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Abstract

Possible geodetic applications of Eötvös’ torsion balance gravity gradient data were investigated in
the present study. As a practical example gravity data have been predicted for two test areas in
Hungary with the method of least squares collocation. By evaluating the results with gridded data
interpolated from gravity measurements the standard deviation of differences±1 − 1.7 mGal was
found which proves the usability of such gradient data for geodetic applications.
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1. Introduction

Nowadays there is an increasing interest in measuring gravity gradients of the
earth’s gravity field. Mainly these measurements are intended to be made on mo-
bile (air, marine and space mounted) platforms (BELL et al., 1997; PAWLOWSKI,
1998). Undoubtedly an advantage of these gradient measurements is their relative
insensitivity to small platform accelerations which constitutes a principal problem
for aerial gravimetry, for example. Moreover, for space gradiometric devices (e.g.
GOCE, VISSER, 1999) the exponential gravity signal decrease for high altitudes
is counteracted by the signal amplification at shorter wavelengths due to the dou-
ble differentiation for second-order gradients of the gravity field (RUMMEL et al.,
1993).

Beside the planned satellite mission it is a historical fact that gravity gradio-
metric measurements for the first time were successfully taken at the surface of
the earth due to Loránd Eötvös’ terrestrial gradiometric device, the torsion balance.
This means an advantageous position for Hungary since a great deal of gradiometric
measurement data has been collected here. Even in time of Eötvös these data have
been used for geodetic tasks as well (see HOMORÓDI, 1966). In our present paper
we would like to highlight some ideas about the application of this kind of data to
geodesy by taking into account not only modern computing facilities but also recent
theoretical developments in the solution of the Geodetic Boundary Value Problem
(GBVP).
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At first we introduce shortly the principle and history of measurements taken
by Eötvös’ torsion balance device. Then we continue with Hungarian torsion bal-
ance measurements highlighting the data collected at ELGI (Eötvös Loránd Geo-
physical Institute). Then a short discussion will present how it is possible to use
such data in solving the GBVP. Finally a prediction experiment by the method of
least squares collocation will show how to get gravity values from torsion balance
gradient measurements.

2. Measurement Principle of Eötvös’ Torsion Balance and a Short History of
Measurements

Fig. 1. Principle of Eötvös’ torsion balance

The principle of measurement with the Eötvös’ torsion balance is shown in
Fig. 1. This device was called by Eötvös horizontal variometer, and through gravity
change between the two massesm a force arises which exerts a small moment on
the horizontal swinging arm of length 2l. This moment is counteracted by the
moment exerted by the threadw, and the corresponding angle position can be read
or photographically registered on film for certain kind of torsion balance devices.

As of the original torsion balance, at each site the readings should be taken in
5 different azimuths in order to determine the corresponding 5 unknowns (reading
for the torsion-free position, two gradient and two curvature parameters). Later
in a more advanced design two such balances were mounted at opposite position
to each other and hence readings had to be taken at only 3 azimuths to compute
the 6 unknowns. (twin/double balances). We would like to mention that recently
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DOROBANTU (1999) has done research at the University of Munich to equip the
device with automatic electronic reading.

The first measurements with torsion balance were led by Eötvös himself, first
at the foot of Gellért Hill (1889), then at Sághegy near Celldömölk (1891), then
on the ice sheet of Lake Balaton (winters of 1901–1903). The measured gravity
gradients were in agreement with lake bathymetric data. After the first successful
tests for resource exploration at Morvamező near Egbell (Gbely) in 1916, the torsion
balance device gained an increasing field of application for gravity exploration in
Germany, Hungary and Bohemia. The first hydrocarbon reservoir in the USA was
detected by the device in 1924 (Nash Dome).

The introduction of astatized spring gravimeters by the end of the thirties made
an end to the torsion balance measurements in the United States. The reason behind
this was not only the large field work required by the torsion balance (the terrain
around the field point had to be carefully levelled along eight directions for terrain
correction computations), but also the interpretation of the gradient and curvature
data was not so straightforward as for gravimetric�g data. An assertion to this
is the fact that the curvature data measured were simply discarded for resource
exploration due to its interpretation difficulties. Torsion balance measurements,
however, are continued in Europe; for example in Hungary even in the sixties it was
used for field work.

3. Torsion Balance Measurements and Data in Hungary

In the external gravity field three elements of the gradient tensorE (Eötvös or
Marussi tensor), and the difference of two other elements, altogether 4 data from
the 5 independent elements can be determined from torsion balance gradiometry.
If

E = grad g =
[

Wx x Wxy Wxz
Wxy Wyy Wyz
Wxz Wyz Wzz

]

denotes the elements of the Eötvös tensor, thenWxz, Wyz, Wxy andW� = Wyy−Wx x
can be measured by the balance. It is customary to call the first two of them,
(Wxz, Wyz) components of gradients, and the other two, (Wxy andW�) components
of curvatures sinceWxz = gx , Wyz = gy. are components of the horizontal gravity
gradient vector andWxy andW� are in connection with the curvature of the level
surface.

