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Abstract

There are some types of structures impact problems where we have to calculate with elastic struc-
tures. One of these accidental situations is the impact (drop) of different heavy loads on the existing
reinforced concrete slabs and walls of the reactor building during transportation. The other situation
is the impact of neighbour building parts of nuclear buildings in the case of earthquake. In these cases
it is very important for the reactor hermetic containment to stay in elastic region. It is well known
that dynamic stress values are influenced by external and internal damping in the dynamic analysis
of elastic structures. There are some adequate numerical methods for the analysis of structures with
several degrees of freedom under external damping. An algorithm has been presented in this paper
for the analysis of dynamic excess displacements of structures by modal analysis, for cases the effects
of internal friction have to be reckoned with. The developed algorithm and numerical method have
been tested on examples. The mentioned factors showed important effects, justifying to be reckoned
with in the analysis of real structures.
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1. Introduction

An important problem of the dynamic analysis of structures is to determine dis-
placements and stresses in a structure in the case of external and internal damping.
Generally the external damping is proportional to speed and the internal damping
is frequency independent. In [1] a method is given for calculation of simultaneous
effect of external and internal damping. It will be used in this paper for impact
problem of elastic structure vibration. The general numerical method to solve the
matrix differential equation of vibration is the numerical integration. For an impor-
tant problem of the dynamic analysis of structures is to determine displacements by
this method we have to give the equivalent damping matrix of internal friction and
for that we have to solve an eigenvalue problem. Using the eigenvectors from that
calculation during the modal analysis we can solve the matrix differential equation
in shorter time. We will analyse two impact problems. The first problem is the drop
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of body for a structure and the second is the impact of neighbour parts of building
in the case of horizontal support vibration.

2. Taking a Proportional Internal Damping into Consideration

The second-order linear differential equation

Mẍ + Cẋ + Kx = q (1)

describing the displacement of structures expresses the dynamic equilibrium at
any time in the considered time range. Forces of inertia are expressed byMẍ =
fI (t), damping forces byCẋ = fD (t), stiffness forces byKx = fE (t), while
q (t) is the vector of external forces. (M mass matrix,C damping matrix andK
stiffness matrix are of ordern). The dynamic analysis is intended to solve the matrix
differential equation under initial conditionsx0, ẋ0 at a timet0, and in knowledge
of displacements, to compute the dynamic stresses.

For an external damping, theC damping matrix of the structure can be as-
sembled in knowledge of single damping elements related to the structure. For a
damping due to frequency-independent internal friction, the matrix of equivalent
external damping – for different damping parameters of single structural units –
may be assumed in knowledge of complex stiffness matrixKu + iKv, in form

C = MV
〈

1
ω0ru

〉
VT Kv using eigenvectors normed toM of the eigenvalue problem

Kuvr = ω2
0ruMvr [1].

For structural units with the same damping parameters (proportional damping)

the equivalent damping matrixC = vMV
〈

1
ω0ru

〉
VT K andKu = uK are relevant,

where

v = 4γ

4 + γ 2
, u = 4 − γ 2

4 + γ 2
, ω0ru = ω0r√

1 + γ 2

4

and γ = ϑ

π
.

Hereϑ is the logarithmic decrement of damping,ω0r may be obtained from ther-th
eigenvalue of the eigenvalue problemKv = ω2Mv for the undamped case, while
V is a matrix containing eigenvectors normed forM.

In the case of structural dampingγ2 � 1.0 thereforev ≈ γ , u ≈ 1, ω0ru ≈
ω0r and the equivalent damping matrix in practical calculation

C = MV
〈

1

ω0r

〉
VT K. (2)

Obviously, in the case of internal damping, the direct integration problem has to
be preceded by solving an eigenvalue problem. All these argue for taking it into
consideration in selecting the solution method of the dynamic problem, and to try
to apply modal analysis.
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3. Impact of a Falling Body on a Supported Elastic Structure

Now the task is to solve the matrix differential equation without damping

Mẍ (t) + Kx (t) = q (3)

under initial conditionsx0 = 0, ẋ0. Applying the modal analysis solution is wanted
in form x = Vy, in knowledge of eigenvalues and eigenvectors normed toM
(VT MV = E) of the eigenvalue problem

Kv = ω2
0r Mv. (4)

After substitution and multiplying from the left by transposed matrixVT :

VT MVÿ + VT KVy = VT q. (5)

Due to orthogonality, theoretically,n single-unknown equations may be considered.
It is known that in solving real technical problems, in the solution computed on
the basis of eigenvectors it is sufficient to involve a certain number (m < n) of
eigenvectors, computable by convenient procedures (e.g. subspace iteration) even
for extended systems. Equationr-th of n single-unknown equations:

ÿr (t) + ω2
0r yr(t) = vT

r q = fr . (6)

The solution will be

yr (t) = ar cosω0r t + br sinω0r t + fr

ω2
0r

. (7)

Constantsar andbr can be computed from the initial conditions

y0 = V−1x0 = 0 resp. ẏ0 = V−1ẋ0 = VT Mẋ0.

After substitution we get:

ar = − fr

ω2
0r

, br = 1

ω0r
vT

r Mẋ0.

