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Abstract

The computation ofwavephenomena belongs to the subject of the unsteady flow problems. To the
computations boundary conditions are required. The initial conditions, usually, can be very easily
produced. Generally, the upstream boundary condition is given, and this presents the actualwave for
the effected and calculated lower river stretch.

It is a general and difficult problem to produce the downstream boundary condition – especially
for shorter river stretches – which is often substituted by the normal (steady flow) discharge curve:
Q0 = Q0(h). This approach – depending on the type of the floodwave – is veryoften not precise
enough. The goal of this study is to justify that the downstream boundary condition, instead of the
Q0 = Q0(h) discharge curve, can be substituted by theQ = Q(h) loop, which is also a rating curve,
but for unsteady flow.

The computational results justified the statements of the authors. It was also numerically
justified, that during a totalwave flow themaximum time order of the main hydraulic parameters is:
Smax, vmax, hmax (or Zmax) andQmax.
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1. Basic Equations

The flood wave is a gradually varying unsteady flow, which is determined by a
continuity equation (KOZÁK 1977, ABBOTT 1979, RÁTKY 1989):
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where,Q – the discharge,A – the wetted cross-sectional area,v – the mean velocity,
S0 – the bottom slope,h – the depth,R – the hydraulic radius,C – the velocity
coefficient,g – the acceleration due to gravity,x – the longitudinal co-ordinate of
cross-section andt – the time.

Of course, the dynamic equation should have many different forms (KOZÁK
1977, CUNGE–HOLLY–VERWEY 1980) depending on the conditions, but these
conditions do not change the substance of our idea. For sake of simplicity in this
case, we supposed a prismatic channel.

The general solution of the basic equations (1 and 2) are (KOZÁK 1977,
RÁTKY 1989):

h = h(x, t) andv = v(x, t) or Q = Q(x, t), (3)

which – in our present case – are not important.

2. The Approximation of the Q(h) Loop

From the basic hydraulic conditions of steady flow it is well known that the discharge
formula is:

Q0 = AC
√

RS0 (4)

while, for an unsteady flow, with a very good approximation

Q = AC
√

RS = AC

√
R

(
S0 + ∂h

∂x

)
, (5)

where (for prismatic channel):

S = S0 + ∂h

∂x
(6)

is theactual slope of the water surface (approximately) and

∂h

∂x
(7)

is theadditional surface slope (KOZÁK 1958), which shows the longitudinal vari-
ability of the depth. (For non-prismatic channel theZ0 = Z0(x) and Z = Z(x)
surface curves have to be applied.)

From our former research work (KOZÁK 1958) it was justified, that
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where,∂h/∂t – the tangent of theh = h(t) flood hydrograph,B – the width of the
water surface,W – the wave velocity (KOZÁK 1958) andW0 – the tangent of the
normalQ0 = Q0(h) discharge curve. From the equations of (4) and (5) the actual
discharge can be derived

Q = Q0

√
S

S0
= Q0

√
1 + 1

S0

∂h

∂x
(10)

from the steady flow discharge (Q0) and the additional slope (∂h/∂x).
During the unsteady flow computational processes we have to solve the two

(1 and 2) basic equations in every discretised time (�t) cycle. As a result we
will have – in every time cycle – calculated values at every model point[n, j ] for
[h j

n, Q j
n, v

j
n , etc.] j=1+N

n=1+N
From these, using aretrograde scheme, the additional slope can be expressed

by the following form: (
∂h

∂x

)
≈ h j

n − h j
n−1

xn − xn−1
. (11)

Substituting this value(∂h/∂x) to theEq. (10) the linear equation of unsteady flow
(KOZÁK 1977, RÁTKY 1989) can be solved. After the solution we get new values
for the water depth[h]j+1. With these new depth values we can calculate a more
exact value for the additional slope (∂h/∂x). Finally for the timetj+1 we can get
a more exactly approximated value for[h − Q]j+1 in every cross section. This
iteration can be repeated as many times, as required.

3. Example and Approximation

The following example will justify the applicability of the proposed method. The
main characters and hydraulic parameters of the analysed flow are as follows. The
300 km longchannel has aprismatic cross section where:

S0 = 0.00005, k = 40 m1/3/s, B = 100 m, h0 = 4 m, Q0 = 270.83 m3/s.

