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Abstract

The longitudinal behaviour of a rail embedded in elastic material is different from that laid on ballast
track, studied in the professional literature. The longitudinal coefficient of elasticity of the built in
elastic embedding material could be determined unambiguously only by testing. On that basis the
dilatation behaviour of a rail can be represented by a discrete model allowing to determine the internal
forces raised in the rail and the displacement of its cross sections as well as the length of the moving
section.
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1. Introduction

Embedding of a rail laid in an elastic material poured into a concrete or steel recess
gives to it continuous flexible support and lateral fixing. The calculation of the
strains of these supports is similar to that related to the ballast track in several
aspects. In case the longitudinal behaviour of the rail is under scrutiny, however,
substantial differences have to be expected.

Although the behaviour of the ballast track is more or less known from the
professional literature [2, 6, 7, 10], an approximation made in the calculations has
to be mentioned. As the tests approved, actually the longitudinal resistance of the
ballast track is developing gradually (seeFig. 1). Following a displacement of
some millimeters the longitudinal resistance reaches its maximum and that value
does not change any more during further displacement [7, 10]. Aiming to facilitate
practical calculations, the initial section with changing resistance is traditionally
neglected, i.e. only a constant value (seeFig.2) is taken into account.1 Thus along
with the increase of temperature, the distribution of internal forces will be linear
from the fish-plated, or free end of the rail up to the full value of the dilatation force
[2, 6, 7, 10]. The displacement of theK cross section on the moving section is
proportional with the measured value of theT ‘force-area’ (Fig.3).

1For exact calculations dilatational behaviour should be described by differential equations and
the final formulae include hyperbolic functions.
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Fig. 1. Longitudinal resistance of various ballast tracks

Fig. 2. Assumption of constant longitudinal resistance

Fig. 3. Normal forces raising in a welded track’s rail laid on ballast

In case of a rail embedded in an elastic embedding material, this latter could
bear longitudinal displacements until these cause damages on the long term [3, 4]. It
means, the embedding material is able to support and fix the superstructure when on
the one hand the maximum dilatation force causes less displacement of the rail’s end
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than that damaging the embedding material or its superficial coating and provides
appropriately flexible embedding in all spatial directions.

It is obvious that when determining the longitudinal strains of an elastically
embedded rail – differently from methodology applied for ballast track –, only the
elastic domain of the embedding material’s displacement could be taken into ac-
count. Since under the impact of the dilatation force the displacement of each cross
section on the moving section reaches that of the rail’s end gradually, it is com-
monplace that the embedding material’s longitudinal resistance is also changing
gradually, proportionally with the displacement. Taking into consideration, that
neither the distribution of the internal forces, nor the displacements of the moving
section are known previously, determining the longitudinal behaviour of a rail em-
bedded in an elastic material is much more complicated than that laid on ballast
track [4].

2. Determining the Longitudinal Resistance of the Elastic Bedding Material

The longitudinal resistance features of an elastic bedding material can be deter-
mined in theory, but the width of the bedding material placed between the rail’s
cross section and the space filling elements (put in to reduce the volume of the bed-
ding material) is varying, therefore the internal spatial displacements of the elastic
bedding material are extremely different from each other. Instead of the sophisti-
cated calculations incorporated into the highly uncertain model, the determination
of the longitudinal resistance by testing offers a much easier way [4, 5] to follow.

As a consequence of the bedding material’s elasticity, the longitudinal re-
sistance increases proportionally with the rail’s displacement. This longitudinal
change of resistance could be characterised by the coefficient of elasticity. This
can be determined by testing, e.g. moving a rail (Fig. 4) embedded in a short
(l = 1.00 m) recess, and recording the co-ordinates of a force-displacement (F, u)
diagram. It is worthwhile to repeat the test several times, during the preparation
of the proofbar, as well as during and after the charging cycle in that domain of
the displacements, where the bedding material remains completely elastic [1, 8, 9].
Finally, following a series of measurements, the rail should be moved until the
embedding of the proofbar collapses [4, 5]. The completely elastic domain of the
displacements, the start and the development of the collapse may be well perceived
from the force-displacement diagrams (Fig. 5). When implementing serial mea-
surements it has to be taken into consideration, that bedding materials have often
dumping effects, therefore the series of charges and discharges must be separated
by appropriate waiting times.

