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Abstract

In the paper we will give heuristic upper bounds for the density of packings of non-overlapping equal
circles in a square, an equilateral triangle, and a circle. The area of interstices at the boundary of these
domains is calculated with greater precision than by other authors, so the obtained upper bounds are
sharper than those known before. Because the function int(x) appears in the relationships, the upper
bounds are not monotonous functions of the circle number. Not only the formulae of upper bounds
of the maximum packing density are given, but their numerical values are listed up to 30 circles.
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1. Introduction

A well-known problem of discrete geometry is: To determine the largest diameter
dn of n equal circles which can be packed in a given convex domainQ in the
plane without overlapping; or what is the same, to determine the greatest possible
minimum distancedn betweenn points which can be distributed in the inner parallel
domain ofQ at a distancedn/2. (Parallel domain ofQ at a distanceρ is a domain
bounded by the envelope of circles of radiusρ with centres lying on the boundary
of Q [3].)

Another form of this problem is where the convex domainQ and the diameter
of the circles are given and the maximum numbern of the circles is sought that can
be packed inQ without overlapping. LetA(Q) and P(Q) denote the area and the
perimeter ofQ. FEJESTÓTH [4] has shown that if in a convex domainQ there are
packedn ≥ 2 unit circles, then

n
√

12 < A(Q). (1)

GROEMER [8] has sharpened Fejes Tóth’s inequality (1) for the numbern of the
unit circles packed in a convex domainQ, and has proved that

n
√

12 ≤ A(Q) − 2 − √
3

2
P(Q) + √

12− π(
√

3 − 1). (2)
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MOLNÁR [17] has also proved this estimate, and showed the cases where equality
holds.

On the basis of the results of OLER [19] this upper bound can be sharpened
further for polygonal domains. Let� be a closed convex region bounded by a
Jordan polygon,E a finite point set,n the number of points inE such that the
vertices of� belong toE , the setE is contained in the closed region�, and the
distance between any two points inE is not less than 2. Then, due to OLER [19],
the following holds:

n
√

12 ≤ A(�) +
√

3

2
P(�) + √

12. (3)

Let �1 be the outer parallel domain of� at distance 1. Since� is convex, the area
and the perimeter of�1 obviously is

A(�1) = A(�) + P(�) + π,

P(�1) = P(�) + 2π.

Introducing these expressions into (3) we obtain the same inequality as (2), the only
difference is that�1 takes place in it, instead ofQ.

Density of packing ofn equal circles of diameterdn in a convex domainQ,
denoted byDn, is defined as the ratio of the total area of the circles to the area of
the domain:Dn = nd2

nπ/[4A(Q)]. Exact values of the maximum packing density
in special in-plane domains (square, equilateral triangle, circle), where the circle
arrangements are proven to be optimal, are known only for few values ofn. An
up-to-date list of the known exact solutions has been presented by FEJES TÓTH
[2]. For other values ofn only lower bounds and upper bounds on the maximum
density can be given. Lower bounds can most appropriately be given by explicit
packing constructions. The results including also packing constructions for special
domains are surveyed by CROFT et al. [1] and by MOSERand PACH [18]. To our
knowledge the latest results for circle packings in a square have been presented by
PEIKERT [20], MELISSEN [14], MANARAS et al. [11], HUJTER [9] and TARNAI
and GÁSPÁR [23]; in an equilateral triangle by MELISSEN [12], [13], MELISSEN
and SCHUUR [16], GRAHAM and LUBACHEVSKY [6]; in a circle by MELISSEN
[15] and GRAHAM et al. [7]. Upper bounds can be derived from the inequalities
(1), (2), (3). LetD denote the maximum density of packing ofn equal circles in a
convex domain. Ifn ≥ 2, then Fejes Tóth’s inequality (1) results in the following
estimate:

D <
π√
12

. (4)

By (2) and (3), sharper estimates can be obtained for a square, an equilateral triangle
and a circle. However, the difference between the known lower and upper bounds
is relatively large for different values ofn. We want to reduce these differences.
The inequality (2) is valid for arbitrary convex domains, and in (3) it is supposed
that circles are at all vertices of a polygon, so there is hope to improve the upper
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bounds using the particular characteristics of the special domains and the occurring
interstices along the boundary. However, this has not been realised since the 1960s.

