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Abstract

The computation ofvavephenomena belongs to the subject of the unsteady flow problems. To the
computations boundary conditions are required. The initial conditions, usually, can be very easily
produced. Generally, the upstream boundary condition is given, and this presents thevaeotfal

the effected and calculated lower river stretch.

Itis a general and difficult problem to produce the downstream boundary condition —especially
for shorter river stretches — which is often substituted by the normal (steady flow) discharge curve:
Qo = Qq(h). This approach — depending on the type of the fla@de — is veryoften not precise
enough. The goal of this study is to justify that the downstream boundary condition, instead of the
Qo = Qq(h) discharge curve, can be substituted by@e- Q(h) loop, which is also a rating curve,
but for unsteady flow.

The computational results justified the statements of the authors. It was also numerically
justified, that during a totakave flow themaximum time order of the main hydraulic parameters is:

Smax Vmax. Nmax (0r Zmax) and Qmax.
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1. Basic Equations
The flood wave is a gradually varying unsteady flow, which is determined by a
continuity equation (KozAk 1977, ABBOTT 1979, RATKY 1989):
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where,Q —the dischargeA — the wetted cross-sectional area; the mean velocity,
S — the bottom slopeh — the depth,R — the hydraulic radiusC — the velocity
coefficient,g — the acceleration due to gravity— the longitudinal co-ordinate of
cross-section antd— the time.

Of course, the dynamic equation should have many different forrz K
1977, WNGE-HOLLY—VERWEY 1980) depending on the conditions, but these
conditions do not change the substance of our idea. For sake of simplicity in this
case, we supposed a prismatic channel.

The general solution of the basic equatiohsad 2) are (KozAk 1977,
RATKY 1989):

h =h(x,t) andv = v(x,t) or Q = Q(x, t), 3)

which —in our present case — are not important.

2. The Approximation of the Q(h) L oop

From the basic hydraulic conditions of steady flow itis well known that the discharge

formula is:
Qo = ACV RS (4)

while, for an unsteady flow, with a very good approximation

Q=AC\/R_S=AC/R(S)+2—2>, (5)

where (for prismatic channel):

oh
S= — 6
S+ (6)
is theactual slope of the water surface (approximately) and
ah
— 7
™ (7)

is theadditional surface slope (KozAk 1958), which shows the longitudinal vari-
ability of the depth. (For non-prismatic channel the= Zy(x) andZ = Z(x)
surface curves have to be applied.)
From our former research work (¢Ak 1958) it was justified, that
oh 1 oh Qo 0°h
X Wat  2BSWax?’
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(8)
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where,oh/at — the tangent of thb = h(t) flood hydrographB — the width of the
water surfaceWW — the wave velocity (KzAk 1958) andW, — the tangent of the
normal Qg = Qo(h) discharge curve. From the equations4)fgnd 6) the actual

discharge can be derived

S 1 9h
Q:QO\/;ZQO 1+§3—X (10)

from the steady flow discharg€)§) and the additional slop&l/ax).

During the unsteady flow computational processes we have to solve the two
(1 and 2) basic equations in every discretised timst) cycle. As a result we
will have — in every time cycle — calculated values at every model gaint] for

. R i—14N
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From these, using igtrograde scheme, the additional slope can be expressed

by the following form: _ ‘

ah hy —h

<_> ~ 0= g (11)

aX Xn — Xn—1
Substituting this valu¢ah/ax) to theEq. (L0) the linear equation of unsteady flow
(KozAk 1977, RRTKY 1989) can be solved. After the solution we get new values
for the water depttih]’ ™. With these new depth values we can calculate a more
exact value for the additional slopgh(/ax). Finally for the timet *! we can get
a more exactly approximated value figr — QJ+* in every cross section. This
iteration can be repeated as many times, as required.

3. Example and Approximation

The following example will justify the applicability of the proposed method. The
main characters and hydraulic parameters of the analysed flow are as follows. The
300 km longchannel has aprismatic cross section where:

S =0.00005 k=40m’3/s, B=100m hy=4m, Qo= 27083n7/s.

For the computation of the unsteady flow, the well known implicit method was
applied, using
AX =1000 m At =15 min

discretisation network (BzAK 1977).

The upstream boundary condition is given inFig.1in Q = Q(t) form, at
x = 300 km section.

