consideration, around the area of interest a certain
outer area has to be defined. This outer area provides a transition between the area
of interest and the area left out of consideration. Its size, the elements to include
or cancel and also the formulation of the included elements may be determined by
calibration.
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2.2. Some Basic Elements

Any element of the aquifer influencing the flow conditions may be described by
harmonic functions. In the following part a short summary of the most important
elements are given. More details may be found in an earlier volume [2, 3] CSOMA
(2001), in several textbooks and other publications, e.g. [6, 5, 1, 4].

Cross flow helps to describe far field conditions. Infiltration from the ground
surface or the evaporation of phreatic groundwater is a particular solution of the
Poisson-equation, that can be approximated with an ellipsis-shaped equipotential.
Together with cross flow it is also a useful tool to describe far field conditions.

With thewell-knownpotential of the source/sink wells (pumped and recharge)
can be modelled. Line sink can be defined as the integral of the source/sink along
a line. With constant intensity it is a first order line sink, while linearly varying
intensity gives the second order one. The first order line sink is used to describe
infiltration from smaller water courses with constant water level, while the second
order one describes rivers or streams with linearly varying water levels. Usually, a
string of them is used. An integration of the source/sink with constant intensity over
an area gives the area sink. A simple way is to do it over a circle, the integral over
a polygon requires much more complicated mathematical description. This second
one is a useful tool to model the infiltration from larger lakes, also of irregular shape,
reservoirs, or wide rivers which cannot be considered as one-dimensional.

The doublet is the resultant flow pattern of a source and a sink of the same
intensity located at the same point. A doublet in homogeneous flow can model the
sudden changing of aquifer permeability. Further, if a doublet is integrated along a
line perpendicular to its moment, the potential of the line doublet is obtained. This
line doublet has such characteristics, that a string of it forming a closed polygon is
a useful tool to model local inhomogeneities of aquifers, like the changing of the
permeability mentioned earlier, and also a local step of base elevation or thickness.
This paper focuses on the family of elements describing this local variation of
aquifer characteristics. This family is called the inhomogeneity.

2.3. The Inhomogeneity

While defining the discharge potential � the soil was assumed to be homogeneous,
with horizontal layers. Therefore some elements have to be introduced that describe
the variation of these aquifer parameters along a closed curve. This family of
elements is called the inhomogeneity.

Fig. 1 shows an area mentioned above. Within the closed curve of B, inside
the domain D all parameters of the aquifer have the upper index "+" , while outside
the index is "–".

Along boundary B of the domain both the groundwater levels (ϕ) and the
normal components of the specific discharge (qn) perpendicular to B have to be
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Fig. 1. Inhomogeneity

continuous:

ϕ+ = ϕ− = ϕ and q+
n = q−

n = qn (4)

In this case base elevation Z1 is no more constant (see Fig. 1), so it cannot
be used as reference level, as it was in case of Eq. (3). Using a general reference
level, and taking into consideration that the discharge potential requires the distance
between the actual base and the groundwater level above it, potential � turns to be
different inside domain D and outside. In case of confined aquifers the potentials
at the two sides of boundary B are as follows:

�
+ = k+ H+(ϕ − Z1

+) − 1
2 k+(H+ )2 and

ϕ− = k− H−(ϕ − Z1
−) − 1

2 k−(H− )2

(5)

while in case of phreatic aquifer it is:

�
+ = 1

2 k+(ϕ − Z1
+ )2 and �− = 1

2 k−(ϕ − Z1
− )2 (6)

Based on Eq.(4) the stream function � must be continuous along B,while
Eqs. (5) and (6) show that the potentials � must be different at the different sides
of B. This type of flow pattern may be obtained with the help of doublets.