Conventionally the gradient values are illustrated by vectors and curvatures
by line segments, respectively, as illustrated inFig.2. The following equations

tanα = Wyz

Wxz
, Wsz =

√
W 2

xz + W 2
yz
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Fig. 2. Gradient and curvature components

can be used to compute the azimuth and magnitude of gradient vectors, andκ =
Wsz/Wszg connects the magnitude with curvatureκ of the plumb line. The differ-
ence of main curvature parameters

R = g

(
1

rmin
− 1

rmax

)
=

√
W 2

� + (
2Wxy

)2

can be expressed, as well as the azimuth of maximal curvature from the expression

tan 2α = −2Wxy

W�

.

This may also be plotted on a map as a line segment of azimuthα and lengthR.
Original files of measurements with the torsion balance are stored at the

Loránd Eötvös Geophysical Institute (ELGI). In the past this material has been
treated somewhat carelessly henceforth some original files have been lost and they
cannot be recovered. During the years 1995-2000 in the framework of a research
project 11795 point gradient and curvature data have been saved to computer files
and given to Technical University of Budapest by ELGI. These data mainly cover
the central part of Hungary (data distribution is shown inFig.3). This figure also
shows two test areas chosen (the larger one, ‘A’ is mostly plain area while the other
one, ‘B’ is a hilly area with moderate topography). These areas were chosen for
extensive tests and these will be described in much more detail later on in the present
study.

A statistical analysis was performed on the above test data including gradient
and curvature parameters and topographic effects, also contained in the original
files. These statistics are inTable 1 below.
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Table 1. Statistics of gradients and curvatures for test areas A and B (number of data: 752
and 691 resp.; Eötvös Unit, 1E.U.= 10−9 s−2), t – topographic effect, and the
linear correlation coefficients of a specific gradient/curvature parameter and its
topographic correction

Area A Wxz Wyz 2Wxy W� txz tyz 2txy t�
Min. –16.3 –22.9 –29.1 –43.2 –10.3 –11.4 –36.7 –28.2
Max. 42.5 27.6 32.3 33.7 8.5 13.3 22.4 16.2
Mean 8.5 0.6 4.3 0.5 0.0 –0.3 0.2 –0.1

Std.dev. ±6.9 ±6.4 ±8.2 ±10.0 ±2.3 ±2.6 ±5.0 ±4.8
Corr.coeff. 0.300 0.419 0.488 0.455

Area B Wxz Wyz 2Wxy W� txz tyz 2txy T�

Min. –38.4 –65.8 –175.3 –324.3 –42.3 –38.4 –167.9 –292.6
Max. 75.9 67.4 299.7 216.0 35.1 38.9 257.7 163.1
Mean 13.1 –8.6 2.1 –7.8 1.5 –2.4 –1.4 –5.5

Std.dev ±15.1 ±17.3 ±51.6 ±65.9 ±7.9 ±8.4 ±44.6 ±56.4
Corr.coeff. 0.649 0.708 0.927 0.918

The high correlation is very pronounced with topography for area B of gradi-
ents and especially of curvatures. This confirms the well-known fact that the torsion
balance measurements are very sensitive to nearby topographic masses, something
must be noted for geodetic applications as well.

4. Possible Utilization of Torsion Balance Measurements in Geodesy

Torsion balance measurements have already been used for geodetic purposes. The
mathematical tool used was line integration of gradients and curvatures, which
allowed to express differences of gravity and deflection of the plumbline between
any two points. Following this technique it became possible to interpolate gravity
and deflections of the vertical in a whole measurement network when some points
have known gravity or deflection values (VÖLGYESI, 1998).

A great theoretical achievement in the solution of GBVPs can be thanked to
GELDEREN and RUMMEL (2001). They for the first time derived certain combina-
tions of the Eötvös tensor that can be used to solve the GBVP and the corresponding
kernel functions that may be used in surface integrals for the solution, just as the
Stokes’ integral for gravity anomalies. By using these integrals, combinations of
Wxz, Wyz and 2Wxy , W� of torsion balance measurements will be boundary values
for the determination of the outer gravity field (parametrized e.g. by the disturbing
potential). The practical application of these integrals is an open field for research.
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Fig. 3. Distribution of torsion balance measurement sites. The upper rectangle shows test
area ‘B’, the other shows ‘A’. The coordinate system is GSR80,geodetic coordinates

A more traditional approach in physical geodesy is the least squares collo-
cation (TSCHERNING, 1994), the advantage of which lies in the combination of
different kinds of gravity measurements in the gravity field determination process,
and this of course includes torsion balance data as well. Another advantage is that
any other parameter of the gravity field can be obtained in one computational step.
An example can be found in literature for its application for the GGSS gravity gradi-
ent data (JEKELI, 1993) processing (ARABELOS and TZIAVOS, 1992; ARABELOS
and TSCHERNING, 1999). A known limitation of the method is that the number
of measurement points cannot go beyond several thousand due to the size of the
equations to be solved during collocation. This method was chosen for the present
study to predict gravity anomalies for the two test areas by using only (Wxz, Wyz)
gradients measured by the torsion balance.