Afterwards:

yr (t) = fr

ω2
0r

(1 − cosω0r t) + 1

ω0r
vT

r Mẋ0 sinω0r t. (8)

In accordance with the relationshipx(t) = Vy (t) we obtain:

x (t) =
n∑

r=1

vr vT
r

[
1

ω2
0r

q(1 − cosω0r t) + 1

ω0r
Mẋ0 sinω0r t

]
. (9)
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For proportional structural damping the matrix differential equation is

Mẍ + MV
〈

γ

ω0r

〉
VT Kẋ + Kx = q. (10)

Applying the modal analysis

VT MVÿ + VT MV
〈

γ

ω0r

〉
VT KVẏ + VT KVy = VT q, (11)

ÿr (t) + γ ω0r ẏr(t) + ω2
0r yr(t) + vT

r q = fr . (12)

The solution will be

yr (t) = e− γ
2 ω0r t

(
ar cosω∗

0r t + br sinω∗
0r t

) + fr

ω2
0r

. (13)

Here

ω∗
0r = ω0r

√
1 − γ 2

4
≈ ω0r . (14)

From the initial conditionsar = − fr
ω2

0r
, br = 1

ω0r

(
vT

r Mẋ0 − γ

2
fr

ω0r

)
.

Afterwards:

yr (t) = e− γ
2 ω0r t

[
fr

ω2
0r

(1 − cosω0r t) + 1

ω0r

(
vT

r Mẋ0 − γ

2

fr

ω0r

)
sinω0r t

]
. (15)

In accordance with the relationshipx(t) = Vy (t):

x (t) =
n∑

r=1

vr vT
r e− γ

2 ω0r t

[
1

ω2
0r

q (1 − cosω0r t) + 1

ω0r

(
Mẋ0 − γ

2

1

ω0r
q
)

sinω0r t

]
.

(16)
Approximately we can see the influence of structural damping if we calculate the
value ofµ = e− γ

2 ω0r t in the case ofω0r t = π. For reinforced concrete (γ = 0, 1) the
result is:µ = 0.855. The influence of the structural damping for the displacement
is about 15%.

4. Impact of the Neighbour Building Parts

Fig. 1 displays a stiff building part and a flexible frame on a common base. Horizon-
tal support vibration of the mechanical system isxR (t) and further displacements
of the flexible frame are contained in vectorxs (t).

Matrix differential equation containing the flexible displacements (between
both parts of the building) is as follows:
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Fig. 1. The model of the impacting structure at support movement

Mẍs (t) + Kxs (t) = −Mjs ẍR (t) = −ms ẍR (t) . (17)

js is here a signal vector showing in which direction of the displacement’s degree
of freedom the rigid-body-like displacementxR (t) is observed.

If displacementxsi of any material point of the model next to the rigid body
reaches the prescribed distance between both structures, impact occurs in the point
given. Now, to thei th component of the principal diagonal in the stiffness matrix
of the flexible structure, the spring stiffnessk1i computed from deformation of the
impacting structures in the point of impact is added, and afterwards the differential
equation

Mẍs (t) + (K + K1) xs (t) = −ms ẍR (t) + K1xd (18)

should be solved for the initial conditions obtained from the previous vibration
phase. Only one single element in the principal diagonal of matrixK1 given in
Eq. (18) differs from zero (its value isk1i ), while elements of vectorxd are equal to
d. We note here that damping elements proportional to the velocity and filling the
distanced between both structures can be placed in points of the presumed impact.

In this case, the differential equation

Mẍs (t) + Cẋs (t) + (K + K1) xs (t) = −ms ẍR (t) + K1xd (19)

should be solved instead of differential equation (18).
A more sophisticated task, however, in principle treatable by the method

described, arises when damping elements do not connect both structures, and work
only when the flexible structure moves in direction of the stiff structure. In this case,
only that element in theC diagonal damping matrix will differ from zero where the
horizontal displacement is smaller than the given distanced. This means that in
examinations further vibration phases described by deviating differential equations
should be distinguished.

For solution of matrix differential equations (17) and (18) the modal analysis
can be applied where the differential equation breaks into differential equations
with one unknown, and also structural damping can be taken into consideration.
Direct integration may provide a solution, too. In our experience, application of the
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Wilson-θ method suggested by WILSON (1976) may be advantageous for solution
of matrix differential equation (19).

If we want to take also the internal damping of the structure into account to-
gether with external damping, knowing the eigenvectors belonging to the undamped
case, an equivalent damping matrix can be generated. Applying the method intro-
duced in the previous point, structural damping can be taken into consideration even
without generating an equivalent damping matrix.