2.4. The Doublet

Doublet is the resultant of a source and a sink of the same intensity, in case the
distance between them vanishes. Let us have a line that makes the angle β with the
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positive x axis. Along this line a source is located at z0 + � and a sink at z0 − �
as given in Fig. 2. Both have the same intensity of Q. The resultant potential is as
follows:

�ss = Q

2π
ln

z − (z0 −�)

z − (z0 +�)
(7)
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Fig. 2. Sink and source

First using the conjugate of the discharge function of potential Eq. (7), then
taking the limit � → 0, the conjugated discharge function of the doublet is
obtained as

lim
�→0

d�ss

dz
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�→0
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where

lim
�→0

(
Q�

π
) = M = M0e

iβ = M0x + iM0y = −λ

2π i
(9)

is the moment of the doublet. It is a complex expression, and as it is in connection
with the vector �, it is parallel with it. λ is the strength of the doublet, perpendicular
to the moment. Completing the integration the complex potential of the doublet in
different forms is as follows:

�d = M

z − z0
= −1

2π i

λ

z − z0
. (10)

The different formulations of the doublet’s potential is needed for the different
applications to be shown later. Some further explanation to Eq. (10) can be seen in
Fig. 3.

The stream and potential functions of the doublet introduced in this way are
as follows:

�d = �(�d) = M0x(x − x0) + M0y y − y0

(x − x0)2 + (y − y0)2
(11)
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�d = �(�d) = M0x(y − y0) + M0yx − x0

(x − x0)2 + (y − y0)2
(12)

Based on the Eqs. (11) and (12) it can be understood, that both the potential
and streamlines form a series of circles. The only difference between the two sets
of curves is the location of the centre. In case of the equipotential lines this centre is
located along the line between the sink and source (see Fig. 2), while the streamlines
have their centre perpendicular to it. This line makes the angle α with the positive
x axis. Fig. 4 shows the flow pattern of such a doublet that β = π . That is why
the equipotential lines (continuous line in Fig. 4) have the centre along the x axis,
while the streamlines (dotted in Fig. 4) are centred along the y axis. There is one
common point of both families of curves, the centre of the doublet, z0 = x0+iy0 .
In Fig. 4 this point is the origin. Due to symmetry, the figure shows only the upper
half of the flow pattern.

y

Fig. 4. Doublet at the origin, β = π

The doublet has such characteristics, that it provides the basis for the de-
scription of inhomogeneities. All the potentials to be introduced later – general but
compound or specific but simple – are based on the potential of the doublet.
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3. Line Doublets to Model Inhomogeneities

3.1. Line Doublets

3.1.1. The Integral of the Doublet

If several doublets are placed next to each other, a line doublet is obtained. Line
doublets may be defined along curves or straight lines, as well. The potential of a
line doublet may be obtained by the integration of the individual doublets.

There are two special straight lines that may be important from the point
of view of inhomogeneities. The one is parallel with the moment of the doublet
and the other is perpendicular to it. This latter gives such a flow pattern, that the
stream function is continuous across it, but the potential has a step. Therefore a
line doublet perpendicular to its moment fulfils the requirements given in point 2.3.
The name ’line doublet’ is usually used for this type. The other one with parallel
moment makes a continuous potential but a step in the stream function. To make
difference between the two elements of similar origin, this second one is called the
’line dipole’. Line dipoles are useful tools to model thin, but highly permeable
elements, like a drain.

To determine the complex potential of the line doublet the original doublet
has to be integrated along the section of (z1, z2) given in Fig. 2. This integral can
only be accomplished with some approximations, like the application of Taylor-
series. Using also the geometric transformation given in Appendix 1., the potential
in general form is as follows:

�di = − 1

2π i

z2∫
z1

λ

z − δ
dζ = λ(Z)

2π i
ln

Z − 1

Z + 1
+ i p(Z) (13)

where Z is the transformed location (see Appendix 1), λ(Z) and p(Z) may be
approximated with complex polynomes of real coefficients.

As it was mentioned, this potential provides a flow pattern with a stream func-
tion� continuous across the element anda potential function�with a jumpbetween
the to sides of the element. This potential difference is exactly the strength λ.

3.1.2. The String of Line Doublets

Line doublets may form strings, if the endpoint of a certain element is the beginning
of an other one. Of course, string elements cannot cross each other, but they may
form closed polygons, as indicated in Fig. 5.

