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Abstract

Grandstands can be expediently covered by cable structures which are light and do not transmit
horizontal forces to the supports. The paper shows how its seemingly unstable nature turns out to be
stable, after performing deformations larger than usual.
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1. Introduction

Larger sport stadiums (e.g. football fields) are generally not completely covered.
A roof only over the grandstands will be erected in order to protect the spectators
from precipitation. This results in a ring-shaped structure shown in Fig. 1, which
must not contain any columns along the inner periphery, which would disturb the
free outlook of the spectators.

Fig. 1.

Thus, the structure can be supported along its outer periphery, resulting in a cantilever-
like arrangement, protruding towards the playing field. However, if the structure
consisted simply of a row of independent cantilevers, these would have rather large
dimensions resulting in high expenses and clumsy appearance. Thus the spatial
arrangement of the structure has to be taken into consideration in order to reduce
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the dimensions. By taking spatial action into account, a light structure can be built,
where also cables can be used.

Most grandstand coverings erected so far have been built with the structure
sketched in Fig. 2 [1]. However, at first sight it is not quite clear how this structure
works statically and why it is stable. Our engineering sense, educated on con-
ventional structures, suggests that the two parts of this roof tilt to the inside and
collapse.

Fig. 2.

In the following we intend to give a clear explanation of the static behaviour
of the roof structure shown in Fig. 2 and to elucidate why it is stable.

2. Some Basic Remarks on the Static Behaviour of Cable Structures

Cable structures have to be prestressed in order to prevent slacking of the cables
when external loads cause compressive forces in them. Consequently, prestressed
cable structures can be treated as common trusses. (To enable prestressing, the
truss has to be statically at least once indeterminate.) The main difference between
the cable structure and the common truss is that from cables we can construct
’kinematically indeterminate’ structures which become stable after performing large
deformations. This phenomenon will be elucidated on a simple example.

Let us consider a single horizontal cable, stressed by a force H0 (Fig. 3)
between two fixed supports, subjected to a vertical load P . The structure can be
considered as a ’truss’ consisting of two bars of the length l/2, which is – according
to the Theory of Structures – kinematically once indeterminate, since its middle
point is capable to move vertically. We can write the equilibrium equation in the
vertical direction on the deformed shape.

Due to the deflection the cable elongates. The new length s/2 of half of the
cable is:
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where w is the deflection of the middle point.
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Fig. 3.

The second term in the square bracket is the elongation e, which, multiplied
by the tesile stiffness E A of the cable, yields the cable force. Since the prestressing
force H0 also acts in the cable, the total cable force after deflection is:

S = 2 ∗ E A ∗ w2

l2
+ H0

and the external load, P , is equilibrated by the vertical components of the two forces
S arising in the cable:

P = 2 ∗ S ∗ w
l
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The relationship between load P and the deflection w is depicted in Fig. 4.
It can be seen that the prestressed straight cable has a finite initial stiffness (in the
vertical direction) which – due to the elongation of the cable during deflection –
gradually increases. As the two cable forces and their inclination increase, after a
certain deflection they will equilibrate the external force P . This is the peculiarity
of this kind of cable structures, as contrasted to other, common structures: every
structure deforms under the applied loads, but other structures can equilibrate the
loads in the undeformed state, while cable structures only in the deformed state.

Fig. 4. Fig. 5.

It can also be seen that the straight cable is not capable to equilibrate a fairly
small external force either in its undeformed shape, although it has a finite initial
stiffness in the direction of force P . Cable structures of this kind will thus be
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characterized by the fact that they ’change their shape’ (they can bear external
loads only when changing shape), as contrasted e.g. with the structure shown in
Fig. 5, which ’keeps its shape’, i.e. it behaves (when prestressed) as a common
truss, and is able to carry loads also in its undeformed shape. (The bars which
can withstand also compressive forces will be represented in the following as the
middle vertical bar in Fig. 5.)