Fig. 2. The finite element model of structure

Now, the solution ofEq. (18) will be shown by modal analysis considering
structural damping. Introducing notations of

K̃ = K + K1, q (t) = −ms ẍR (t) andqd = K1xd ,

and knowing eigenvectors normed forM from the eigenvalue task

K̃v = ω̃2
0Mv, (20)

VT K̃V = 〈
. . . ω̃2

0r . . .
〉 ; VT MV = E. (21)

Seeking for the solution in form of

xs (t) =
n∑

r=1

vr yr (t) (22)

after substitutions and multiplication byVT , the system parts into one-degree-of-
freedom differential equations.rth differential equation containing also the struc-
tural damping is:

ÿr (t) + γ ω̃0r ẏr (t) + ω̃2
0r yr (t) = fr (t) + fdr . (23)
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If support vibration is harmonic

ẍR (t) = z cosαt,

then
fr (t) = −vT

r q (t) = −vT
r ms z cosαt = fr cosαt,

and
fdr = vT

r qd = vT
r K1xd .

General solution of the generated one-degree-of-freedom system is:

yr(t) = ar e− γ
2 ω̃0r (t−td) cosω̃∗

0r (t − td) + br e− γ
2 ω̃0r (t−td) sinω̃∗

0r (t − td)+

+ 1

ω̃2
0r

fdr + 1

ω̃2
0r

fr
1√(

1 − α2

ω̃2
0r

)2 + γ 2 α2

ω̃2
0r

cos(αt − βr ) . (24)

Here

βr = arctg
−γ αω̃0r

ω̃2
0r − α2

, ω∗
0r = ω0r

√
1 − γ 2

4
≈ ω0r .

Constantsar , br can be calculated from the initial conditionsydr , ẏdr belonging
to the one-degree-of-freedom system. These initial conditions can be determined
from the displacement and velocity vectors belonging to the moment of impact by
the relationships

ydr = vT
r Mxd , ẏdr = vT

r Mẋd . (25)

Having calculated integration constants, solution of the one-degree-of-freedom sys-
tems can be described in function of time. Afterwards, solution belonging to the
given vibration phase of the structure can be computed using (22).

5. Numerical Results

5.1. Impact of Transport Flask on Thick Reinforced Concrete Slabs

One of the accidental situations is the impact (drop) of the spent fuel transport flask
on the existing reinforced concrete slabs and walls of the reactor building during
transportation. The task was to assess the safety of the existing structures strength
against such an impact, and choose the optimal transport route. The initial data
consisted of the transport route of the flask with drop points, the drop heights, the
weight and geometry of the flask, the material properties and geometry of structures,
including the amount of reinforcement. The 10 dropping points were analysed. The
finite element model is shown inFig. 2 andFig. 3.

Different (usually 0.5 and 0.2 m) drop heights were included and several
energy absorbing measures were taken into account.
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Two types of flasks (91 and 116) were taken into account with flask diameter
of 2 m on the impact surface. The thickness of slab above the containment was
1.5 m and outside of the containment it was 0.4–0.6 m. For calculation the first 100
eigenvectors were used. The displacements and internal forces were determined in
the interval of 0–1 sec by 0.001 sec steps. The detailed results and experience are
in [3] and [4].

5.2. Numerical Experience for Impact of the Neighbour Building Parts

Fig. 3 shows a planar steel frame located on a reinforced concrete structure that can
be regarded as stiff.

Fig. 3. Data of the structure tested

ω01 = 2.83 rad/s
ω01 = 15.7 rad/s
ρ1 = 106 kN/m
ρ2 = 108 kN/m

One of the side wings of the reinforced concrete structure is of the same height
as the steel frame. Mass of the frame structure also comprises the weight of the
covering in addition to its own weight. On two posts of the steel hall also masses
M, equivalent of a crane’s weight, appear. Between both structural units there is an
expansion gap. On effect of support movement, the frame regarded as flexible will
hit the structure in pointK .

The smallest natural circular frequency of the system isω01, while in the case
of a system supported in pointK : ω̂01. Spring stiffness computed from the data of
the reinforced concrete structure in the point of impact makesρ1. Changes of impact
force were calculated with a stiffer springρ2, too. Horizontal support movement
was ẍR (t) = 0.4 g cos 5t . The displacement of pointK without impact is in
Fig. 4. We can see the effect of internal damping. In this case, horizontal vibration
amplitude of the frame in pointK is 0.257 m, i.e. impact occurs. Displacements
of point K can be seen inFig.5.
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Fig. 4. Impact force in the case of different spring stiffness

Fig. 5. Displacements of pointK at impact and without impact

Displacements next to the impact are displayed on a larger scale inFig. 6.

Fig. 6. Displacements of pointK on a larger scale

Change of impact force with time is given inFig. 7/a. With a larger spring
stiffness, a much larger impact force and a quite different change with time can be
observed as it is shown inFig. 7/b. The detailed results and numerical experience
are contained in [5].



42 J. GYÖRGYI

Fig. 7. Impact force in the case of different spring stiffness

6. Summary

An algorithm has been presented for computing dynamic excess displacements of
structures, if effects of internal damping are to be taken into consideration during
the impact. We analysed the effect of dropping body and presented a computation
method taking impacts in various neighbouring building parts in the vibration pro-
cess into consideration. The developed algorithm and the numerical results have
been tested on actual problems. The task is solved by building up the vibration pro-
cess from phases, and this allows computation of the impact force, too. It may be
stated that the mentioned factors have an important effect, justified to be reckoned
with in the analysis of real structures.
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