The downstream boundary condition (in sectionx = 0 or x = 10 km) was
given under the following conditions, in casds B andC:

A, at x=0 km, Qg= Qqu(h) withEq. (4).

B, at x=0 km, Q = Q (h) withEq. (10).
C, at x=10km, Q = Q(h) withEq. (10).
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Fig. 1. The calculated h = h(t) water depths and Q = Q(t) at upper boundary section

The results of the computations are presentefigs. 1 - 6. and the conclu-
sions are the following.

Fig. 1 presents not only the upstream boundary conditio® — Q(t)
with dashed line — but the calculatéd= h(t) water depths in sequenceat=
300, 200, 100, 50 and 0 km sections (continuous lines).

Fig. 2 presents the steady and the calculated unsteady discharge curve, namely
loop — Qg = Qp(h) and Q = Q(h) — atx = 0 km (downstream boundary
condition). Fig. 3 presents the calculatdd= h(t) hydrograph also in the lower
cross sectior{ = 0 km). The calculated curves sheignificant difference between
the two methods if

« the lower boundary i€y = Qq(h) or
« the lower boundary i€ = Q(h) (i.e., itis a loop curve).

The difference between the two curves is more than 50 cm! The reason of
the lower water level is the greater unsteady discha@e-( Qy), which causes
significant suction effect for the upstream channel stretch.

Fig. 4 presents the sam@ — h relations, but inx = 10 km section. The
continuous lind3) presents the unstead@ (oop) and the dashed lir) the steady
(Qo) downstream boundary conditior & 0 km). Qy = Qq(h) was supposed for
the downstream boundary and the loop numemwas calculated. The difference
between curveél) and(2) is quite considerablerig.4 also presents the permanent
Q — hcurve(l) in thex = 10 km section, with dotted line.
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Fig. 2. The steady rating curve and unsteady loop curve at the x = 0 km section
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Fig. 3. Theh = h(t) hydrographs at the = 0 km lower boundary section

Fig. 5 presents the calculatéd= h(t) hydrograph also in section= 10 km,
under the formerKig. 4) conditions. The difference between the depth valugs) (
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Fig. 5. The h = h(t) hydrographs at the x = 10 km lower boundary section

are still significant, but they decrease upwards. The careful analysis of the same
(h — 1) curves in sectiong = 50, 100 and 150 km proves that ttiéference (Ah)
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gradually decrease upwards from the downstream boundary. This means that the
difference between the two (steady or loop downstream boundaries) methods has
the maximum values at = 0 km and it is decreasing upwards.
From hydraulic point of view these mean the following: the different lower
boundaries are able to influence only the shorter neighbouring stretches of the flow.
The calculatech = h(t), S = S(t), v = v(t) and Q = Q(t) curves in
Fig. 6 numerically prove the hydraulic features of the unsteady phenomenon during
a flood wave according to many authors'dkKAk 1958, \AGAS 1984, SIGYARTO
1985) opinion.
First the slope §, orah/ax), then the velocity ) and the discharged) and
finally the depth ) reach their maxim value${ax, vmax, Qmax hmax. C, D, E and
F points), which is corresponding to the theorydkKak 1958).
The speciaF — G stretch of the loop ifrig.4 can be analysed in the following
way by the application oEg. (8). At the pointFah/dt = 0 therefore the value of
the additional slopesh/ax) is just the function of the curvature of the wave surface
expressed by?h/ax? (hereh = hy,). At the pointG of Fig. 6 dh/dx = 0 (and
Q = Q) therefore fronmEg. (8):

oh Qo 9°h

— = . 12
ht 2BS 0x62 (12)
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4. Conclusion

The study presented an approximate method to calculate the loop (discharge curve
for unsteady flow). The calculatiopsoved that in case of unsteady flow tdewn-

stream boundary conditions — instead of the steady discharge curve — can be substi-
tutedby aloop and thisgives much better results. The difference Ah) between the
steady Qo) and unsteady@) downstream boundary conditions attain their max-
imum in the neighbouringAx = 0 — 40 km) area of the downstream boundary,

but these differences\() gradually decrease as the function of the distance. The
calculation alsqustified that during a flood wave thiegical sequence of the main
hydraulic parameters iSSnhax Vmax, Qmax, Nmax (Fig. 6).
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