The longitudinal coefficient of elasticity is the steepness:

ρ [N/mm2]
of the force-displacement diagram related to the completely elastic domain. For
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Fig. 4. Deformation of elastic material during a push test

Fig. 5. Longitudinal resistance of elastic material

practical reasons it is more suitable to characterise it by a different dimension:

ρ [N/mm/m]

since it reflects clearly, how many kN force is needed to displace the end of a
1.00 m long proofbar-rail by 1 mm. The transformation of the measurements’
results obtained with proofbar-rails of various length becomes less ambiguous as
well.

The bedding material under scrutiny is considered acceptable, when the maxi-
mum dilatation displacement of the rail’s end, calculated on the base of the minimum
longitudinal coefficient of elasticity obtained during the serial charging tests (Fig.6)
does never exceed the upper limit value of the elastic domain of the displacements
[3, 4], and at the same time it has got the required support and fixing characteristics.
During actual measurements the upper limit value of the displacement related to
the elastic domain is generally half of that value related to the start of the collapse
(Fig. 5).

3. Dilatational Behaviour of a Rail Embedded in a Flexible Material

The deformation of the bedding material caused by the dilatation movement of a rail
embedded in an elastic material (Fig.7) appears gradually, starting from the middle
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Fig. 6. Changes of the elastic material’s longitudinal coefficient of elasticity under the
impact of repeated charges

cross section, while this cannot be perceived due to the shortness of the proofbar-
rail (Fig. 4). Since neither the distribution of the internal forces, nor the rail’s
movement is known beforehand, these parameters cannot be determined directly.
Nevertheless, it is well known that the retaining force appearing in the bedding
material is directly proportional with the displacement of the rail and in the middle
of the rail lengthL a dilatation force of

Fdil = α · AE · �t (1)

appears, where

α ◦C−1 the coefficient of linear heat-expansion of the rail’s steel,
A mm2 the area of the rail’s cross section,
E N/mm2 the coefficient of flexibility of the rail’s steel,
�t ◦C the variations of temperature.

Aiming to determine the dilatation behaviour of anL m long (Fig.7) super-
structure, it seems to be appropriate to apply a discrete model [1, 3, 8, 9]. For that
purpose, starting from the middle of the superstructure, the rail’s length has to be
divided with appropriate density inton pieces ofl long sections, while the retain-
ing force of the bedding material is represented on each section by a sole spring
characterised by a spring constant ofρ · l, assuming that the spring force is acting
at the end of thel long sections (Fig. 8). In that way the state of equilibrium ofn
‘nodes’ can be studied. Taking into consideration, however, that the distribution of
the internal forces is unknown, let us charge the ends of the rail with a forceF equal
to the dilatation force according to (1). In that case a normal force ofF = Fdil will
appear all along the rail, therefore none of its cross sections can be displaced. (This
state of equilibrium is equivalent to that when the movement of both ends of the
rail is prevented before the temperature is changing.)

In that state of equilibrium the ‘nodes’ are charged with displacementsu1, u2,
. . . , ui , . . . , un−1, un when

u1 < u2 < . . . < ui < un−1 < un (2)
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Fig. 7. Deformation of elastic bedding material under the impact of dilatation movement
of a superstructure with free rail’s end

Fig. 8. Formulation of a discrete model

(seeFig. 9), and equilibrium equations can be formulated for each node on the
base ofFig. 10. (The positive directions of the equilibrium equations’ forces and
displacements are also marked in the figure).