Let section jbe the one between the nodes ( j, j+1) of the polygon. The jump
of the potential appears along each member of the polygon, so strength λ(Z) also
has to be defined along the polygon as a function of location. There are several
possibilities for it. The simplest way is to define the jump condition at nodal points,
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at certain points between the two nodes, etc. Therefore the complex polynom λ(Z)
may be approximated in different ways.
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Fig. 5. A string of line doublets

3.1.3. First Order Line Doublets

A possible approximation of the strength λ(Z) is that it is prescribed at the nodal
points as constant real values. Between them it varies linearly along the given
section of the polygon. As it is the function of the complex (transformed) location
Z , it remains complex. Along section j it is

λ(Z j ) = −1

2

(
Z j −1

)
λ f, j +1

2

(
Z j +1

)
λ f, j+1 (14)

Substituting it into Eq. (13), the description of the string of line doublets may
be obtained as follows:

� f = 1

2π i

n∑
j=1

λ f, j

[
F(Z j ) + G(Z j−1)

]
(15)

where the summation covers the full closed polygon (see Fig. 5, i.e. if j = 1 then
j − 1 = n. Parameters F and G are also the linear function of the location Z :

F(Z j ) = −1

2

(
Z j −1

)
ln

Z j −1

Z j +1
− 1 and

G(Z j ) = 1

2

(
Z j +1

)
ln

Z j −1

Z j +1
+ 1 (16)

Their logarithmic singularities at the endpoints Z =1 and Z = −1 may be
eliminated with the help of the following limit:

lim
z→0

(z ln z) = 0 (17)
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Based on Eq. (15) the general form of the potential and stream functions at
node jare the following:

� f, j = �(�e, j ) = λ f, j A f, j (x, y)� f, j = �(� f, j ) (18)

where A f, j (x, y) is the function of the location only. More detailed formulation
of it may be found in some textbooks and other publications e.g. STRACK [6],
HAITJEMA [5], CSOMA [1], etc.

As each term and also the full potential are linear functions of the transformed
location Z , it is called the first order line doublet.

3.1.4. Second Order Line Doublets

An other possible approximation of the strength is that the jump condition is also
prescribed half way between the nodes j and j+1, at node " j+1/2" as a real
constant (see Fig. 6). As it is still the function of the complex location Z , it remains
complex. But in this case the polynome λ(Z) turns to be quadratic, so along section
j it is as follows:

λ(Z j ) = 1
2 Z j

(
Z j −1

)
λs, j − (

Z j −1
) (

Z j +1
)
λ′

s, j + 1
2 Z j

(
Z j +1

)
λs, j+1 (19)
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Fig. 6. Second order approximation

Beside λs, j , and λs, j+1 at the corner points, λ’s, j at the centre is also real.
With the help of it, the complex potential for the full polygon is

�s, j = 1

2π i

n∑
j=1

{
λs, j

[
F(Z j ) + 1

2 H (Z j ) + G(Z j−1) + 1
2 H (Z j−1)

] − λ
′
s, j H (Z j )

}

(20)
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where the summation covers the full closed polygon (see Fig. 5), i.e. if j = 1 then
j - 1 =n. Parameters F and G are defined by Eq. (16). They are linear function of
the location Z , but parameter H is quadratic:

H (Z j ) = (
Z2

j −1
)
ln

Z j −1

Z j +1
+ 2 Z j (21)

This is why the element is called the second order line doublet. The singu-
larities can be eliminated like in the former point.

Based on Eq. (19) the potential and stream functions at node j are the follow-
ing:

�s, j = �(�m, j ) = λs, j Am, j (x, y) + λ
′
s, j A′

s, j(x, y)�s, j = �(�s, j) (22)

where As, j (x, y) and A′
s, j (x, y) are the function of the location, like in case of the

first order line doublet.

3.2. Application Possibilities

The former point showed two possible ways for the description of inhomogeneities
with the help of line doublets. It is obvious, that the second order one gives the better
approximation, but it requires more computational resources. Though nowadays,
with the help of supercomputers its importance is decreasing, it is worth to make
clear the applicability of the two approximations. Sometimes it is rather difficult to
decide which one may be sufficient in case of a given problem. This point tries to
give some recommendations for it.