The aim of this paper is to present a heuristic reasoning for further sharpening
Groemer’s inequality (2) using the special properties of a square, an equilateral
triangle and a circle. Thus, sharper upper bounds on the maximum packing density
in the case of a square, an equilateral triangle and a circle domain will be given,
and not only the formulae but tables containing actual numerical values will be
presented.

2. Upper Bounds on Packing Density in a Square

Let D be the maximum density of packing ofn equal circles in a square. In this
case Groemer’s formula (2) results in the following upper estimate of the maximum
packing density better than (4):

D ≤ nπ[
2 − √

3 +
√

7 − π + √
3 (2n − 6 + π)

]2 . (5)

Groemer’s inequality (5), however, can be sharpened even further due to the special
properties of a square.

Fig. 1. The Dirichlet cell of a circle (a) in the densest packing in the plane, (b) at the
boundary of the square

Consider equal circles of diameterd packed in a square of side length 1+ d.
In this square theDirichlet cell is defined as a domain which consists of all points of
the square which are nearer to the centre of a particular circle of the packing than to
any other centre. In the densest packing of equal circles in the plane, the circles form
a hexagonal arrangement in which the Dirichlet cells are regular hexagons of side
lengthd/

√
3 (Fig. 1a). The area(

√
3/2)d2 of such a hexagon can be considered

asspace claim of a circle. If circles touching a side of the square are in a close
arrangement, then the Dirichlet cell of such a circle is a pentagon (Fig. 1b) whose
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area is larger than the space claim of the circle byd2

4 (2 − √
3), and this difference

appears as the area of an extra interstice corresponding in fact to a semicircle lying
in the domain of widthd/2 around the unit square. The largest density occurs, if as
many circles as possible are touching the boundary of the square, that is, the centres
of circles are situated along the sides of the unit square with separationd between
them, and each vertex of the unit square is the centre of a circle (Fig. 2). Along a
side of the unit square we cannot put more than int(1/d) semicircles, and at a vertex
we can put additionally at most a quarter of a circle (a half of a semicircle). [Here
the symbol int(x) denotes the integer part of the real numberx .] If we add the
areas of the extra interstices determined above along the boundary of the square,
we obtain a lower bound on the real extra interstice area. This bound is even smaller
if along the fractional distance 1− int(1/d)d, the average extra interstice area is
taken into account instead of the actual one. Therefore, a lower boundAe of the
area of the sum of extra interstices is

Ae =
(

d + d2

2

)(
2 − √

3
)

.

Let Ac be the space claim ofn circles:

Ac = n

√
3

2
d2.

Ac + Ae cannot be greater than the area of the square of side length 1+ d. Thus,
we have the inequality

n

√
3

2
d2 +

(
d + d2

2

)(
2 − √

3
)

≤ (1 + d)2 .

From hered can be expressed, and asD = nd2π/[4(1 + d)2], we obtain an upper
bound on the densityD:

D ≤ nπ[
2 − √

3 +
√

3 + 2
√

3(n − 1)

]2 (6)

which is exact forn = 1, and which is better than (5) for everyn. Interestingly,
Oler’s inequality (3) results exactly in the same upper estimate (6) of the maximum
packing density in a square forn ≥ 4.

Let us make the upper bound of packing density (6) sharper by calculating the
area of the extra gaps along the boundary exactly. Doing so we have to consider also
two additional dense arrangements of circles. Therefore, we have three different
possibilities for dense packing of the circles along the boundary.

(a) The above-mentioned arrangement, that is, a circle is packed at each
vertex of the square, the other circles are closely packed along the sides and a



UPPER BOUND OF DENSITY 17

Fig. 2. Arrangement of circles along a side of the square. A gap is at each of the sides

gap of width a = 1 − int
(

1
d

)
d appears at each side. Consider the arrowhead-like

domain composed of the rectangleABC D and the triangleE FG (Fig. 3). Let its
area be denoted byAa. Then

Aa = a
d

2
+ a + d

2

√
d2 −

(
a + d

2

)2

.