Fig. 9. Charging the nodes of the discrete model with displacements

According to the Hooke law:

σ = E · ε (3)
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Fig. 10. Study of node N◦ i

anε specific extension of an elastic material (the rail) generatesσ tension in the rail,
therefore, in line withEq. (3) the force needed to create an expectedui displacement
can be determined by the following equation:

Fi = E A

l
ui . (4)

The retaining impact of the flexible material can be calculated as follows:

ρ · l · ui . (5)

On the basis ofFig.10 and usingEqs. (4) and (5), the following equilibrium equation
related to nodei can be formulated [1, 3, 4, 8]:

− E A

l
(ui − ui−1) + E A

l
(ui+1 − ui ) − ρ · l · ui = 0, (6)

which can be transformed as follows:

E A

l
ui−1 −

(
2E A

l
+ ρ · l

)
ui + E A

l
ui+1 = 0. (7)

This equation is valid for the node No. 1 too. Knowing, however, thatu0 = 0, in
case of node No. 1 instead of (7) the following equation will reflect the state of
equilibrium:

−
(

2E A

l
+ ρ · l

)
u1 + E A

l
u2 = 0. (8)

The case of noden is slightly different, because at the end of the rail there is a support
equal to the dilatation forceFdil , therefore the state of equilibrium is represented by
the following equation:

E A

l
un−1 −

(
E A

l
+ ρ · l

)
un − Fdil = 0. (9)
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Fig. 11. Dilatation displacements of rail’s cross sections embedded in elastic material

Fig. 12. Normal forces raising in a rail embedded in elastic material and caused by changing
temperature

Fig. 13. Force-displacement diagrams of a rail type UIC 54

(It has to be noted that the coefficient in the middle term of the equation’s left side
above is different from that 2E A used previously).

Relating to the nodes altogethern equations can be formulated, where the
number of unknown displacement is alson, therefore the system of equations can
be solved. After the replacement of the following coefficients:

E A

l
= B, −

(
2E A

l
+ ρ · l

)
= C and −

(
E A

l
+ ρ · l

)
= D. (10)
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Taking into consideration the statements (7), (8), (9) and (10) the system of equations
can be formulated as follows [1, 3, 4, 8]:




C B
B C B

B C B

B C B
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .

B C B
B C B

B D




·




u1
u2
u3
...
...

ui
...
...

un−1
un




+




0
0
0
...
...
0
...
...
0

−Fdil




=




0
0
0
...
...
0
...
...
0
0




(11)

or using simpler symbols:
A · u + F = 0. (12)

The displacements of given cross sections of the rail (‘nodes’) can be determined
[3, 4] by solving (12), i. e. using

u = −A−1 · F. (13)

Taking into consideration that the retaining impact of anl long elastic embedding
material reflects the change of normal force on thel long section lying between two
neighbouring nodes, the distribution of normal forces can be calculated (Fig.12)
using formulae (1) and (5) as well asu displacements derived from (13) in the
following equation [4]:

Fj = Fdil − F ′
j = Fdil − ρ · l ·

j∑
i=1

ui . (14)
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In mathematical sense theui displacements are varying all along theL long super-
structure, except the middle cross section, which do not move in theory. During
actual calculations it can be observed, however, that at a given superstructure the
last section of the displacements presents exactly the same features. In case when a
displacement smaller thanu0 = 0.001 mm is not considered to be an actual move-
ment, according toFig. 11, thex0 length of the moving section is unambiguously
determined by theu0 limit value of the displacement. The length of the moving
section for a given superstructure will always be the same. It can be stated therefore,
that the behaviour of a rail embedded into elastic material is practically identical
to that of a welded track [3, 4].

Fig. 13 presents diagrams of displacements and internal forces related to a
rail type UIC 54 embedded into an elastic material characterised by a longitudinal
coefficient of elasticity ofρ = 27.3 kN/mm/m, built with anL/2 = 100 m half-
length.
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