As a help, some simple examples are given in Figs. 7 and 8. This is a series of
problems with an inhomogeneity and some streams. The difference between them
is the location of the elements compared to each other within the area of interest
(Fig. 7) and the location of the area of interest compared to the individual elements
(Fig. 8).

First order line doublets give a sufficient global description but locally a rough
estimation, so they should rather be applied if

– the base elevation Z1 varies,
– the aquifer thickness Hchanges,
– permeability k varies slightly, rather within one magnitude,
– the dominating element or elements within the area of interest are far away

of the inhomogeneity concerned (Fig. 7/a),
– the inhomogeneity is far away from the area of interest, that is why its local

behaviour is out of importance (Fig. 8/a).

The locally also more accurate second order approximation is required if
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y

 a./ elements far     b./ elements together

Fig. 7. Stream and inhomogeneity in the area of interest

– the variation of seepage coefficient k is sharp, even several magnitudes,
– more parameters vary together within the same border,
– the inhomogeneity and some nearby lying other elements together have dom-

inating effects over the area of interest (Fig. 7/b),
– the inhomogeneity itself is of basic importance (Fig. 8/a).

  a./ outside the area of interest   b./ inside the area of interest 

Fig. 8. Stream and inhomogeneity over the area examined

3.3. Embedded Line Doublets

Embedded inhomogeneities may be applied in case if an inhomogeneity is fully
surrounded by an other one. Embedded inhomogeneities require special consider-
ations and care. To demonstrate this, the resultant piezometric heads of a series of
tests is given in Fig. 9. This series consists of a larger rectangular inhomogeneity
of permeability containing a smaller one with an area of one fourth, at different
locations, with different permeability, base elevation and aquifer thickness. Due
to the symmetry, only half of it is viewed. Based on them and also of those not
presented here, the following experiences may be summarized:
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cross flow

 a./ at the centre    b./ eccentric 

k, H, Z1=H

k/10, H, Z1=H

k/5, 2H, Z1=0

cross flow k, H, Z1=H

k/10, H, Z1=H

k/5, 2H, Z1=0

cross flow

 c./ along the border    d./ across the border 

Fig. 9. Embedded inhomogeneity

– any combination of permeability, base elevation and aquifer thickness may
result embedded inhomogeneity;

– if the borders of the two or more inhomogeneities are far enough, the appli-
cation of first or second order line doublets may follow the guidelines given
in the former point ( Figs. 9/a and 9/b;

– if the borders are rather near, like in Fig. 9/c, it is better to apply the second
order line doublets, even in case of slight variations;

– the borders of the two inhomogeneities cannot cross each other;

– if the geological conditions require inhomogeneities with crossing borders,
like in Fig. 9/d, then one of them - usually one with smaller (hydraulic)
importance - must be split into two parts in such a way, that within each
single inhomogeneity the three parameters (permeability, aquifer thickness,
base elevation) are constant;

– along those parts, where the borders of two or more inhomogeneities run
near to each other (Figs. 9/c, 9/d), a denser string of line doublets is required,
while further a sparser one may also be sufficient;

– though it sounds obvious, it has to be emphasized, that one string element
may belong only to one inhomogeneity, between the parallel running borders
there must be a slight distance;

– the size of this "slight distance" is difficult to determine, but as a first assump-
tion, the half of the aquifer thickness may me assumed, though a sensitivity
test is always advisable.
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4. Doublet in Homogeneous Flow to Model Inhomogeneities

4.1. Doublet in Homogeneous Flow

Line doublets give a rather good approximation while using them for the modelling
of inhomogeneities, even in case of compound shape ones. But Eqs. (15) or (20)
- even though they look simple - require large computational efforts. Therefore
sometimes a less general but simpler solution may also be sufficient, especially in
case of large number of similar shape of inhomogeneities. This simpler solution is
based on the flow pattern of doublet in homogeneous flow, the well known problem
of the flow around a cylinder.