The area of the extra gapAg is obtained if the space claim of a semicircle (the area
of the half of a hexagon) is subtracted from the area of the arrowhead-like domain:
Ag = Aa −

√
3

4 d2, that is, as a function ofa

Ag (a) = ad

2
+ a + d

2

√
d2 −

(
a + d

2

)2

−
√

3

4
d2. (7)

Since on each side of the square there is a gap, the area inequality is obtained forn
equal circles as

n

√
3

2
d2 +

(
int

(
1

d

)
+ 1

2

)
d2
(
2 − √

3
)

+ 4Ag (a) ≤ (1 + d)2 , n ≥ 5. (8)

(b) The gaps appear at two opposite vertices and two adjacent sides such
that the gap arrangement is (can be) symmetrical with respect to a diagonal of the
square. Let us introduce the circle numbersn1, n2 along the sides and distances
a1, a2, c in Fig. 4:

n1 = int

(
1

d

)
,
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Fig. 3. The gap at the side of the square

a1 = 1 − n1
d

2
,

c =
√

d2 − a2
1 − d

2
,

n2 = int

(
1 + d

2 − c

d

)
,

a2 = 1 + d

2
− c − n2d.

The extra interstice area corresponding to a semicircle at the boundary, as previously
obtained, is

As = d2

4

(
2 − √

3
)

.

Thus, the area of the extra interstices corresponding to the shaded area inFig. 4 is
(n1 + n2 + 1

2)As . The area of the polygonABC DE FG in Fig. 5, at the vertex of
the square, isd2 (a1 + c) + a1

2

(
c + d

2

)
. Subtracting the space claim of a quarter of

a circle from that area we obtain the extra gap areaAv at a vertex of the square:

Av (a1, c) = d

2
(a1 + c) + a1

2

(
c + d

2

)
−

√
3

8
d2. (9)

The extra gap area corresponding to the gap of widtha2, obtained from the arrowhead-
like domain by takinga = a2 in (7), is Ag (a2). The sum of the space claim ofn
equal circles and the extra gap area cannot be larger than the area of the square of
side 1+ d:

n

√
3

2
d2 + 2

[(
n1 + n2 + 1

2

)
As + Av (a1, c) + Ag (a2)

]
≤ (1 + d)2 , n ≥ 2.

(10)



UPPER BOUND OF DENSITY 19

Fig. 4. Arrangement of circles along the sides of the square. Gaps are at two opposite
vertices and at two adjacent sides

Fig. 5. The gap at a vertex of the square

(c) There are gaps at three vertices and at one of the sides of the square (Fig. 6).
Heren1, a1, c, n2, a2, As , Av (a1, c) denote the same quantities as in Subsection (b).
Let us introduce the circle numbern3 and distancesc2, a3 in Fig. 6:

c2 =
√

d2 − a2
2 − d

2
,
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Fig. 6. Arrangement of circles along the sides of the square. Gaps are at three vertices and
at a side of the square

n3 = int

(
1 − c − c2

d

)
,

a3 = 1 − c − c2 − n3d.

Consider the area of the extra gap at a side obtained by substitutinga3 for a in (7),
and that at a vertex obtained by substitutinga2 for a1 andc2 for c in (9): Ag (a3)
and Av (a2, c2). The places of these extra gaps are indicated inFig. 6. Then the
area inequality takes the form

n

√
3

2
d2 +

(
2n1 + n2 + n3 + 3

2

)
As + 2Av (a1, c)

+ Ag (a3) + Av (a2, c2) ≤ (1 + d)2 , n ≥ 3. (11)

For a given value ofn, from (8), (10), (11) we can determine numerically an upper
boundda, db, dc, respectively, on the diameter of the circles, whose maximumdm
is an upper bound on the maximum diameterd:

dm = max(da, db, dc) ≥ d,

and we obtain an upper bound of the maximum densityD:

D ≤ nd2
mπ

4 (1 + dm)2 (12)

which is better than (6). (The upper bound (12) is always less than the upper bound
(6) as if circles can be packed along a side without gaps, then the centres of the
circles lie on the side of the unit square, but if the other circles are packed in a regular
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triangular lattice packing, then circle centres can never lie on the opposite side of
the unit square, because the ratio of the side to the altitude of a regular triangle is
an irrational number.) This upper bound is exact forn = 2 (obtained from (10)),
for n = 3 (obtained from (11)), and forn = 5 (obtained from (8)).