For the computation of the unsteady flow, the well known implicit method was
applied, using

�x = 1000 m, �t = 15 min

discretisation network (KOZÁK 1977).
The upstream boundary condition is given inFig. 1 in Q = Q(t) form, at

x = 300 km section.
Thedownstream boundary condition (in sectionx = 0 or x = 10 km) was

given under the following conditions, in casesA, B andC:

A, at x = 0 km, Q0 = Q0(h) with Eq. (4).
B, at x = 0 km, Q = Q (h) with Eq. (10).
C, at x = 10 km, Q = Q (h) with Eq. (10).
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Fig. 1. The calculated h = h(t) water depths and Q = Q(t) at upper boundary section

The results of the computations are presented inFigs.1 - 6. and the conclu-
sions are the following.

Fig. 1 presents not only the upstream boundary condition –Q = Q(t)
with dashed line – but the calculatedh = h(t) water depths in sequence atx =
300, 200, 100, 50 and 0 km sections (continuous lines).

Fig. 2 presents the steady and the calculated unsteady discharge curve, namely
loop – Q0 = Q0(h) and Q = Q(h) – at x = 0 km (downstream boundary
condition). Fig. 3 presents the calculatedh = h(t) hydrograph also in the lower
cross section (x = 0 km). The calculated curves showsignificant difference between
the two methods if

• the lower boundary isQ0 = Q0(h) or
• the lower boundary isQ = Q(h) (i.e., it is a loop curve).

The difference between the two curves is more than 50 cm! The reason of
the lower water level is the greater unsteady discharge (Q > Q0), which causes
significant suction effect for the upstream channel stretch.

Fig. 4 presents the sameQ − h relations, but inx = 10 km section. The
continuous line〈3〉 presents the unsteady (Q loop) and the dashed line〈2〉 the steady
(Q0) downstream boundary condition (x = 0 km). Q0 = Q0(h) was supposed for
the downstream boundary and the loop number〈2〉 was calculated. The difference
between curves〈1〉 and〈2〉 is quite considerable.Fig.4 also presents the permanent
Q − h curve〈1〉 in thex = 10 km section, with dotted line.
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Fig. 2. The steady rating curve and unsteady loop curve at the x = 0 km section
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Fig. 3. Theh = h(t) hydrographs at thex = 0 km lower boundary section

Fig. 5 presents the calculatedh = h(t) hydrograph also in sectionx = 10 km,
under the former (Fig. 4) conditions. The difference between the depth values (�h)
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Fig. 5. The h = h(t) hydrographs at the x = 10 km lower boundary section

are still significant, but they decrease upwards. The careful analysis of the same
(h − t) curves in sectionsx = 50, 100 and 150 km proves that thedifference (�h)
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Fig. 6.

gradually decrease upwards from the downstream boundary. This means that the
difference between the two (steady or loop downstream boundaries) methods has
the maximum values atx = 0 km and it is decreasing upwards.

From hydraulic point of view these mean the following: the different lower
boundaries are able to influence only the shorter neighbouring stretches of the flow.

The calculatedh = h(t), S = S(t), v = v(t) and Q = Q(t) curves in
Fig. 6 numerically prove the hydraulic features of the unsteady phenomenon during
a flood wave according to many authors’ (KOZÁK 1958, VÁGÁS 1984, SZIGYÁRTÓ
1985) opinion.

First the slope (S, or ∂h/∂x), then the velocity (v) and the discharge (Q) and
finally the depth (h) reach their maxim values (Smax, vmax, Qmax, hmax: C, D, E and
F points), which is corresponding to the theory (KOZÁK 1958).

The specialF −G stretch of the loop inFig.4 can be analysed in the following
way by the application ofEq. (8). At the pointF∂h/∂t = 0 therefore the value of
the additional slope (∂h/∂x) is just the function of the curvature of the wave surface
expressed by∂2h/∂x2 (hereh = hmax). At the pointG of Fig. 6 ∂h/∂x = 0 (and
Q = Q0) therefore fromEq. (8):

∂h

ht
= − Q0

2BSk

∂2h

∂x62
. (12)
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4. Conclusion

The study presented an approximate method to calculate the loop (discharge curve
for unsteady flow). The calculationsproved that in case of unsteady flow thedown-
stream boundary conditions – instead of the steady discharge curve – can be substi-
tutedby a loop and thisgives much better results. The difference (�h) between the
steady (Q0) and unsteady (Q) downstream boundary conditions attain their max-
imum in the neighbouring (�x = 0 − 40 km) area of the downstream boundary,
but these differences (�h) gradually decrease as the function of the distance. The
calculation alsojustified that during a flood wave thelogical sequence of the main
hydraulic parameters is:Smax, vmax, Qmax, hmax (Fig. 6).
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