x

r

y

q0q0y
q0x

�� ��

Fig. 10. Homogeneous flow

The potential itself is the superposition of the potentials of the homogeneous
(also called cross) flow and the doublet. Cross flow may be characterized by the
specific discharge vector qh = qhx + iqhy given in Fig. 10. In this case the poten-
tial is

�h = − qh z e−iα (23)

If a doublet is placed in this flow, the potential turns to be the sum of Eqs.
(10) and (23):

�hd = �h + �d = − q0 ze−iα + M

z − z0
(24)

This is the general formof thewell-knownpotential theflowarounda cylinder.
If the following simplifications are introduced:

1. the flow direction should be in the positive x direction, i.e. α = 0,
2. the doublet should have a real moment, against flow direction, i.e. β = π
3. the doublet is placed at the origin, i.e. z0 = x0+iy0 =0

then the potential turns to be

�c = − q0 z − M0

z
(25)
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This is the form that usually appears in textbooks. The flow pattern can be
seen in Fig. 11, where the equipotential lines are continuous, the streamlines are
dotted. Due to symmetry once again the upper half is viewed.

R

q0

Fig. 11. Flow around a cylinder

There is a special streamline, � = 0, that forms a circle of r2 = x2 + y2 =
M0

/
q0. This means that there is no flow across the circle of the radius R =√

M0
/
q0. It can be considered as an impermeable border, the flow is only around

it. This is a special inhomogeneity with zero permeability. With the help of the
radius Eq. (25) turns to be

�c = − q0

(
z + R2

z

)
(26)

4.2. Single Inhomogeneity of Permeability

Let us consider a circle of the radius R1 �= R at the origin with the permeability k1
inside, and k0outside (Fig. 12). This is an inhomogeneity of permeability only, like
in Point 2.3. Let us assume, that out of this circle the flow is similar to the one in
the former point, while inside it is a homogeneous flow.

x

y

k0

q0
R1

k1

Fig. 12. Circular inhomogeneity
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Based on Eq. (26) outside the cylinder (r = √
x2 + y2 ≥ R1) the potential is

�0 = −q0(z + AR2
1

z
) + C�0 (27)

where �0 is the potential at the centre, A and C are real constants. Comparing Eqs.
(26) and (27) it can be understood, that Eq. (27) is really a flow around a cylinder,
with the radius of R = R1

√
A. But this potential has to be considered not outside

the radius R but outside R1.
Inside the cylinder (r = √

x2 + y2 ≤ R1) it is a cross flow of Eq. (23). As
the flow direction is parallel with the positive x axis and the permeability is not the
same as outside, the complex potential is

�i = −Bq0z + �0 (28)

where B – like A and C – is a real constant. These three constants can be determined
with the help of the conditions in Point 2.3. Based on Eq. (3) along the circle
−→ the stream function has to be continuous, so

�0(r = R1) = �(r = R1) (29)

−→ the groundwater surface has to be continuous, so

ϕ0(r = R1) = ϕi (r = R1) = ϕR. (30)

Based on the definition of the discharge potential (Eq. (2)) and its variation
along the border of the inhomogeneity (Eqs. (4) and (5)), the potential difference
along the border is

�0(r = R1) − �i (r = R1) = �� = �0(r = R1)(1 − k1

k0
) (31)

so the constants are as follows:

A = k0 − k1

k0 + k1
B = 2k1

k0 + k1
C = k0

k1
(32)

The constant A is always smaller than 1. It can be positive or negative, while
the others must be positive. If the inhomogeneity is due to a less permeable soil
(k1 < k0) then A is positive, B is smaller, C is bigger than 1. Such a flow pattern
is given in Fig. 12/a. Otherwise, if the permeability of the inhomogeneity is bigger
than its surroundings (k1 > k0), then A is negative, B is bigger, C is smaller than 1.
This is demonstrated in Fig. 12/b. Both show the equipotential lines as continuous,
and the streamlines as dotted. Due to symmetry only the upper half is viewed.

Such a flow pattern is presented in most of the textbooks of the analytic
element method (e.g. STRACK [6], HAITJEMA [5]).



