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Abstract

A point-symmetrical linear coupled consolidation model with constant displacement boundary con-
dition is tested against measured dissipation test data. Results show that – similarly to the previously
tested cylindrical model – very short data jets can successfully be evaluated if the sensor is well above
the tip.
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1. Introduction

The dissipation test evaluation needs a model (including an initial condition); an
inverse problem solver (including the reliability testing of the inverse problem so-
lution) and, some measured data.

Presently either 2D model with numerical solution or 1D models with ana-
lytical solution are used. The initial condition is produced either with the strain
path method or with the cavity expansion method or simply identified during model
fitting [11][12][3][7, 8].

The non-linear inverse problem solution is generally approximate. The ap-
proximate dissipation test evaluation methods can be divided into three groups:

i one point fitting methods (e.g. using the 50 % dissipation time t50),
ii slope type fitting methods using the slope of the first straight line portion of

the u versus t0.5 plot,
iii trial and error procedure, the reliability of the identified parameters is not

tested [12].

In the dissipation testing the measurement is made using various filter po-
sitions (Fig. 1). The shaft positions are mostly used for research purpose, the
cone-close positions A, B, C (Fig. 1c) or u1, u2, (Fig. 1d) are applied in practice.
The testing time (e.g. 50 % dissipation time t50, (see Table 1) is relatively long.

In this paper a new evaluation method is presented. The model is analytical,
a spherical coupled consolidation model [6]. The shape of the initial condition is
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identified, the size of the displacement domain is determined with the strain path
method.

The non-linear inverse problem is solved precisely, in an automatic way en-
tailing some reliability testing as well [4].

In this paper thismethod is tested againstmeasured dissipation test data related
to five filter positions A to E (Figs. 1c, 2). According to the results, the method
is powerful if the sensor is well above the tip (shaft position). In this case the
necessary testing time is about 2 minutes only.
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Fig. 1. Some filter positions known from the literature. a. [15], b. [2] , c. [14] , d. [9]

2. Model, Model Law

The system of differential equations of the 3-dimensional coupled linear point-
symmetrical consolidation model:
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where u [kPa] is pore water pressure, v [m] is displacement, r [m] is the space
co-ordinate and, t [s] is time, k [m/s] is permeability, γ v [kN/m3] is unit weight of
water, Eoed[kPa] is oedometric modulus.
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The boundary conditions are as follows:

u(t, r) |r=r1
= 0 (3)

∂u(t, r)

∂y
|r=r0

≡ 0 (4)

v(t, r) |r=r0 ≡ v0 > 0 (5)

v(t, y) |r1 ≡ 0 (6)

In this work the distance r = r0 was the radius of the rod, r1 was taken as the
distance being perpendicular to the approximate zero excess pore water pressure
line given by the strain path method [1] , depending on the filter position. The so
determined value of r1 was 22r0, 23r0, 24r0, 31r0 for A, B, C, D respectively, Fig. 3.
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Fig. 2. Data of Lunne et al (1992) in u versus t0.5 plot (filter positions are shown in (Fig. 1c)

The analytical solutions for u and for the transient part of the displacement
vt are as follows:

u(t, r) = 1/
√

r
∞∑

k=1

λk Ck e− γ 2
k ·c·t

{ [J0.5(λk r) + μk Y0.5(λk r)]
−[J0.5(λk r1) + μk Y0.5 λkr1)]

}
(7)

vt (t, r) = 1/
√

r
∞∑

k=0

Cke
−λ2

k .c.t [J1.5(λk r) + μk Y1.5(λk r)] (8)

where c [m2/s] is coefficient of consolidation:

c = k .Eoed

γv

(9)

Jr/ϒr are Bessel functions of the first and second kinds, with the order of r . The
coefficients Ck(k = 1...∞) [kPa] are to be determined from the initial transient
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Fig. 3. Pore pressure results of the strain path method (undrained penetration, after [1]
). Left and right: bilinear and hyperbolic modelling. Distances/excess pore water
pressure are normalized by pile radius/initial effective isotropic stress, respectively.

displacement function vt
0(r) (in this work it is identified from measured data). The

parameters λk [1/m] and μk [-] (k=1...∞) are the roots of the boundary condition
equations (8) and (9) what can be compiled as follows:

J1.5(λkr1)/J1.5(λkr0) = Y1.5(λkr1)/Y1.5(λkr0) (10)

This equation can be modified by using the asymptotic formulae:

J1.5(r) = √
2/rπ cos (r − π/4 − 3π/4) (11)

Y1.5(r) = √
2/rπ sin (π/4 − 3π/4) (12)

resulting in the following approximate boundary condition equation and roots:

sin (λk(r1 − r0)) = 0 (13)