3. A Simple Plane Model of the Cable Structure Covering the Grandstand

Before analyzing the cable structure of the grandstand roof, let us investigate the
model depicted in Fig. 6, which can also be considered as a simplified skeleton
of the roof structure. Supports e and f are unmovable; the structure is stressed
between them. This model either keeps or changes its shape, depending on whether
it is subjected to symmetric or to antisymmetric loads.

Fig. 6.

Let us first investigate the symmetric loads (Fig. 6) which act in points a and b. From
the rectangle a, b, c, d of the structure a diagonal bar is ’missing’, consequently it
is kinematically once indeterminate. However, from the symmetric loads no force
would arise in this ’missing’ diagonal bar and, hence, it makes no difference whether
this diagonal bar exists or not. The structure behaves as a common truss, keeping
its shape.

The situation is different if in points a and b an antisymmetric load system
acts (Fig. 6b). Now the diagonal bar would be needed, and since it is not there, the
rectangle a, b, c, d distorts to a rhomboid.

In the following we assume the bars e-a, e-c, b- f , d- f as inextensible. Hence
the distortion of the rectangle a, b, c, d to a rhomboid causes elongation only in bars
ab and cd , which causes – like the structure shown in Fig. 3 – steadily growing bar
forces in these two bars, which become more and more inclined. This deformation
continues until the increasing bar forces, becoming more and more inclined, get
into equilibrium with the two applied forces P . Thus, under this loading case the
structure changes its shape and after a suitably large deformation equilibrium is
achived.
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Essentially the same result will be obtained if bars ea, ec, b f , d f are not
considered as inextensible, with the difference that the deformation of the structure
becomes larger.

4. The Behaviour of the Cable Structure of the Grandstands

After this preparation we can investigate the static behaviour of the grandstand
roof (the cross-section of which is represented in Fig. 2) under symmetric and
antisymmetric load. First let us assume that the ground plan of the roof has the
shape of a circular ring (Fig. 7).

Fig. 7.

Under symmetric load the structure behaves as the model of Fig. 6: the role of bars
a-b and c-d will be taken by the two inner rings, and the structure carries the load
so that it keeps its shape. (Unlike Fig. 6, no fixed supports are needed, since the
outer, compressed ring acts as a fixed support.)

The problem is caused by the antisymmetric load. (Asymmetric loads, e.g.
snow load, can be decomposed, as usual, into a symmetric and an antisymmetric
part.) The two inner rings then get inclined, ’points’ a, b, c, d come to the position
denoted in the figure by dashed lines and – if we consider the radial cables as
inextensible – the inner rings are compelled to elongate in the same way as bars a-b
and c-d of the model in Fig. 6. The structure thus carries the antisymmetric load
by changing its shape. As a consequence, the radial cables also elongate (the outer,
compressed ring can be considered as inextensible, since its cross-section is much
larger than those of the cables). We emphasize that the essential fact is that the cables
of the structure have to get inclined and, consequently, have to elongate during the
deformation caused by the antisymmetric load. The arising forces, increasing and
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getting more and more inclined, will equilibrate the external loads after a certain
deformation, as we have seen on the model in Fig. 6.

Fig. 8.

The above reasoning shows that the roofing structure (although not in its original
shape, but in a deformed position) is capable to equilibrate the antisymmetric load.
As a consequence, the cable structure undergoes much larger deformations than
usual, however, in the case of a grandstand roof, this is acceptable.

The cable structure behaves essentially in the same way if its ground plan is
not a circular ring, but has a ’distorted’ shape, approaching a rectangle (Fig. 1).
Some requirements have to be fulfilled (the contour cannot have straight sections;
the shapes of the outer and inner rings have to be affine etc. [1]).

The deformations of the roof structure are much larger than those of a traditinal
structure, so care should be taken with drainage: the rain water should not flow to
the inside of the roof and on the spectators.

It has to be stressed that the structure does not transmit horizontal forces to
the supporting columns because these forces equilibrate each other in any case.

5. Summary

This brief description shows why it is possible to erect a roof of a light cable structure
over grandstands, which takes all the loads, does not transmit horizontal forces to
the supporting columns, and exerts only vertical support forces.
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