152 R. CSOMA

R1

q0

R1

q0

 a./ k0 > k1,  A > 0         b./ k0 < k1   A < 0

Fig. 13. Circular inhomogeneities

4.3. The Ring-Shaped Inhomogeneity

Let us consider an embedded inhomogeneity of two concentric circles of the radius
R1 and R2. Neither of them equals the cylinder radius of Point 4.1. The permeability
outside is k0, between the two circles, over the ring k1 and inside k2 (Fig. 14). This is
an inhomogeneity of only permeability, but now an embedded one. Let us assume,
that out of this circle the flow is like in the former point, i.e. doublet in homogeneous
flow. Between the two circles, a similar flow pattern may be assumed, just the
homogeneous flow is a modified one. And finally, inside there is the third type of
cross flow.

yk0

q0

x

k1 R 1

R 2
k2

Fig. 14. Ring-shaped inhomogeneity

Similar to Eq. (27) outside the bigger circle (r = √
x2 + y2 ≥ R1) the

potential is

�0 = −q0
(
z + AR2

1

z

) + F�0 (33)

where �0 is the potential at the centre, A and F are real constants. Comparing Eqs.
(27) and (33) once again it is clear, that Eq. (33) is really a flow around a cylinder
of R = R1

√
A, just the potential has to be considered outside of R1.

Between the circles, over the ring (R1 ≥ r ≥ R2) the flow is once again the
flow around the cylinder (see Eqs. (27) or (33)), but now the homogeneous flow is
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different. Actually this cross flow is similar to the inside flow of the former point
(see Eq. (28)). The potential over this area is

�r = −q0B
(
z + CR2

2

z

) + E�0 (34)

where B,C and E are real constants. Comparing Eqs. (26) and (34) it is once
again clear, that Eq. (34) is also a flow around a cylinder, but now with the radius
of R = R2

√
BC and the cross flow has the specific discharge of q = q0B.

Finally, inside the inner cylinder, (r = √
x2 + y2 ≤ R1) it is a homogeneous

flow (see Eq. (23)). Similar to Eq. (28) the complex potential is

�i = −Dq0z + �0 (35)

where D – like the other constants – is real. They can be determined with the help
of Point 2.3. Now at both borders (R1 and R2) the conditions of Eq. (3) has to be
fulfilled. They are as follows:
−→ the stream function has to be continuous, so

�i (r = R2) = �r (r = R2) and �r (r = R1) = �0(r = R1) (36)

−→ the groundwater surface has to be continuous, so

ϕi(r = R2) = ϕr (r = R2) and ϕi (r = R1) = ϕr (r = R1) (37)

Based on the considerations detailed earlier, the potential difference along the
circle of R1 is

�0(r = R1) = ��0 = �0(r = R1)
(
1 − k1

k0

)
(38)

while along the inner circle of R2

�r (r = R2) = ��r = �r (r = R2)
(
1 − k2

k1

)
(39)

With the help of the above conditions, the constants are

A = k0(R2
1+C R2

2)−k1(R2
1−C R2

2)
k0(R2

1+C R2
2)+k1(R2

1−C R2
2)

B = 2k1 R2
1

k0(R2
1+C R2

2)+k1(R2
1−C R2

2)

C = k1−k2
k1+k2

, D = B (1 − C) E = k1
k2

F = k0
k1

(40)

In this case it is more difficult to analyse the values of the constants. A and C
play a similar role as A of Point 4.1, so they may be negative as well, the others are
positive. Fig. 15 shows some examples for it. The figure follows the usual notation
as the former ones.
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Fig. 15. Examples for ring-shaped inhomogeneities in cross flow

4.4. Application Possibilities

Line doublet inhomogeneities require huge computational efforts to produce a gen-
eral but approximate result, as the condition for the potential step is fulfilled only
at certain points (nodes, centre, etc.) of polygons. Nevertheless, this element can
handle all types of inhomogeneities, not only of permeability, but of base elevation,
aquifer thickness and any combination.