λk = kπ

(r1 − r0)
(14)

Inserting this into the analytical solution the resulting approximate solutions contain
two dimensionless arguments T=ct/(r1 − r0)

2 time factor and, R=r/(r1 − r0).
An important consequence of the existence of the approximate time factor T :

T = ct

(r1 − r0)
2
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If T and t are specified, then an approximate relation does exist among the values
of c and r1: c1(

r1,1 − r0
)2 ≈ c2(

r1,2 − r0
)2 (15)

3. Inverse Problem Solution

3.1. Minimization

The merit function was defined as follows:

F(p) =

√
N∑

i=1
um(ti ) − u(ti , p)

Nmax
i

(um(ti))
(16)

where N is number of data, m measured, p is parameter vector consisting of c and
Ck , (k=1..20). Results are presented for k=1.

Themerit functionwasgeometrically exploredby applying a sub-minimization
[4]. The global minimum was precisely determined.

3.2. Reliability Testing

The global minimizer p is reliable if it is the unique solution of the inverse problem
and, if the confidence interval is within the range of p.

The error can analytically be estimated by computing the 88% confidence
interval from the Tschebiseff inequality:

P (|xi − pi | ≥ a) ≤ σ 2
i

a2
, a > 0 (17)

where xi and σ i are expected (identified) value and standard deviation of the para-
meter pi , respectively.

The reliability criteria can be formulated in a geometrical way as well. The
solution is unique if the merit function has a nice single global minimum point.
The parameter error is acceptable if the merit function is not too flat around the
global minimum point in agreement with the geometrical meaning of the standard
deviation [13] . The deeper the valley, less is the standard deviation (Fig. 4).

The uniqueness and the parameter error were visualized by the construction
of the so called minimal section of the merit functions with respect to c (Fig. 4, [4]).
These are the flattest possible sections with respect to parameter c.

For very short data series, the standard deviation was not computed due to the
very few data.
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Fig. 4. Geometrical concept of the standard deviation of parameter pi using the lower
boudary of the orthogonal projection of the merit function onto the plane F − pi

(called as minimal section concerning parameter pi , [4]).

Instead of this simply the ‘width’ of the valley of the minimal sections of the
noise-free merit function was inspected.

4. Results

For the parameter identification r1 = 37r0 (good for filter position E) was used then
the identified c was modified using the model law (10) and the real values of r1

For the parameter identification different test durations (t , the same notation
is used as for the time variable) were used to test the relation between the identified
c and the testing time.

According to the results (Tables1-2, Figs. 5-8) , the length of the data jet t
practically did not influence the identified c for filter position E, and influenced in
an increasing extent the identified c for filter positions A to D.

When c was modified according to the real value of r1, then it became about
the same for every filter position if the test was long ’enough’ (Table 2).

For long data jets, thefit was the best infilter position E and theworst inA. The
variance (σ c/c) increased between filter positions E to A and, the lower boundary
of the 88% confidence interval (c-3σ c) was negative except for filter positions C
and E. Accordingly, the vicinity of the global minimum of the merit function for
filter position E was nicer than for filter position A (Fig. 7).

For short data sets, filter position E, the shape of the minimal section of the
merit function was practically unchanged with decreasing testing time t indicating
that the solution is reliable (Fig. 8).
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Fig. 5. Measured versusfitted data,filter position E (a) andA (b),point-symmetricalmodel.
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Fig. 6. Identified c with test duration t, spherical model
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Fig. 7. The minimal section of the merit function with respect to the unmodified c (point-
symmetrical model, long tests)
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Fig. 8. The minimal section of the merit function with respect to c (point-symmetrical
model, short tests, filter position E).

5. Discussion

5.1. Results of Approximate Identification Methods

Value of measured t50 varies from 22 to 100 min (Table 3). Using this and 150 for
the rigidity index the one point fitting with t50 provides a c value of 0.15 cm2/s for
both filter positions B and C.

The slope type approximate method results in values of c of 0.15 cm2/s and, of
0.015 cm2/s for filter positions B and C, respectively. The slope can be determined
from an at least 5 min long part of the test (Fig. 2 ).
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Table 1. The identified and modified coefficient of consolidation (c) and, the fitting error
(F, σ c/c) for long data sets

Fitting error c [cm2/s]

Filter
position

F [%] Coefficient of vari-
ation σ c/c [-]

identified
(r1=64.75cm)

modified with the model
law and real value of r1

A 9 0.57 0.09 0.0318
B 8 0.47 0.06 0.023
C 5 0.28 0.04 0.018
D 6 0.35 0.02 0.015
E 4 0.21 0.02 0.02

Table 2. The identified c [cm2/s] modified with the model law, short data jets, spherical
model

Test duration t [min]
Filter position

A B C D E

∼ 2 0.20 0.15 0.06 0.09 0.02
∼ 4 0.10 0.11 0.05 0.06 0.03
∼ 18 0.04 0.05 0.03 0.03 0.03
∼ 37 0.03 0.03 0.02 0.02 0.03
∼ 68 0.02 0.03 0.02 0.02 0.02
∼ 217 0.03 0.02 0.02 0.02 0.02

The ‘true’ value of c is 0.01 cm2/s [10] , or 0.0095 cm2/s [3].