5. Prediction of Gravity Anomalies by Least Squares Collocation

Gravity anomalies have been used for prediction on the one hand since it can serve
a good starting point for numerous geodetic and geophysical applications (geoid
determination, gravity field interpretation, inverse problems), and on the other hand
a grid of interpolated Faye anomalies for the two test areas was available and these
data served well for evaluation purposes. We have concentrated on using gravity
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gradients although usage of curvature components in collocation poses no problem
or even the combination of the two is easily manageable.

The first step in gravity field modelling by collocation is to remove all possible
short and long wavelength effects (trends) from our data in order to make the
residuals more smooth, easily interpolatable, and with zero mean. The so called
normal effect (VÖLGYESI, 1982) has been removed for the purpose as well as long-
wavelength gradient components of the EGM96 geopotential model and the above
mentioned topographic effect.

The normal effect and the geopotential model are only parts of the trend
removal. Since there is no way to remove a localized trend effect by applying these
corrections only, we decided to take into account a local trend in reduced (Wxz, Wyz)
gradients before determining empirical covariance functions. This process was
similar to the one used by HEIN and JOCHEMCZYK (1979) for the torsion balance
data in Germany when modelling local covariance functions from torsion balance
gradients. Two kinds of such local trend models – as functions of the position –
were applied to reduced gradient components:

• Linear trend function
• Quadratic trend function

In the next step an analytic covariance model has to be fitted to the empirical
covariance function through an essentially iterative process. Then parameters of
the analytic covariance function of Tscherning–Rapp Model 2 withB = 4 in the
denominator (see TSCHERNING, 1994, Eq. 19) were yielded.

The last step was to compile the job file for GEOCOL program written by
Tscherning in Fortran. The collocation step predicted residual gravity anomalies
which do not contain the gravity effects of the geopotential model in addition to the
normal effect and topography.

Finally these gravity predictions were compared with interpolated 1′ × 1.5′
residual Faye anomalies corrected also to the effect of the EGM96 geopotential
model. This comparison is valid since both values are topographically reduced
ones. Statisics of the differences for the two test areas are summarized inTable2
for the cases of linear and quadratic trend models.

The standard deviation of differences is seemingly better for linear trend
model and for the plain area, what of course, was something to be expected. The
±1 mGal standard deviation of differences for the plain area can be said to be very
low especially if we take into account the fact that according to PAPP (1993) the
same prediction error of gravity anomalies is to be expected by using the point
gravity anomalies themselves!

Our results are in harmony with the study of VÖLGYESI (1998) as well, who
noted differences around±0.60′′ − 0.65′′ in deflections at evaluation points by in-
terpolating these data from curvatures measured by the torsion balance. At the same
time according to TÓTH et al. (2000) the standard deviation of differences between
astronomically measured and gravimetrically predicted deflection components is
about the same value,±0.5′′ − 0.6′′. These results confirm the conclusion that
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Table 2. Statistics of the differences of residual gravimetric and (W xz, Wyz)-predicted grav-
ity anomalies for test areas A and B. (units are mGal).T 2 denotes linear,T 3
quadratic trend, respectively, andF indicates that a least squares fitting plane has
been removed from the differences

A–T2 A–T2–F A–T3 A–T3–F B–T2 B–T2–F B–T3 B–T3–F
Min. –2.52 –4.00 –2.14 –4.54 –11.95 –3.37 –12.99 –3.61
Max. 3.66 2.21 4.77 2.09 3.31 4.08 1.50 4.95
Mean 1.30 0.00 1.38 0.00 –5.31 0.00 –6.07 0.00

Std.dev. ±1.10 ±1.02 ±1.36 ±1.05 ±3.96 ±1.67 ±3.82 ±1.77

torsion balance measurements may be used for the determination of certain gravity
field parameters as well as gravity anomalies.

6. Conclusions and Outlook

Our studies for two selected test areas have demonstrated the fact that the Hungar-
ian torsion balance measurements can be advantageously applied for gravity field
determination. This means that these data can be combined with gravity anomalies
for more reliable gravity field determination. However, they in themselves may
be appropriate to solve the GBVP. Because of the great number of such data the
collocation method meets numerical difficulties, hence we propose to apply other
numerical methods as well (e.g. FFT-based numerical integration methods).

Besides the gradient components, the application of curvature parameters
needs more studies, since according to the work of ARABELOSand TZIAVOS (1992)
this may further improve the prediction. Also a detailed comparison with the results
of line integration methods is planned.

It can be told that Hungary has a very advantageous position as regards terres-
trial gradiometry and it would be pity to let these valuable gradient measurements
go unused that was collected (although for resources exploration) through laborious
field work during decades. The present study wants to point out that practical work
with this exceptional kind of data may yield fruitful results in the future for geodesy.
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