On the other hand, inhomogeneity as "doublet in cross flow" may describe
only the inhomogeneity of permeability, it cannot handle base elevation or aquifer
thickness. It works only together with homogeneous flow. It can handle only
circular inhomogeneities, and an embedded one has to be concentric. Though in
Points 4.2. and 4.3. it is introduced as the centre in the origin and the flow is parallel
with the x axis, with a simple transformation it can be located at any point of the
plane. But even if its use is limited, it may be a handy tool.

Below some recommendations are given when to apply doublet in cross flow
to describe inhomogeneities:

– if the only aquifer parameter that varies is the permeability,
– if the inhomogeneity can be considered as such a plain figure, like a square,

a hexagon, etc. , that it can be approximated as a circle,
– if the local behaviour of the inhomogeneity of almost any shape is of minor

importance, but its regional effects have to be taken into consideration,
– if embedded inhomogeneities may be considered as concentric,
– if there are a largenumber of inhomogeneitieswith smaller or bigger hydraulic

importance, like an area with compound hydrogeologic conditions.

And some ideas when line doublet may be more sufficient:

– changing of the base elevation or the aquifer thickness,
– long, narrow or rather compound shape of inhomogeneity,
– the local behaviour of a compound shape of inhomogeneity is of basic im-

portance,
– the embedded inhomogeneities cannot be considered as concentric.
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5. Summary and Conclusion

The present paper focused on one certain element of the analytical elements method
for the modelling of groundwater flow. The method itself is based on the potential
theory using the discharge potential. Each individual feature of the aquifer, the
so-called elements, are described by well chosen potentials, and the description of
the full aquifer is obtained by the superposition of them.

The element examined is the inhomogeneity that describes local variation of
aquifer parameters, as permeability, base elevation and thickness. Such an element
may be applied to describe not only different geological formations of the aquifer
but structures, as well, like a river barrage with its impermeable fundament plate
and sheet piles, as the variation of its thickness and permeability.

After a short introduction of the method a more detailed description of in-
homogeneities were given. Then the most important features of the general line
doublet inhomogeneities were summarized. The next point described a simpler
approach how to use the flow pattern of doublet in cross flow to model inhomo-
geneities. Though this is a rather handy tool, it has a limited use, so some directions
of the further development possibilities can be:

– the description of the variation of the base elevation and the thickness of the
aquifer,

– embedded inhomogeneities with gradually varying aquifer parameters, like
a sloping base,

– inhomogeneities of other regular plain figures, like an ellipse.

List of Symbols

i : imaginary unit, i = √−1;
k (kx , ky), m/s : coefficient of seepage (with its x and y components);
q(qx , qy), m2/s : specific discharge (with its x and y components)
t , s : time;
x , y, z, m : the horizontal and vertical co-ordinates;
z = x + iy : complex number;
C: integration or other constant;
H , m : thickness of aquifer;
T (Tx , Ty), m2/s : transmissibility (with its x and y components);
Z1, Z2, m : the lower and upper boundary level of the aquifer;
ϕ, m : piezometric head (groundwater level) above

a certain reference level;
�, m3/s : discharge potential;
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�, (m3/s, m2/s or m/s) : intensity or strength parameter of potentials;
�, m3/s : stream function as the conjugated function of

discharge potential;
�, (m3/s) : complex potential, � = � + i �;
�(�), m3/s : imaginary part of complex potential;
�(�), m3/s : real part of complex potential.
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Appendix

Appendix 1.: Lineart Transformation

Line elements are usually obtained by the integration of point elements. While
integrating a function along the line with the endpoints (z j , z j+1), it may be though
useful to introduce the transformation given in Fig. A1. This transforms the centre
point to the origin of the co-ordinate system, and the endpoints (z j , z j+1) go to the
points +1 and -1 along the real axis. The transformation is linear, its function is:

Z = X + iY = z− 1
2 (z1 + z2)

1
2 (z2 − z1)

. For the notation see the figure.

y                                                       Y

 x             -1                   1    X

Zz

z=x+iy Z=X+iY

Zj Zj+1

zj+1

zj

Fig. A1 Linear transformation