It remains to be shown that, if the gap on a side is not concentrated at one
point on the side of the square but it is divided into two parts at two different points
of the side, the upper bound of density cannot decrease, that is, for the function
Ag (a) the inequality

Ag (ak + al) ≤ Ag (ak) + Ag (al)

is valid if ak + al ≤ d. For this it is enough to show thatAg (a) ≥ 0 and the second
derivative ofAg(a) is not positive in the interval 0≤ a ≤ d. Positivity of Ag(a) is
obvious. The second derivative ofAg (a) is

d2Ag

da2

= −3

4

a + d

2

[
d2 −

(
a + d

2

)2
]− 1

2

− 1

4

(
a + d

2

)3
[

d2 −
(

a + d

2

)2
]− 3

2

≤ 0

since both terms in it are≤ 0. Therefore, the functionAg (a) is concave from below
in the interval 0≤ a ≤ d, that is, we obtain greater density if the gaps at a side are
united into a single gap.

In the cases (b) and (c), there are gaps at vertices of the square, and also at
some side there is a gap between circles touching the side. If at such a side, the
circles are arranged so that the gap here joins the gap at the vertex, then the area of
the extra gap calculated from the united gaps is larger than the sum of the areas of
the two separate extra gaps. This is so because in the new position, the circle at the
apex of the ‘arrowhead’ corresponding to the gap at the side is at a larger distance
from the side in question, since the other circle forming a part of the boundary of the
gap at the vertex does not touch the side in question. Therefore, we obtain greater
density if the gaps at the side and at the vertex are separated.

The upper bounds on the maximum packing density calculated by the formulae
(5) and (6) as well as by (12), based on the maxima of the results obtained from (8),
(10), (11), are given for up ton = 30 in Table 1. Unlike the upper bound given by
(6) the upper bound given by (12) is not monotonous withn. As to (12), for most
values ofn, from the three inequalities (8), (10), (11), inequality (8) provides an
upper bound on the maximum packing density.

3. Upper Bounds on Packing Density in an Equilateral Triangle

Let D be the maximum density of packing ofn equal circles in an equilateral
triangle. In this case Groemer’s formula (2) results in the following upper estimate
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Table 1. Upper bounds on the maximum densityD of packing ofn equal circles in a square

With Groemer’s With average extra With exact extra
n formula (5) interstice area, gap area,

formula (6) formulae (8), (10), (11)
2 0.8724125 0.7955012 0.5390121*
3 0.8563422 0.8063246 0.6096448¶
4 0.8519408 0.8146624 0.7854052*
5 0.8509826 0.8211847 0.6737651
6 0.8513033 0.8264434 0.6701081
7 0.8521455 0.8307966 0.7123433*
8 0.8531989 0.8344782 0.7375840
9 0.8543237 0.8376460 0.7930670
10 0.8554535 0.8404109 0.8131862
11 0.8565563 0.8428525 0.7767688
12 0.8576172 0.8450303 0.7641682
13 0.8586298 0.8469892 0.7639387
14 0.8595926 0.8487642 0.7903124*
15 0.8605062 0.8503828 0.7858901
16 0.8613728 0.8518670 0.8066345
17 0.8621948 0.8532347 0.8369299
18 0.8629750 0.8545007 0.8393169
19 0.8637163 0.8556772 0.8229551
20 0.8644212 0.8567744 0.8132350
21 0.8650924 0.8578009 0.8083586
22 0.8657323 0.8587642 0.8072574
23 0.8663430 0.8596706 0.8172430*
24 0.8669266 0.8605255 0.8185761*
25 0.8674850 0.8613338 0.8221864
26 0.8680198 0.8620995 0.8336828
27 0.8685326 0.8628264 0.8508564
28 0.8690249 0.8635176 0.8571610
29 0.8694979 0.8641761 0.8479190
30 0.8699529 0.8648043 0.8411183
*Density is due to (10).
¶Density is due to (11).
All other densities not marked in the last column are due to (8).
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of the maximum packing density better than (4):

D ≤ nπ

√
3

[√
3 − 3

2 +
√

13
4 − 3

√
3 +

(
1 − 1√

3

)
π + 2n

]2 . (13)

Groemer’s inequality (13), however, can be sharpened even further due to the special
properties of an equilateral triangle.