Table 3. Approximate 50 % dissipation time t50 and 90 % dissipation time t90 (on the basis
of [12] )

Filter position t50 [min] t90 [min]

A 8 200
B 22 250
C 60 300
D 90 >600
E 110 >600
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5.2. Results of Cylindrical Model

Some results of the previously tested cylindrical model [5, 7, 8] are shown in Fig. 9
and in Table 4 ). Results show that the point-symmetrical model is slightly better
than the previously tested cylindrical model.

In filter position E both models give good estimation for c (0.02 cm2/s) even
from a 2 min long test.

In filter positions A to D the fitting error is greater and c is dependent on the
testing time (Figs 6, 9). If c is identified from a test being longer than 20-40 min
then c is acceptable (Table 4 ).

Table 4. The identified and modified coefficient of consolidation (c) and, the fitting error
for long data sets

Fitting error c [cm2/s]

Filter
position

F [%] Coefficient of
variation σ c/c [-]

identified
assuming
r1=64.75cm

modifiedwith the model
law and real value of r1

A 9 0.56 0.13 0.045
B 8 0.45 0.09 0.0345
C 5 0.28 0.06 0.027
D 6 0.37 0.03 0.0225
E 4 0.23 0.02 0.02

5.3. Test Duration

According to the results (Tables 1-4, Figs. 5-9), the identified c was independent of
the testing time t for filter position E, and was dependent on the the testing time t
for filter positions A to D.

These results imply that the consolidation is one dimensional about 5 diameter
above the shoulder and the two dimensional nature can not be neglected below this
level. This implication is comparable with the results of 2D consolidation analyses
where the 1D nature of the dissipation is acceptable around the shaft from about
2.5 D above the shoulder (e.g.Fig.10, [14].

It can also be mentioned that presently both the shaft element and the pore
water elements (A, B, C in Fig. 1c or u1, u2 in Fig. 1d) are situated in some cone-
close positions which is probably not the optimal place from the point of view of
the evaluation being the consolidation 2D here. (Generally the measured local side
friction data are not used for pile capacity design probably because of this reason.)
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Fig. 9. Identified c with test duration t, cylindrical model.

Fig. 10. Simulated dissipation test results (after [14])

6. Conclusion

The suggested evaluation procedure versus approximate methods

The suggested evaluation procedure differs from the widely used methods as fol-
lows:

i the model is 1D coupled and analytical (generally 2D uncoupled numerical
solutions are used),

ii the non-linear inverse problem solutionmethod is precise and automatic (gen-
erally approximate solutions are adopted),

iii the initial condition is identified (generally separate theory is used which
needs additional parameters),
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iv the reliability of the inverse problem solution is tested.

The approximate evaluation methods generally over-predict the value of c by
about one order of magnitude using sampling times of about 5 min to 100 min. No
information is given for the reliability of the solution of the inverse problem.

The suggested automatic evaluation methods give good value for c for shaft
filter position E using sampling time of 2 min only (less than the time needed for
the approximate methods).

For otherfilter positions the necessary testing time is about 20-40min (compa-
rable with the approximate methods presently used, but the result is more precise).

An inference of the results

The presently used shaft elements are situated immediately above the shoulder at
present.

In the dissipation testing the measurements are generally made using some
cone-close positions (A, B, C in Fig. 1c or u1, u2,u3 in Fig. 1d).

Table 5. Cylindrical model , the coefficient of consolidation c [cm2/s] from short data jets

Test duration t [min]
Filter position

A B C D E

∼ 2 0.27 0.22 0.08 0.14 0.02
∼ 4 0.20 0.15 0.08 0.07 0.03
∼ 18 0.07 0.07 0.04 0.04 0.03
∼ 37 0.05 0.04 0.03 0.03 0.03
∼ 68 0.04 0.04 0.02 0.03 0.02
∼ 217 0.04 0.03 0.02 0.02 0.02

The results presented here imply that the consolidation is one dimensional
about 5 diameter above the shoulder and the two dimensional nature can not be
neglected below this level.

On the basis of the results of this research it can be suggested that the position
of both the shaft elements and the filters is advisable to be moved well above the
tip (5 diameter above the shoulder is suggested).
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