Fig. 7. Arrangement of circles along the sides of the equilateral triangle

Consider equal circles of diameterd packed in an equilateral triangle of side
length 1+ √

3d. In this case the centres of the circles are in a closed unilateral
triangle (Fig. 7). We can repeat the argument applied for packing in a square. The
extra interstice area for a circle touching the side of the triangle isd2

4 (2− √
3), and

that for a circle at the vertex isd2/(4
√

3). The largest density occurs, if as many
circles as possible are touching the boundary of the triangle, that is, the centres
of circles are situated along the sides of the unilateral triangle with separationd
between them, and each vertex of the unilateral triangle is the centre of a circle. If
at each side of the unilateral triangle, along the segments of length 1− int

(
1
d

)
d

the average interstice area is taken into account instead of the actual one, a lower
boundAe of the area of the sum of extra interstices takes place:

Ae = 3

4

(
2 − √

3
)

d +
√

3

4
d2.

The space claimAc of n circles here also is

Ac = n

√
3

2
d2.
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Ac + Ae cannot be greater than the area of the equilateral triangle of side length
1 + √

3d. Thus, we have the inequality

n

√
3

2
d2 + 3

4

(
2 − √

3
)

d +
√

3

4
d2 ≤

√
3

4

(
1 + √

3d
)2

.

From hered can be expressed, and asD = nd2π/[√3(1 + √
3d)2], we obtain an

upper bound on the densityD:

D ≤ nπ

√
3
[√

3 − 3
2 +

√
1
4 + 2n

]2 (14)

which is exact forn = k(k + 1)/2, k is positive integer, and which is better than
(13) for every value ofn. Interestingly, Oler’s inequality (3) results exactly in the
same upper estimate (14) of the maximum packing density in an equilateral triangle
for n ≥ 3.

Let us make the upper bound of packing density (14) sharper by calculating
the area of the extra gaps along the boundary exactly. Unlike the case of the square,
here in fact there is only one possibility for dense packing of the circles along the
boundary: a circle is packed at each vertex of the triangle, the other circles are
closely packed along the sides and a gap of width a = 1− int

(
1
d

)
d appears at each

side. The exact area of the extra gapAg at each side of the triangle is given by (7).
So, the area inequality is obtained forn equal circles in the form

n

√
3

2
d2+ int

(
1

d

)
· 3

4

(
2 − √

3
)

d2+
√

3

4
d2+3Ag(a) ≤

√
3

4

(
1 + √

3d
)2

. (15)

For a given value ofn, from (15) we can determine numerically an upper bound
dm on the maximum diameterd, and we obtain an upper bound of the maximum
densityD:

D ≤ nd2
mπ

√
3
(
1 + √

3dm

)2 (16)

which is exact forn = k(k + 1)/2, k positive integer.
The upper bounds on the maximum packing density calculated by the formulae

(13) and (14) as well as by (15) and (16) are given for up ton = 30 in Table 2.
Unlike (14) the upper bound given by (16) is not monotonous withn.

4. Upper Bounds on Packing Density in a Circle

Let D be the maximum density of packing ofn equal circles in a circle. In this
case Groemer’s formula (2) results in the following upper estimate of the maximum
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Table 2. Upper bounds on the maximum densityD of packing ofn equal circles in an
equilateral triangle

With Groemer’s With average extra With exact extra
n formula (13) interstice area, gap area,

formula (14) formulae (15), (16)
2 0.8458039 0.6895766 0.5152682
3 0.8355791 0.7290091 0.7290091
4 0.8342746 0.7528577 0.6045998
5 0.8353128 0.7692306 0.6755717
6 0.8370600 0.7813496 0.7813496
7 0.8389886 0.7907797 0.6982717
8 0.8409060 0.7983842 0.7101487
9 0.8427397 0.8046830 0.7480250
10 0.8444651 0.8100101 0.8100101
11 0.8460779 0.8145913 0.7618431
12 0.8475820 0.8185852 0.7541445
13 0.8489845 0.8221069 0.7644854
14 0.8502940 0.8252425 0.7878198
15 0.8515185 0.8280574 0.8280574
16 0.8526660 0.8306026 0.7998737
17 0.8537436 0.8329186 0.7890594
18 0.8547576 0.8350375 0.7889131
19 0.8557138 0.8369859 0.7967800
20 0.8566173 0.8387852 0.8124710
21 0.8574728 0.8404536 0.8404536
22 0.8582841 0.8420062 0.8230875
23 0.8590550 0.8434557 0.8137333
24 0.8597886 0.8448130 0.8103424
25 0.8604879 0.8460874 0.8118256
26 0.8611555 0.8472870 0.8178400
27 0.8617937 0.8484190 0.8290392
28 0.8624046 0.8494892 0.8494892
29 0.8629900 0.8505033 0.8381867
30 0.8635518 0.8514658 0.8309073
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packing density:

D ≤ n[
1 −

√
3

2 +
√

3
4 + 2

√
3

π
(n − 1)

]2 (17)

which is exact forn = 1, and which is better than (4) forn ≥ 2. Groemer’s
inequality (17), however, can be sharpened even further due to the special properties
of a circle.

Fig. 8. Arrangement of circles along the boundary of the large circle

Fig. 9. The gap at the boundary of the large circle

Consider equal circles of diameterd packed in a circle of radius 1+ d
2. In

this case the centres of the circles are in the closed unit circle. If circles touching
the boundary of the circle of radius 1+ d

2 are in a close arrangement, then the area
of the part of the Dirichlet cell of such a circle, outside the polygon determined by
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Fig. 10. Upper and lower bounds of the maximum density of packing ofn equal circles
in (a) a square, (b) an equilateral triangle, (c) a circle. The curves represent
upper bounds due to Groemer (solid lines), with average extra gap area along the
boundary (dashed lines), with exact extra gap area along the boundary (dotted
lines), and lower bounds given by constructions (dash-dot lines).



28 ZS. GÁSPÁR and T. TARNAI

the centres of the circles, is larger than the space claim of the part of the circle lying
outside that polygon. Consider such a circle, say that with centreC (Fig. 8). Here

α = arcsin
d

2

and the area of the domainABC DE is
(
1 + d

2

)2
α − d

2 cosα, and the space claim

of the sector of angleπ + 2α and radiusd2 is
√

3
2 d2 π+2α

2π
. Their difference appears

as the area of an extra interstice corresponding to that sector. The largest density
occurs, if as many circles as possible are touching the boundary of the large circle,
that is the centres of circles are situated along the boundary of the unit circle with
separationd between them (Fig. 8). We cannot put more than int

(
π
α

)
circles. If

we add the area of the extra interstices along the boundary of the large circle, we
obtain a lower bound on the real extra interstice area. This bound is even smaller
if along the fractional arc 2π − 2αint

(
π
α

)
, the average extra interstice area is taken

into account instead of the actual one. Therefore, a lower boundAe of the area of
the sum of extra interstices is

Ae =
(

1 + d

2

)2

π − dπ

2α
cosα − d2

4

√
3
(
2 + π

α

)
.

The space claimAc of n circles is

Ac = n

√
3

2
d2.

Ac + Ae cannot be greater than the area of the circle of radius 1+d
2. This condition

yields the inequality:

n
√

12 ≤ π

arcsind
2

(√
4 − d2

d
+ √

3

)
+ √

12 (18)

from which, with numerical calculation, we can determine an upper bound ond.
Let us denote it bydm . So, we obtain an upper bound on the densityD:

D ≤ nd2
m

(2 + dm)2 (19)

which is exact forn = 2, 3, 7, and which is better than (17) for everyn ≥ 2.
Let us make this upper bound of packing density sharper by calculating the

area of the extra gap at the boundary exactly. Let us suppose thatd < 1. For dense
packing, the circles are closely packed along the boundary, and a gap of angle 2β
appears where

β = π − α int
(π

α

)
.
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Table 3. Upper bounds on the maximum densityD of packing ofn equal circles in a circle

With Groemer’s With average extra With exact extra
n formula (17) interstice area, gap area,

formulae (18), (19) formulae (22), (19)
2 0.8947269 0.5
3 0.8736430 0.6461709
4 0.8666092 0.7064501 0.6862915
5 0.8639636 0.7401823 0.6852102
6 0.8630830 0.7621470 0.6666667
7 0.8630130 0.7777778 0.7777778
8 0.8633427 0.7895698 0.7325021
9 0.8638746 0.7988414 0.7726714
10 0.8645071 0.8063592 0.7660089
11 0.8651847 0.8126023 0.7886108
12 0.8658764 0.8178863 0.7794110
13 0.8665645 0.8224286 0.8071556
14 0.8672391 0.8263840 0.7906235
15 0.8678945 0.8298661 0.8259160
16 0.8685278 0.8329602 0.8063189
17 0.8691378 0.8357317 0.8213498
18 0.8697242 0.8382320 0.8230299
19 0.8702872 0.8405016 0.8158336
20 0.8708277 0.8425731 0.8410926
21 0.8713464 0.8444731 0.8276348
22 0.8718443 0.8462237 0.8257748
23 0.8723226 0.8478430 0.8435271
24 0.8727821 0.8493462 0.8339199
25 0.8732239 0.8507465 0.8333797
26 0.8736489 0.8520546 0.8483184
27 0.8740582 0.8532803 0.8402808
28 0.8744525 0.8544315 0.8389196
29 0.8748327 0.8555154 0.8541269
30 0.8751995 0.8565382 0.8465751
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FromFig. 9 we have:

γ = π − arcsin
sin(α + β)

d
,

δ = π − α − β − γ.

Consider the arrowhead-like domainABC DE FG (Fig. 9). Its areaAa is

Aa =
(

1 + d

2

)2

β − d sinδ + d

2
cosα.

The areaAg of the extra gap is obtained if the space claim of a sector of angle
π + 2α is subtracted from the area of the arrowhead-like domain:

Ag (β) =
(

1 + d

2

)2

β − d sin

(
arcsin

sin(α + β)

d
− α − β

)

+ d

2
cosα − d2

4

√
3

(
1 + 2

β

π

)
. (20)

The area of the sum of extra interstices (including the extra gap area) and the space
claim of n circles together cannot be greater than the area of the circle of radius
1 + d

2:

n

√
3

2
d2 + int

(π

α

)[(
1 + d

2

)2

α − d

2
cosα − d2

4

√
3
(
1 + 2

α

π

)]

+ Ag (β) ≤
(

1 + d

2

)2

π, (21)

whence

n
√

12 ≤ int
(π

α

)[2

d
cosα + √

3
(
1 + 2

α

π

)]

+ 2

d
(2 sinδ − cosα) + √

3

(
1 + 2

β

π

)
, n ≥ 4. (22)

For a given value ofn, from (22) we can determine numerically an upper bound of
d which we denote bydm and by (19) we obtain an upper bound of the maximum
densityD which is exact forn = 4, 5, 6, 7, and which is better than that obtained
from (18) forn ≥ 4, n 
= 7.

As in the case of the square, it should be shown also here that if the gap at the
boundary is not concentrated at one point at the boundary of the circle domain but
it is divided into two parts at two different points of the boundary, the upper bound
of the density cannot decrease.

The upper bounds on the maximum packing density calculated by the formulae
(17), as well as (18) and (22) with (19) are given for up ton = 30 inTable 3. Unlike



UPPER BOUND OF DENSITY 31

the upper bound given by (18) the upper bound given by (22) is not monotonous
with n.

Of course, the presented upper bounds, with increasingn, asymptotically tend
to the density of the densest packing of equal circles in the plane:π/

√
12.

5. Conclusions

To summarize the results and to provide an overview of them we plotted the obtained
upper bounds of the maximum packing density against the circle numbern in Fig. 10,
in the case of a square (a), an equilateral triangle (b) and a circle (c). In order to make
a comparison between the upper and lower bounds, the known best lower bounds
given by actual packing constructions are also presented there. Their numerical
data are taken from [1] and [20] for a square, from [12] and [16] for an equilateral
triangle, from [5], [10], [21] and [22] for a circle. The solid lines, dashed lines and
dotted lines show the upper bounds obtained with Groemer’s inequality, with the
average and the exact extra gap areas along the boundary; the dash-dot line shows
the lower bounds. We will refer to these curves as ‘Groemer’, ‘average’, ‘exact’
and ‘lower’. From the plots inFig. 10 we can conclude the following.

(1) The difference between ‘Groemer’ and ‘average’ is the greatest for the
circle domain, then for the equilateral triangle, and the smallest for the square. This
is so because the boundary of a circle domain is curved, and so the interstice area at
the boundary is larger than that for a straight line boundary; and the interstice area
at a vertex of an equilateral triangle is larger than that for a square.

(2) The difference between ‘average’ and ‘exact’ is the smallest in general
for the circle domain because along its boundary there is only one gap. For an
equilateral triangle, ifn is a triangle number, then of course there is no difference
as ‘average’ is exact.

(3) The difference between ‘exact’ and ‘lower’ is the smallest in general for the
equilateral triangle, because in its inner parallel domain the density approximates
π/

√
12 better than in the square and the circle.
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